Đăng ký Đăng nhập
Trang chủ Master's thesis of science intestinal permeability and functional properties of ...

Tài liệu Master's thesis of science intestinal permeability and functional properties of duodenal enteric neurons in a mouse model of autism

.PDF
147
1
106

Mô tả:

Intestinal Permeability and Functional Properties of Duodenal Enteric Neurons in a Mouse Model of Autism. A thesis submitted in fulfilment of the requirements for the degree of Master of Science Joshua Kenneth Williams BSc in Biomedical science and Biotechnology (RMIT University, Melbourne) School of Health and Biomedical Science College of Science, Technology, Engineering and Math RMIT University August 2022 Thesis declaration I certify that except where due acknowledgement has been made, this research is that of the author alone; the content of this research submission is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and ethics procedures and guidelines have been followed. In addition, I certify that this submission contains no material previously submitted for award of any qualification at any other university or institution, unless approved for a joint-award with another institution, and acknowledge that no part of this work will, in the future, be used in a submission in my name, for any other qualification in any university or other tertiary institution without the prior approval of the University, and where applicable, any partner institution responsible for the jointaward of this degree. I acknowledge that copyright of any published works contained within this thesis resides with the copyright holder(s) of those works. I give permission for the digital version of my research submission to be made available on the web, via the University’s digital research repository, unless permission has been granted by the University to restrict access for a period of time. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Joshua Kenneth Williams. 02 August 2022. i Acknowledgements I would like to express my deepest gratitude to my supervisors A/Prof. Elisa Hill and Dr Suzanne Hosie. Both Elisa and Suzanne were encouraging, inspiring and supportive throughout my candidature. Thank you both for providing me with constructive criticism, along with skills in electrophysiology, permeability, scientific presentations, and scientific writing. I would also like to acknowledge my lab members: Jackson, Tanya, Chalystha, Pasindu, Rachele, Samantha and Miti for providing me with invaluable feedback on my presentations and troubleshooting problems with experiments that arose during my candidature. I would like to acknowledge my partner Latasha who provided constant emotional support and encouragement throughout my candidature. ii Table of Contents Thesis declaration .............................................................................................................................. i Acknowledgements .......................................................................................................................... ii List of Figures .................................................................................................................................. vi List of Tables................................................................................................................................... vii List of abbreviations and units......................................................................................................... vii Abstract............................................................................................................................................ 1 Chapter 1: Introduction ............................................................................................................... 3 1.0 Autism Spectrum Disorder (ASD) overview .................................................................................. 3 1.1 Gastrointestinal disturbances in Autism patients. ...................................................................................................... 4 1.2 The gastrointestinal tract ............................................................................................................................................ 5 1.3 The enteric nervous system ........................................................................................................................................ 8 1.4 The submucosal plexus................................................................................................................................................ 9 1.5 The myenteric plexus .................................................................................................................................................. 9 2.0 The gastrointestinal mucosal barrier .......................................................................................... 10 2.1 Intestinal epithelial cells ............................................................................................................................................12 2.2 Apical junction protein complex ...............................................................................................................................13 2.2.1 Tight junctions...............................................................................................................................................14 2.2.2 Paracellular permeability ..............................................................................................................................16 2.3 Gastrointestinal distress and ASD .............................................................................................................................17 2.4 Restoration of intestinal permeability ......................................................................................................................18 2.4.1 The impact of L-glutamine on intestinal permeability .................................................................................20 2.4.2 The impact of caffeine on intestinal permeability ........................................................................................23 3.0 Classification of enteric neurons ................................................................................................ 26 3.1. Morphological classification of enteric neurons ......................................................................................................26 3.2 Electrophysiological classification of enteric neurons. .............................................................................................28 3.2.1 Synaptic-neurons (S-neurons) ......................................................................................................................28 3.2.2 AH (after-hyperpolarisation) neurons ..........................................................................................................28 3.3 Functional classification of enteric neurons..............................................................................................................29 3.3.1 Intrinsic primary afferent neurons (IPANs)...................................................................................................30 3.3.2 Interneurons .................................................................................................................................................31 3.3.3 Muscle motor neurons..................................................................................................................................32 3.4 Neurochemical classification of myenteric neurons .................................................................................................33 4.0 ASD genetic mutations .............................................................................................................. 35 4.1 ASD and synaptic cell adhesion molecules................................................................................................................35 4.2 Neuroligins .................................................................................................................................................................36 4.3 Neuroligin-3 overview ...............................................................................................................................................37 4.4 Neuroligin functionality .............................................................................................................................................37 4.5 NL3R451C mutation ......................................................................................................................................................38 4.6 Expression of Nlgn3 in the gastrointestinal tract ......................................................................................................39 5.0 Project rationale ....................................................................................................................... 41 5.1 Assessing permeability in an autism mouse model. .................................................................................................41 5.2 Action potential characteristics in duodenal myenteric neurons using an autism mouse model ...........................42 5.3 Aims and hypotheses ................................................................................................................................................43 Chapter 2: Measuring intestinal permeability in the Neuroligin-3R451C mouse model of autism. ... 44 1.0 Introduction .............................................................................................................................. 44 2.0 Methods and materials ............................................................................................................. 45 iii 2.1 Animals ......................................................................................................................................................................45 2.2 Segmentation of the small and large intestine .........................................................................................................45 2.3 Preparation of L-glutamine and caffeine stock solutions .........................................................................................46 2.4 Injection of FITC-Dextran 4. .......................................................................................................................................47 2.5 Time course permeability experiment ......................................................................................................................47 2.6 Construction of standard curve using log serial dilutions .........................................................................................49 2.7 Statistical analysis ......................................................................................................................................................50 3.0 Results ...................................................................................................................................... 51 3.1 Small intestinal permeability in non-fasted wild-type and mutant mice .................................................................51 3.2 Permeability effects in wild-type and mutant fasted mice .......................................................................................53 3.3 Effects of fasting on NL3R451C mice ............................................................................................................................54 3.4 Effects of fasting on wild-type mice ..........................................................................................................................56 3.5 Effects of L-glutamine on fasted NL3R451C mice .........................................................................................................58 3.6 Effects of L-glutamine on fasted wild-type mice .......................................................................................................60 3.7 Effects of caffeine on fasted NL3R451C mice ...............................................................................................................62 3.8 Effects of caffeine on fasted wild-type mice .............................................................................................................64 4.0 Discussion ................................................................................................................................. 66 4.1 Understanding how NL3R451C mutation and feeding conditions effect paracellular permeability ...........................66 4.2 Understanding how L-glutamine and caffeine impact paracellular permeability ....................................................70 5.0 Conclusion ................................................................................................................................ 77 Chapter 3: Optimisation of the patch-clamp recording technique in the enteric nervous system to examine action potential characteristics in mouse duodenal myenteric neurons. ....................... 78 1.0 Introduction .............................................................................................................................. 78 2.0 Methods and materials ............................................................................................................. 80 2.1 Animals ......................................................................................................................................................................80 2.2 General perfusion/dissecting Krebs solution ............................................................................................................80 2.3 Microdissection .........................................................................................................................................................81 2.4 Identification of myenteric ganglion. ........................................................................................................................83 2.5 Protease solution .......................................................................................................................................................83 2.6 Whole-cell patch recording .......................................................................................................................................83 2.7 External patching solution .........................................................................................................................................84 2.8 Current clamp recording protocol .............................................................................................................................85 2.9 Statistical analysis ......................................................................................................................................................87 3.0 Results ...................................................................................................................................... 88 3.1 Comparison of success rate of neuronal recordings for older versus younger mice................................................88 3.2 Recording action potentials in younger mice. ...........................................................................................................90 3.2.1 Comparison of firing properties in 3 myenteric neurons .............................................................................92 3.2.2 Action potential characteristics in younger mice .........................................................................................92 3.3 Action potential characteristics observed in Neurons 1, 2 and 3 .............................................................................93 3.4 Neuronal profiles in younger mice ............................................................................................................................97 3.4.1 Comparison of action potentials full trace ...................................................................................................98 3.4.2 Comparison of current-voltage (IV) curves .................................................................................................100 3.4.3 Comparison of action potentials and current curves .................................................................................100 3.5 Discussion ................................................................................................................................................................102 3.5.1 Success rate of whole-cell patch clamp recording in older versus younger mice. .....................................102 3.5.2 Future directions for patch-clamp electrophysiology in the ENS ...............................................................104 3.6 Conclusion ...............................................................................................................................................................107 References ................................................................................................................................... 108 Appendices ................................................................................................................................... 118 Appendix: Ethics approval letter ...................................................................................................................................118 Appendix: Current clamp protocol used for whole-cell patch clamping. .....................................................................118 iv Electrophysiology appendices ....................................................................................................... 119 Appendix Table 1. ..........................................................................................................................................................119 Appendix Table 2. ..........................................................................................................................................................119 Appendix Table 3 ...........................................................................................................................................................120 Appendix Table 4. ..........................................................................................................................................................120 Permeability appendices ............................................................................................................... 121 Appendix Table 5. ..........................................................................................................................................................121 Appendix Table 6. ..........................................................................................................................................................121 Appendix Table 7. ..........................................................................................................................................................121 Appendix Table 8 ...........................................................................................................................................................122 Appendix Table 9. ..........................................................................................................................................................122 Appendix Table 10. ........................................................................................................................................................122 Appendix Table 11. ........................................................................................................................................................122 Appendix Table 12. ........................................................................................................................................................123 Appendix Table 13. ........................................................................................................................................................123 Appendix Table 14. ........................................................................................................................................................123 Appendix Table 15. ........................................................................................................................................................123 Appendix Table 16. ........................................................................................................................................................124 Appendix Table 17. ........................................................................................................................................................124 Appendix Table 18. ........................................................................................................................................................124 Appendix Table 19. ........................................................................................................................................................125 Appendix Table 20. ........................................................................................................................................................126 Appendix Table 21. ........................................................................................................................................................127 Appendix Table 22. ........................................................................................................................................................128 Appendix Table 23. ........................................................................................................................................................129 Appendix Table 24. ........................................................................................................................................................130 Appendix Table 25. ........................................................................................................................................................131 Appendix Table 26. ........................................................................................................................................................132 Appendix Table 27. ........................................................................................................................................................133 Appendix Table 28. ........................................................................................................................................................134 Appendix Table 29. ........................................................................................................................................................135 Appendix Table 30. ........................................................................................................................................................136 Appendix Table 31. ........................................................................................................................................................136 Appendix Table 32. ........................................................................................................................................................137 Appendix Table 33. ........................................................................................................................................................137 Appendix table 34..........................................................................................................................................................137 v List of Figures Figure 1: Organization of the mouse gastrointestinal tract ............................................................................................... 6 Figure 2: The organization of the enteric nervous system. ................................................................................................ 8 Figure 3: The physiology of the mucus layer in the colon is different to the small intestine ..........................................11 Figure 4: Cross-sectional image of small intestine depicting the major cell types ..........................................................12 Figure 5: Tight junctions, desmosomes and adherens junctions, make up apical junctional complexes. ......................13 Figure 6: Intestinal epithelial cells utilise both transcellular and paracellular pathways. ...............................................16 Figure 7: Potential mechanisms for L-glutamine restoring paracellular permeability in IEC’s. .......................................21 Figure 8: Overeating and duration of food deprivation influences intestinal mucus composition. ................................24 Figure 9: Three major functional classes of enteric neurons. ..........................................................................................28 Figure 10: Setup for measuring the permeability of FITC through the paracellular route. .............................................46 Figure 11: Standard curve of known concentrations of FITC with absorbance ...............................................................47 Figure 12: Small intestinal paracellular permeability in non-fasted NL3R451C and WT mice.............................................49 Figure 13: Small and large intestinal paracellular permeability fasted NL3R451C and WT mice ........................................51 Figure 14: Small intestinal paracellular permeability for fasted and non-fasted NL3R451C mice ......................................52 Figure 15: Effect of fasting and non-fasting on intestinal paracellular permeability in WT mice....................................54 Figure 16: L-Glutamine restored paracellular permeability in NL3R451C mice to WT levels in small and large intestinal regions ..............................................................................................................................................................................56 Figure 17: Small and large intestinal paracellular permeability on wild-type mice treated with L-glutamine ...............58 Figure 18: Caffeine restored paracellular permeability in NL3R451C mice to WT concentrations in small and large intestinal regions ..............................................................................................................................................................60 Figure 19: Caffeine decreased paracellular permeability in WT mice .............................................................................62 Figure 20: Visual representation of obtaining an LMMP preparation .............................................................................78 Figure 21: Visual representation of the general set up of patch-clamping......................................................................81 Figure 22: Custom-made hair cell attached to a glass micropipette ...............................................................................81 Figure 23: A myenteric neuron action potential with measured characteristics .............................................................83 Figure 24: Number of times whole cell seal configuration was obtained ........................................................................84 Figure 25: Number of times whole cell seal obtained and/or AP firing recorded in myenteric neurons using younger and older mice ..................................................................................................................................................................85 Figure 26: Three duodenal myenteric neurons exhibited action potentials in response to current steps .....................87 Figure 27: Action potential characteristics of three neurons...........................................................................................92 Figure 28: Characterisation of action potential profiles recorded throughout the full current injection protocol for three duodenal myenteric neurons..................................................................................................................................93 vi List of Tables Table 1: Myenteric neurons are classified according to their neurochemical coding Table 2: Known concentrations of FITC and absorbance produced Table 3: Action potential parameters for three duodenal myenteric neurons List of abbreviations and units AH: After-hyperpolarisation AHP: After-hyperpolarisation potential ASD: Autism Spectrum Disorder ATP: Adenosine triphosphate BA: Bile acid cAMP: cyclic adenosine monophosphate ChAT: Choline acetyltransferase CM: Circular muscle Cm: Membrane capacitance CNS: Central Nervous System DMEM: Dulbecco’s modified eagle medium EEC: Enteroendocrine cell EGF: Epidermal growth factor ENS: Enteric Nervous System ER: Endoplasmic reticulum mTOR: Mechanistic target of rapamycin FEPSPs: Fast excitatory post-synaptic potential FITC: Fluorescein Isothiocyanate GABA: Gamma-Aminobutyric acid vii 34 50 93 GI: Gastrointestinal HFD: High-fat diet HSP: Heat shock proteins. HSF: Heat shock factor ICC: Interstitial cells of Cajal IEC: Intestinal epithelial cell IGF: Insulin-like growth factor IPAN: Intrinsic primary afferent neurons ISN: Intrinsic sensory neuron I-V curve: Current – Volt curve JAM: Junctional adhesion protein KO: Knock-out LM: Longitudinal-muscle LMMP: Longitudinal-muscle-myenteric-plexus LP: Lamina propria LPS Lipopolysaccharide MAPK: Mitogen-activated protein kinases ML: Mucosa layer MM: Muscularis mucosae MP: Myenteric plexus NO: Nitric oxide Neuroligin: NLGN3, Nlgn3 or NL3 NRXN: Neuroexin NOS: Nitric Oxide Synthase viii NF-B: nuclear factor-B pA: Picoamp PYY: Peptide YY Ra: Access resistance Rm: Membrane resistance RMP: Resting membrane potential SCFA: Short chain fatty acids S-neurons: Synaptic-neurons SMP: Submucosal plexus Tau: Membrane time constant TGF: Transforming growth factor TGF- α -: Transforming growth factor α TJ: Tight junction TMAO: trimethylamine N-oxide VAchT: Vesicular acetylcholine transporter VIP: Vaso-intestinal peptide WT: Wild-type ZO: Zonulin ix Abstract Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterised by impaired social communication and the presence of repetitive behaviours. In addition to these behavioural characteristics, as many as ninety percent of individuals with ASD exhibit gastrointestinal (GI) issues. A missense mutation at position R451C in the synaptic adhesion protein, neuroligin-3 (NLGN3) was previously identified in patients with ASD. The Nlgn3 gene is present in both the brain and the intrinsic neural network of the gut, the enteric nervous system (ENS). Within the ENS, the submucosal plexus (SMP) regulates mucosal barrier functions such as secretion and permeability, while the myenteric plexus predominantly regulates gut motility. Clinical studies have shown that individuals with ASD who experience GI disturbances have elevated blood concentrations of simple sugars such as mannitol and lactulose, which is a marker for increased intestinal permeability. Previous data from the current laboratory showed faster small intestinal transit time in NL3R451C mice compared to wild-type littermates. We hypothesise that the R451C mutation affects intestinal function (i.e., permeability and motility) in mice. Duodenal, jejunal, ileal and colonic paracellular permeability was assessed using an ex-vivo whole tissue assay in non-fasted and fasted mice. The effects of the R451C mutation on functional characteristics of duodenal myenteric neurons were also investigated in wild type mice. No significant differences in intestinal permeability were observed between non-fasted NL3R451C mice and wild-type littermates in any intestinal region. In a fasted state, however, NL3R451C mice showed increased intestinal permeability in the duodenum, jejunum, ileum and colon when compared to wild-type littermates. The addition of L-glutamine and caffeine rescued the increased intestinal permeability in the duodenum, jejunum, ileum and colon in NL3R451C mice. To characterise functional neuronal properties in the ENS, action potentials and baseline cellular parameters were recorded from myenteric neurons using the whole-cell patch clamping technique on Longitudinal Muscle Myenteric Plexus Preparations (LMMPs). The probability of obtaining a 1 recording was greater in younger (2-4-week-old) Swiss white and C57BL/6 mice in comparison to older (6-12-week-old) C57Bl/6 mice. Different action potential firing patterns were observed which may correlate with different functional subgroups of myenteric neurons. Characterising intestinal permeability and categorizing enteric neurons by their functional profiles may be useful for understanding and reducing GI symptoms, chronic low-grade systemic inflammation, and core neurological symptoms in people with ASD. 2 Chapter 1: Introduction 1.0 Autism Spectrum Disorder (ASD) overview ASD is a complex neurodevelopmental disorder that results in a range of clinical traits that can differ in type and severity in each individual (Vahia, 2013). These clinical traits must meet specific criteria outlined in The American Psychiatric Association’s Diagnostic and Statistical Manual, Fifth Edition (Vahia, 2013). For instance, an individual with ASD will often display persistent deficits in socialemotional reciprocity, nonverbal communicative behaviours (hand gestures and eye contact), verbal communication and developing, maintaining and understanding relationships. In addition, the individual must have persistent deficits in at least two types of repetitive or restricted behaviour (Vahia, 2013). These include motor movements that are repetitive or stereotyped, difficulties in managing distress at small changes, fixating on interests and hypo- or hyperactivity (Vahia, 2013). The neuropathology underlying the behavioural abnormalities are proposed to include disrupted neurocircuit connectivity, altered synaptic transmission, inhibitory and excitatory imbalance and altered neurochemical signalling. Brain regions in which these abnormalities have been observed include the posterior temporal sulcus, amygdala, adjacent anterior cingulate cortex, medial prefrontal cortex and the temporal poles (Etherton et al., 2011, Ha et al., 2015, Tabuchi et al., 2007). By the age of 8, 1 in 54 United States children are diagnosed with ASD (Baio et al., 2018). An increase in the prevalence of ASD is thought to be due to implementation of new diagnostic criteria and better monitoring systems (Baio et al., 2018). Although ASD is not specific to ethnic, racial and socioeconomic groups, a recent meta-analysis (Loomes et al., 2017) outlines that ASD is more common in males than females with a ratio of 3:1. Although potential genetic and environmental causes for ASD have been explored; no unifying mechanism responsible for the aetiology has been identified (Hodges et al., 2020). 3 1.1 Gastrointestinal disturbances in Autism patients. Historically, ASD research has been overwhelmingly limited to psychological assays and understanding alterations to the central nervous system (CNS). However, more recent advances have identified that gastrointestinal disturbances are commonly experienced by ASD patients. The most frequently reported disturbances in Individuals with ASD are diarrhoea, abdominal pain and constipation (Buie et al., 2010, Coury et al., 2012). Other less frequently reported GI disturbances include: bloody stool, flatulence, gastroesophageal reflux, celiac disease, esophagitis, belching and Chron’s disease (Coury et al., 2012). These symptoms are frequently uncomfortable and disturbing to a person's day-to-day life, and people with ASD have a fourfold increased risk of being hospitalised due to gastrointestinal symptoms compared to the general population (McElhanon et al., 2014). In addition, there is an association between the severity of GI symptoms and core features of autism including social and language impairment (Gorrindo et al., 2012). Alleviating GI disturbances could improve quality of life for patients and carers. For example, improved gut health could improve participation in behavioural therapies and sleep patterns leading to potential improvements in mood and behaviour. Although GI disturbances are disruptive and more commonly experienced by people with ASD, astonishingly, the awareness of GI dysfunction in ASD is limited and there are no specific treatments available (Rao and Bhagatwala, 2019). 4 1.2 The gastrointestinal tract The major aims of this dissertation are to assess for changes in gut function by analysing permeability in a mouse model of autism and to contribute to enhancing the classification system for enteric neurons in the mouse myenteric plexus based on their action potential firing characteristics. The GI tract consists of the oesophagus, stomach, small intestine, and large intestine. From the pylorus to the ileocecal valve, the small intestine is divided into three sections: duodenum, jejunum, and ileum (Furness, 2012). The small intestine's major role is nutrient absorption. The caecum is the most proximal section of the large intestine, and its exact function in humans (i.e., the appendix) is unknown. The large intestine (i.e., the colon), extends from the ileocecal valve to the rectum, and its primary role is in water and electrolyte absorption (Furness, 2012). The small intestine's major role is nutrient absorption. The gut is divided into functional regions, each of which has specific anatomical characteristics. Although the general anatomical structure of the mammalian GI tract is highly conserved, the anatomy and physiology of different species differ significantly. This could be related to a variety of factors such as diet, metabolic needs, feeding patterns, and body size (Nguyen et al., 2015). The mouse GI tract, for example, differs from the human GI tract in terms of morphology, physiology, cellular structure, and genetics, despite several commonalities. As a result, mouse models are widely used in GI research, as they are a good tool for assessing preliminary differences caused by genetic mutations and as an indication for human research. 5 Figure 1: Organization of the mouse gastrointestinal tract Distinct regions of the gastrointestinal tract of a mouse. The stomach is proximal to the small intestine which is separated into three distinct regions; the duodenum, jejunum and ileum. The large intestine is also separated into three distinct regions. The caecum is distal to the Ileum with the colon being proximal to the rectum (Furness, 2012). The GI tract is comprised of distinctly different cellular layers. The innermost layers (i.e., in close proximity to the host organs) are the longitudinal muscle (LM), adjacent to the myenteric plexus (MP), with the next layer being the circular muscle (CM) alongside the SMP muscularis mucosae (MM) and the mucosa layer (Etherton et al.) (Figure 2). The intestinal mucosa is a single layer of epithelial cells acting as the interface between the external gut environment and the internal environment of the body. Epithelial cells absorb nutrients, water, and electrolytes, produce a variety of digestive secretions and act as a physical barrier to potentially hazardous luminal substances. Enteroendocrine cells (EECs) and other modified epithelial cell subtypes produce regulatory proteins that have local paracrine or neurocrine effects. Paneth cells, for example, release antimicrobial mediators which prevent invasions of potential pathogenic microbes into the epithelium (Allaire et al., 2018, Elphick and Mahida, 2005). Similarly, mucus is secreted by goblet cells to lubricate the epithelial lining and form a protective barrier against some microorganisms in the gut. The distribution of secretory cell types varies by gut area and is intimately linked to the function of each gut region. Within the SMP is a network of cells that coordinate the absorption, secretion, and immune activity of the mucosa. The SMP consists of blood vessels, smooth muscle cells, neurons, and glial cells (Allaire et al., 2018). 6 The GI tract, in broad terms, protects the host from harmful substances that pass through the intestinal epithelium. Neurons from the SMP mostly innervate the mucosa (Neunlist et al., 2013). Immune cells and neurons work together to orchestrate inflammatory responses and evoke neuronal signalling pathways that help the body eliminate infections. Neural activity regulates gut contractile function as well as impacting permeability and secretion (e.g., of ions and water). Running the entire length of the GI tract are three clearly defined smooth muscle layers, the CM, LM and the MM. As their names suggests, the cells of the CM layer are oriented in a circular direction around the gut and change gut diameter, while the cells in the outer LM layer are oriented along the gut's longitudinal direction and change the gut length. Outside the lamina propria (Elphick and Mahida, 2005), the MM is a thin layer of muscle that serves to separate it from the submucosa. Coordinated contractions and relaxation of the CM and LM layers shape the complex motility contractions of the GI tract. These patterns range from non-propulsive mixing movements to highly propulsive peristaltic contractions (Costa et al., 2000, Furness, 2012, Furness et al., 2014). Embedded within the muscle layers of the GI tract are two ganglionated plexus known as the SMP and the MP. Together these make up the ENS, an intrinsic neural network that can regulate intestine activities independently of the CNS (Furness et al., 2014). The ENS governs practically all gastrointestinal activities, including mucosal barrier function, secretion, motility, and blood flow, for efficient food digestion and absorption. Although the ENS can function independently of the CNS, it receives extrinsic innervation from the brain and spinal cord to coordinate vital GI activities (Furness et al., 2014). 7 Figure 2: The organization of the enteric nervous system. In humans and large animals, the mucosa is the intestine's exterior covering, which separates the lumen from the internal structures. The submucosal and myenteric plexuses are the two ganglionic plexuses of the ENS. The sub-mucosal plexus (SMP) runs between the mucosa layer and the circular muscle (CM) layer, and its ganglia are divided into one or three layers. The SMP innervates the mucosa and regulates mucosal barrier functions as secretion and permeability (Furness et al., 2014). 1.3 The enteric nervous system The ENS is the largest division of the autonomic nervous system, with more than 100 million neurons and 400 million neuron-supporting glial cells. This intricate neural system is crucial for maintaining proper digestive function (Furness, 2012). Enteric nerve cells and glia are grouped together to form ganglia in the ENS. A neural plexus is formed when ganglia are connected by nerve fiber bundles. The SMP and the MP are two ganglionated plexuses in the ENS. The MP connects the LM and CM layers of the external musculature, while the SMP connects the CM layer to the mucosa. The MP regulates gut motility, while the SMP regulates mucosal barrier function, however, both plexuses work together to ensure optimal GI functionality. Even though the ENS can perform functions independent of the CNS, it is not autonomous. To govern local enteric reflexes, the integrated network of the ENS and CNS mediates neuronal regulation of the GI system. Vagal nerve routes, the spinal thoracolumbar 8 spinal cord, and the pelvic pathway all play a role in neural communication between the CNS and the ENS (Furness et al., 2013). 1.4 The submucosal plexus The SMP is predominantly responsible for regulating water and electrolyte secretion along with regulating localised blood flow (Furness, 2012). These processes are governed by a variety of enteric neurons and elucidating the function of specific neuronal subtypes can offer insight into therapeutic treatments for GI disorders. In the SMP of mice and guinea pigs, there are two pharmacologically and neurochemically separate populations of neurons. Cholinergic neurons express choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine. Non-cholinergic neurons possess vasoactive intestinal peptide (VIP) but lack the ability to express ChAT. Many VIP neurons in humans and rats, on the other hand, express ChAT. SMP neurons express an array of neurochemicals that provide them with a unique neurochemical code in addition to VIP and ChAT as two primary neurotransmitters (Bornstein and Foong, 2018). 1.5 The myenteric plexus The MP is located between the LM and CM layers and predominantly regulates GI motility including peristaltic contractions of the smooth muscles to facilitate the transit of luminal contents (Furness, 2012). The MP comprises approximately 16 enteric neuronal subtypes which release a range of excitatory (e.g. Acetylcholine and tachykinins) or inhibitory (i.e. nitric oxide, ATP (adenosine triphosphate)-like transmitters and VIP) neurotransmitters to contract or relax the intestinal smooth muscle, respectively (Furness, 2012). 9 2.0 The gastrointestinal mucosal barrier The intestinal epithelial wall of the human Gl tract covers an estimated 400 m2 of mucosal surface area in an adult individual. Microorganisms, digestive enzymes and acids, digested food particles, microbial by-products, and food-associated toxins all penetrate the mucus layer, which serves as the GI tract's first line of defence. This mucus layer coats the surface of the GI tract, lubricates the luminal contents, and acts as a physical barrier to bacteria and other antigenic chemicals present in the lumen. The moist, nutrient-rich mucus layer next to the epithelial barrier of the GI tract is also critical for intestinal homoeostasis because it contains a robust biofilm including both beneficial and pathogenic bacteria species, reviewed by Herath and co-authors (Herath et al., 2020). The GI tract is continually under attack by pathogens, medications, nutrients, and bacterial toxins. Not only must the host distinguish between commensal bacteria and potential pathogens, but the host must also prevent these species and secreted molecules from crossing the epithelial barrier while allowing nutrients to be absorbed. Thus, the intestinal epithelium functions as a selective barrier to luminal substances. This is accomplished in part by the innate epithelial defence system of the mucosa, which operates via a responsive biological system composed of constitutive and inducible mechanisms. Therefore, if the intestinal epithelial barrier's function is impaired, the host may be more vulnerable to a variety of GI disorders. Consequently, this thesis will discuss how increased paracellular permeability may be a possible explanation for why the NL3R451C mouse model exhibits a dysfunctional epithelial barrier and how natural therapeutic treatments/agents such as, fasting from solid foods, L-glutamine and caffeine supplementation may restore a compromised epithelial barrier in (ASD). 10
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất