Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Sư phạm Phân tích ổn định nghiệm cho bài toán cân bằng ngẫu nhiên và áp dụng vào bài toá...

Tài liệu Phân tích ổn định nghiệm cho bài toán cân bằng ngẫu nhiên và áp dụng vào bài toán tối ưu ngẫu nhiên

.PDF
7
1
134

Mô tả:

TRƯỜNG ĐẠI HỌC THỦ DẦU MỘT KHOA KHOA HỌC TỰ NHIÊN Tên đề tài: PHÂN TÍCH ỔN ĐỊNH NGHIỆM CHO BÀI TOÁN CÂN BẰNG NGẪU NHIÊN VÀ ÁP DỤNG VÀO BÀI TOÁN TỐI ƯU NGẪU NHIÊN Mã số: 233/HĐ-NCKHPTCN Tên báo cáo chuyên đề: ĐỘ ĐO METRIC TRONG KHÔNG GIAN ĐỘ ĐO VÀ MỘT SỐ KẾT QUẢ LIÊN QUAN Chủ nhiệm đề tài: TS. Nguyễn Xuân Hải Người chủ trì thực hiện chuyên đề: TS. Nguyễn Xuân Hải, Khoa Khoa học tự nhiên Bình Dương, Tháng 9 Năm 2015 Mục lục Trang Đặt vấn đề 1 Nội dung nghiên cứu và kết quả đạt được 1 Kết luận 4 Tài liệu tham khảo 5 1. Đặt vấn đề Trong đề tài chúng tôi nghiên cứu nội dung sau. Gọi X  n ,  s và  Ω là tập tất cả các độ đo xác suất Borel trên  . Gọi K: X () ¨ X là một ánh xạ đa trị và f :  X  X   {  } sao cho, với mỗi x, y  X , f (., x, y) là hàm đo được. Chúng tôi xét bài toán cân bằng ngẫu nhiên phụ thuộc tham số độ đo xác suất dưới đây: (SEP) Tìm x  X sao cho x  K ( x,  ) và  f (, x, )  0 , y  K ( x,  ) , ở đây Ε f , x, y    f , x, y   (d) là giá trị kì vọng của f (., x, y) theo độ đo  . Với bài toán (SEP), định nghĩa S( )={x  X : x  K (x, ),  f , x, y   (d)  0, y  K (x, )}. (1)  Khi đó S xác định một ánh xạ đa trị từ  Ω vào X và được gọi là ánh xạ nghiệm của bài toán (SEP). Nội dung của đề tài là nghiên cứu tính ổn định của ánh xạ nghiệm S ( ) , cụ thể là nghiên cứu khi nào S là nửa liên tục theo tham số độ đo xác suất  , hay nói cách khác khi  thay đổi thì S có thay đổi một cách liên tục theo  không. Để đo sự thay đổi của tham số độ đo xác suất thì ta cần xác định được khoảng cách giữa hai độ đo xác suất, đó chính là nghiên cứu về các loại metric trong không gian độ đo xác suất. 2. Nội dung nghiên cứu và kết quả đạt được Nhiều mêtric xác suất đã được đưa ra bởi nhiều tác giả nhằm nghiên cứu các bài toán ngẫu nhiên khác nhau (xem Rachev, S. T., 1991). Trong mục này chúng tôi giới thiệu vài mêtric và xây dựng các không gian tham số độ đo xác suất để nghiên cứu bài toán (SEP). Với p  1, đặt p () : { ():    (d )  } . Nhắc lại rằng, trên p () , p  mêtric Fortet-Mourier (xem Rachev, S. T., 1991) được xác định bởi: với mọi , p () ,  p (  , )  sup  g ()(    )(d) , gM p (  )  ở đây M p ()  {g:  : g ( )  g ()     max{1,  p 1 , p 1 }, , } . Với các dữ kiện của bài toán (SEP), ta đặt ( , y)  {x  X:  f (, x, y)  (d)  0} , và  định nghĩa khoảng cách  và  p tương ứng trên () và p () như sau:  , () ,  (, )  supxX h(K ( x,  ), K ( x, ))  sup yX h((, y), ( , y)) ;  , p () ,  p (  , )  sup xX h( K ( x,  ), K ( x, ))  sup gM p ()  g()(  )(d) ,  ở đây h là khoảng cách Hausdorff xác định trên lớp tất cả các tập con của X. Bổ đề 2.1 Với mỗi   và y  X , nếu f (,., y) là lsc thì (, y) là tập đóng trong X với mọi  () . Chứng minh. Lấy bất kỳ dãy {xn}n 1 (, y) sao cho xn  x  X , theo bổ đề Fatou,  f (, x, y)  (d)  lim inf  f (, x , y)  (d)  0.  n n   Do đó x( , y) . Vậy (, y) là tập đóng. Từ bây giờ trở đi, với bài toán (SEP) ta luôn giả thiết thêm X là tập con compact của n , ánh xạ đa trị K có các ảnh đóng, và f (,., y) là lsc với mọi (, y)  X . Với các giả thiết này, các khoảng cách  và  p tương ứng trở thành các mêtric trên () và p () , và như vậy các không gian tham số độ đo xác suất ((),  ) và (p (), p ) là các không gian mêtric. Sau này, khi xét cho ((),  ) (tương ứng, (p (), p ) ) thì ta luôn giả thiết ánh xạ K từ X () (tương ứng, X p () ) vào X. Trong trường hợp K : X p () ¨ X được xác định bởi   K (x,  ):=K ( )={x'  X :  mi , x'  (d)  0, i  1,2,..., l},  (2) ở đây mi :  X  thỏa mãn: với mỗi x  X , mi (., x)  M p () , và với mỗi  , mi (,.) là lsc. Thế thì K không phụ thuộc vào x, và ta xem K như là ánh xạ từ p () vào X. Trong trường hợp này, dùng bổ đề Fatou ta dễ dàng thấy rằng K luôn có các ảnh đóng. Bổ đề 2.2 Với không gian ((),  ) , nếu ánh xạ K : X () ¨ X là liên tục theo biến thứ nhất thì nó là ánh xạ đóng và nửa liên tục dưới. Chứng minh. Gọi {((xn ,n ),yn )}n1  GraphK là một dãy bất kỳ sao cho ((xn ,n ),yn )  (( x,  ), y ) . Ta có: h( K ( xn , n ), K ( x,  ))  h( K ( xn , n ), K ( xn ,  ))  h( K ( xn ,  ), K ( x,  ))  supx'X h( K ( x' , n ), K ( x' , ))  h( K ( xn , ), K ( x, ))   ( n ,  )  h( K ( xn ,  ), K ( x,  )) . Khi n   trong ((),  ) và xn  x trong X ta có:  ( n ,  )  0 và h( K ( xn ,  ), K ( x,  ))  0 . Do đó h( K ( xn , n ), K ( x,  ))  0 . Bây giờ d ( y, K ( x, ))  inf zK ( x, ) y  z  yn  y  h( K ( xn ,  ), K ( x,  ))  0 . Suy ra d ( y, K ( x,  ))  0 . Vì K ( x,  ) là tập đóng trong X, y  K ( x, ) . Vậy K là ánh xạ đóng. Ta chứng minh K nửa liên tục dưới. Lấy bất kì dãy {(xn ,n )}n1  X  ((),  ) hội tụ đến  x,   , và lấy bất kì y  K ( x, ) . Với mỗi n, do K ( xn , n ) là tập đóng nên tồn tại yn  K ( xn , n ) sao cho yn  y  d ( y, K ( xn , n )) . Khi đó ta có yn  y  d ( y, K ( xn , n ))  sup y'K ( x, )d ( y ' , K ( xn , n ))  h( K ( xn , n ), K ( x,  ))   ( n ,  )  0 , nghĩa là yn  y . Vậy K là nửa liên tục dưới. Chứng minh tương tự như của Bổ đề 2.2 ta có bổ đề sau. Bổ đề 2.3 Với không gian (p (), p ) , nếu ánh xạ K : X p () ¨ X là liên tục theo biến thứ nhất thì nó là ánh xạ đóng và nửa liên tục dưới. Bổ đề 2.4 Với không gian (p (), p ) , ánh xạ K :p () ¨ X được xác định bởi (2) là đóng, và do K có các ảnh đóng nên K là nửa liên tục trên.   Chứng minh. Lấy bất kì dãy {n }n1 hội tụ đến  trong (p (), p ) , và gọi {yn }n1 là dãy bất kì trong X sao cho với mọi n, yn  K ( n ) , và yn  y . Do bổ đề Fatou, với mọi i  1,2,..., l , ta có  m , y   (d)  liminf  m , y   (d) i  n i n     liminf   mi , yn  ( n   )(d)   mi , yn  n (d)  n        liminf  sup  g   ( n   )(d)   mi , yn  n (d)  n   gM p ( )      liminf  p ( n ,  )   mi , yn  n (d )   liminf  mi , yn  n ( d )  0. n n     Vậy y  K (  ) , tức là K là đóng. 3. Kết luận Trong chuyên đề này chúng tôi đã đưa ra được một số loại metric mới trong không gian độ đo xác suất. Một số các kết quả liên quan đến các loại metric này được đưa ra nhằm làm công cụ cho các chứng minh trong phần chính của đề tài. 4.Tài liệu tham khảo [1] Cho, G.M., 1995. Stability of the Multiple Objective Linear Stochastic Programming Problems. Bulletin of the Korean Mathematical Society. 32: 287296. [2] Henrion, R. and W. Romisch, 1999. Metric Regular and Quantitative Stability in Stochastic Programs with Probabilistic Constraints. Mathematical Programming. 84: 55-88. [3] Nemirovski, A. et al., 2009. Robust Stochastic Approximation Approach to Stochastic Programming. SIAM Journal on Optimization. 19: 1574-1609. [4] Rachev, S. T., 1991. Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester, U.K. 493pp. [5] Rachev, S. T. and W. Romisch, 2002. Quantitative Stability in Stochastic Programming: the Method of Probability Metrics. Mathematics of Operation Reseach. 27: 792-818. [6] Romisch, W. and R. J-B. Wets, 2007. Stability of ε-Approximate Solutions to Convex Stochastic Programs. SIAM Journal on Optimization. 18(3): 961–979. [7] Shapiro, A., 2008. Stochastic Programming Approach to Optimization under Uncertainty. Mathematical Programming. 112(B): 183-220. Người thực hiện chuyên đề TS. Nguyễn Xuân Hải
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng