Đăng ký Đăng nhập
Trang chủ Một số định lý về giao khác rỗng của họ tập lồng nhau và ứng dụng...

Tài liệu Một số định lý về giao khác rỗng của họ tập lồng nhau và ứng dụng

.PDF
71
718
104

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 HOÀNG THỊ VÂN MỘT SỐ ĐỊNH LÝ VỀ GIAO KHÁC RỖNG CỦA HỌ TẬP LỒNG NHAU VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN GIẢI TÍCH Hà Nội, 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 HOÀNG THỊ VÂN MỘT SỐ ĐỊNH LÝ VỀ GIAO KHÁC RỖNG CỦA HỌ TẬP LỒNG NHAU VÀ ỨNG DỤNG Chuyên ngành: Toán giải tích Mã số: 60 46 01 LUẬN VĂN THẠC SĨ TOÁN GIẢI TÍCH Người hướng dẫn khoa học: PGS. TS. Nguyễn Năng Tâm Hà Nội, 2012 LỜI CẢM ƠN Trước khi trình bày nội dung chính của khóa luận, tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS. Nguyễn Năng Tâm người đã định hướng chọn đề tài và tận tình hướng dẫn để tôi có thể hoàn thành khóa luận này. Tôi cũng xin bày tỏ lòng biết ơn chân thành tới phòng Sau đại học, các thầy cô giáo giảng dạy chuyên ngành Toán giải tích trường Đại học Sư phạm Hà Nội 2 đã giúp đỡ tôi trong suốt quá trình học tập và làm luận văn. Cuối cùng, tôi xin được gửi lời cảm ơn chân thành tới gia đình, bạn bè, đồng nghiệp đã động viên và tạo mọi điều kiện thuận lợi để tôi hoàn thành bản luận văn này. Hà Nội, tháng 07 năm 2012 Hoàng Thị Vân LỜI CAM ĐOAN Dưới sự hướng dẫn của PGS. TS. Nguyễn Năng Tâm, luận văn Thạc sĩ chuyên ngành Toán giải tích với đề tài “Một số định lý về giao khác rỗng của họ tập lồng nhau và ứng dụng” được hoàn thành bởi chính sự nhận thức của bản thân, không trùng với bất cứ luận văn nào khác. Trong khi nghiên cứu luận văn, tôi đã kế thừa những thành tựu của các nhà khoa học và đồng nghiệp với sự trân trọng và biết ơn. Hà Nội, tháng 07 năm 2012 Hoàng Thị Vân Mục lục Bảng kí hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Mở đầu 7 Chương 1. Một số kiến thức chuẩn bị 9 1.1 1.2 1.3 1.4 Nguyên lý Cantor về dãy hình cầu thắt dần . . . . . . . 9 1.1.1 Nguyên lý Cantor về dãy hình cầu thắt dần . . . 9 Tập lồi, hàm lồi . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 Tập lồi . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 Hàm lồi . . . . . . . . . . . . . . . . . . . . . . . 17 Bài toán tối ưu, Định lý Frank-Wolfe . . . . . . . . . . . 23 1.3.1 Bài toán tối ưu . . . . . . . . . . . . . . . . . . . 23 1.3.2 Các loại bài toán tối ưu . . . . . . . . . . . . . . 24 1.3.3 Sự tồn tại lời giải tối ưu . . . . . . . . . . . . . . 25 1.3.4 Định lý Frank- Wolfe cổ điển . . . . . . . . . . . 27 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chương 2. Một số định lý về giao khác rỗng của họ tập lồng nhau 29 2.1 Giao khác rỗng của một số họ tập lồng nhau . . . . . . . 29 2.1.1 Bài toán 1 . . . . . . . . . . . . . . . . . . . . . . 29 2.1.2 Bài toán 2 . . . . . . . . . . . . . . . . . . . . . . 29 2.1.3 Bài toán 3 . . . . . . . . . . . . . . . . . . . . . . 30 Phương tiệm cận và phương co lại được . . . . . . . . . . 32 2.2.1 36 2.2 Phương tiệm cận của các tập đóng . . . . . . . . 4 2.3 2.4 Phương ngang và định lý tập giao liên quan . . . . . . . 41 2.3.1 Phương tới hạn . . . . . . . . . . . . . . . . . . . 46 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Chương 3. Ứng dụng 59 3.1 Nghiên cứu sự tồn tại nghiệm của bài toán tối ưu . . . . 59 3.2 Tổng quát hóa định lý Frank-Wolfe . . . . . . . . . . . . 63 3.3 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . 68 BẢNG KÍ HIỆU R đường thẳng thực R đường thẳng thực mở rộng Rn không gian Euclid n - chiều hx, yi kxk conv C tích vô hướng của x và y chuẩn của x bao lồi của tập C aff C bao affine của tập C pos C bao dương của tập C intC phần trong của tập C C ri C ext C extray C bao đóng của tập C phần trong tương đối của tập C tập các điểm biên của tập C tập các tia cực biên của tập C σC hàm giá của tập C δC hàm chỉ của tập C γC hàm cỡ của tập C K∗ nón cực của K M⊥ phần bù trực giao của M 6 f ∗ , f ∗∗ lev(f, λ) liên hợp, liên hợp bậc hai của f tập mức của hàm f inf f cận dưới đúng của hàm f sup f cận trên đúng của hàm f min f giá trị nhỏ nhất của hàm f max f giá trị lớn nhất của hàm f Ker f hạt nhân, hạch của hàm f rge f ảnh của hàm f dom f epi f ∂f ∂xi ∇f (x) miền hữu hiệu của hàm f trên đồ thị của hàm f đạo hàm riêng của hàm f theo biến xi gradient của f C∞ nón tiệm cận của tập C f∞ hàm tiệm cận của hàm f Cf không gian hằng của f Kf nón tiệm cận của f Lf không gian tuyến tính của f adc als hằng số theo phương tiệm cận hàm ổn định mức tiệm cận. MỞ ĐẦU 1. Lí do chọn đề tài Vấn đề về giao khác rỗng của một họ tập đóng lồng nhau là một chủ đề cơ bản trong những chủ đề quan trọng trong lý thuyết tối ưu, bao gồm sự tồn tại nghiệm tối ưu, sự thỏa mãn của bất đẳng thức minimax trong lý thuyết trò chơi tổng zero và sự triệt tiêu khoảng cách đối ngẫu trong tối ưu có ràng buộc. Do đó, sau khi học xong chương trình cao học giải tích, được sự gợi ý của các thầy giảng dạy chuyên ngành Toán giải tích cùng với sự giúp đỡ của thầy Nguyễn Năng Tâm, với mong muốn hiểu sâu hơn về những kiến thức đã học và ứng dụng của nó, tôi chọn đề tài “Một số định lý về giao khác rỗng của họ tập lồng nhau và ứng dụng” để nghiên cứu. 2. Mục đích nghiên cứu Nắm được các khái niệm, định lý và ứng dụng về giao khác rỗng của họ tập lồng nhau nhằm củng cố, hiểu biết sâu hơn về Toán giải tích và ứng dụng của nó. 3. Nhiệm vụ nghiên cứu Tìm hiểu "Một số định lý về giao khác rỗng của họ tập lồng nhau và ứng dụng". 4. Đối tượng và phạm vi nghiên cứu Một số định lý về giao khác rỗng của họ tập lồng nhau trong không gian Euclid và ứng dụng. 5. Phương pháp nghiên cứu Nghiên cứu tài liệu tham khảo có liên quan. Sử dụng các phương pháp của giải tích, đại số tuyến tính và tối ưu hóa. 8 Tổng hợp kiến thức, vận dụng cho mục đích nghiên cứu. 6. Những đóng góp mới của đề tài Nghiên cứu, tổng hợp, hệ thống và làm rõ một số định lý về giao khác rỗng của họ tập lồng nhau và ứng dụng. Chương 1 Một số kiến thức chuẩn bị Giải tích lồi xuất hiện như một công cụ có sự ảnh hưởng mạnh mẽ tới sự phát triển của tối ưu hóa và giải tích biến phân. Các kết quả được đưa ra một cách tổng quát trong chương này nhằm mục đích giới thiệu các kiến thức cần thiết của giải tích lồi sẽ được sử dụng trong luận văn. Phần chi tiết và chứng minh cho các kết quả tham khảo trong tài liệu số [1], [2], [3] và [4]. 1.1 Nguyên lý Cantor về dãy hình cầu thắt dần 1.1.1 Nguyên lý Cantor về dãy hình cầu thắt dần Định nghĩa 1.1.1. Cho không gian metric M = (X, d), dãy hình cầu Sn = S(an , rn ), n = 1, 2, ... tâm an , bán kính rn trong không gian M gọi là thắt dần nếu Sn ⊃ Sn+1 , n = 1, 2, ... và lim rn = 0. n→∞ Định lý 1.1.1. (Nguyên lý Cantor về dãy hình cầu thắt dần) Không gian metric M = (X, d) là không gian đầy khi và chỉ khi mọi dãy hình cầu đóng thắt dần đều có điểm chung duy nhất. Chứng minh. Điều kiện cần 0 0 Giả sử M = (X, d) là không gian đầy và Sn = S (an , rn ), n = 1, 2, ... là một dãy hình cầu đóng thắt dần tùy ý trong M . Với mọi m, n; m ≥ n 0 0 ta có Sn ⊃ Sm , d(am , an ) ≤ rn , n = 1, 2, .... Vì lim rn = 0 nên dãy tâm {an } là dãy cơ bản trong không gian n→∞ 10 metric đầy M , do đó phải tồn tại giới hạn lim an = a ∈ X. n→∞ Do đó với mỗi n = 1, 2, ... và k = 1, 2, ... ta có lim an+k = a. Vì 0 0 0 k→∞ an+k ∈ Sn , ∀k = 1, 2, ... và Sn là tập đóng nên a ∈ Sn , ∀n = 1, 2, ... nghĩa T 0 là a ∈ ∞ n=1 Sn . T 0 0 Giả sử tồn tại phần tử b ∈ ∞ n=1 Sn suy ra a, b ∈ Sn , ∀n = 1, 2, ... suy ra d(a, b) ≤ 2rn , ∀n = 1, 2, .... Nhưng lim rn = 0 nên n→∞ d(a, b) = 0 ⇔ a = b. 0 Vì vậy dãy hình cầu đóng (Sn ) đã cho có điểm chung duy nhất. Điều kiện đủ Giả sử M = (X, d) là không gian metric thỏa mãn điều kiện: mọi dãy hình cầu đóng thắt dần đều có điểm chung duy nhất. Lấy một dãy cơ bản tùy ý (xn ) ⊂ X. Theo định nghĩa dãy cơ bản ∀ε > 0, ∃n0 ∈ N ∗ , ∀n, m ≥ n0 , d(xn , xm ) < ε =⇒ d(xn , xm ) < ε, ∀n ≥ n0 Do đó ∃n1 ∈ N ∗ , ∀n ≥ n1 , d(xn , xn1 ) < 1 2 1 1 =⇒ d(x , x ) < . n n 2 1 22 2 0 0 Xét các hình cầu đóng S1 = S (xn1 , 1), có tâm xn1 và có bán kính ∃n2 ∈ N ∗ , n2 > n1 , ∀n ≥ n2 , d(xn , xn2 ) < 0 0 1, S2 = S (xn2 , 12 ) tâm xn2 , bán kính 12 . Ta có 0 ∀x ∈ S2 , d(x, xn1 ) ≤ d(x, xn2 ) + d(xn2 , xn1 ) ≤ 0 0 1 1 + =1 2 2 0 =⇒ x ∈ S1 =⇒ S2 ⊂ S1 . Quá trình trên tiếp tục mãi, nhận được một dãy hình cầu đóng 0 0 1 ) tâm xnk bán kính thắt dần Sk = S (xnk , 2k−1 1 , 2k−1 0 0 Sk+1 ⊂ Sk , k = 1, 2, .... 11 Theo giả thiết tồn tại duy nhất phần tử a ∈ T∞ 0 k=1 Sk . Như trong chứng minh điều kiện cần, a = lim xnk . Ta lại có k→∞ d(xn , a) ≤ d(xn , xnk ) + d(xnk , a) −→ 0 khi k, n → ∞ suy ra lim xn = a. Vì vậy không gian metric M = (X, d) là không gian n→∞ metric đầy. Định lý được chứng minh. 1.2 1.2.1 Tập lồi, hàm lồi Tập lồi Định nghĩa 1.2.1. Tập C ⊂ Rn gọi là lồi nếu ∀x, y ∈ C, ∀t ∈ [0, 1] ta có tx + (1 − t)y ∈ C. Định nghĩa 1.2.2. Giao của tất cả các tập lồi chứa tập C ⊂ Rn được gọi là bao lồi của C, kí hiệu conv C. Định nghĩa 1.2.3. Tập C ⊂ Rn được gọi là đa tạp affine nếu ∀x, y ∈ C, ∀t ∈ R ⇒ tx + (1 − t)y ∈ C. Từ định nghĩa ta có Rn , các điểm, các đường thẳng và các siêu phẳng trong Rn là các đa tạp affine. Đa tạp affine đóng và lồi. Mệnh đề 1.2.1. (Xem [2]) Cho C là tập con khác rỗng trong Rn . Các mệnh đề sau tương đương (a) C là đa tạp affine. (b) C = x + M = {y | y − x ∈ M }, M là không gian con. (c) C = {x | Ax = b}, A ∈ Rm×n , b ∈ Rn . Định nghĩa 1.2.4. Giao của tất cả các tập affine chứa tập C ⊂ Rn được gọi là bao affine của C, kí hiệu aff A. 12 Nhận xét 1.2.1. aff A là tập affine nhỏ nhất chứa A. Mệnh đề 1.2.2. (Xem [2]) Giả sử C ⊂ Rn khi đó, (a) conv C là tổ hợp lồi của các phần tử thuộc C, tức là, m m X X conv C = { ti xi | xi ∈ C, ti ≥ 0, ti = 1}. i=1 i=1 (b) aff C là một đa tạp affine và conv C ⊂ aff C. (c) aff C = aff(conv C). Mệnh đề 1.2.3. (Xem [2]) Cho {Ci | i ∈ I} là họ các tập lồi Ci ⊂ Rni ta có: (a) C1 × · · · × Cm lồi trong Rn1 × · · · × Rnm . T (b) Ci lồi với ni = n, ∀i. i∈I (c) m P i=1 Ci lồi với ni = n, ∀i. (d) Ảnh của tập lồi qua ánh xạ tuyến tính là một tập lồi. Định lý 1.2.1. (Định lý Caratheodory) (Xem [3]) Cho C ⊂ Rn , khi đó với mọi x ∈ conv C, là tổ hợp lồi của không quá n + 1 điểm khác nhau của C, tức là ∃ a0 , ..., am ∈ C và λ0 , ..., λm ≥ 0 với m ≤ n sao cho m X λi = 1 và x = i=1 m X λi ai . i=1 Định nghĩa 1.2.5. Cho C ⊂ Rn là tập lồi, các tập int C = {x ∈ Rn | ∃ε > 0, x + εB ⊂ C} \ C = (C + εB) ε>0 lần lượt được gọi là phần trong và bao đóng của C. Định nghĩa 1.2.6. Phần trong tương đối của C ⊂ Rn là phần trong của C trong aff C, kí hiệu ri C ri C = {x ∈ aff C | ∃ε > 0, (x + εB) ∩ aff C ⊂ C}. 13 Nhận xét 1.2.2. x ∈ ri A khi và chỉ khi tồn tại lân cận mở V của x trong Rn sao cho V ∩ aff A ⊂ A. Ví dụ 1.2.1. Trong R2 , A = [a, b], khi đó ri A = (a, b). Mệnh đề 1.2.4. (Xem [2]) Cho C là tập lồi khác rỗng trong Rn . Khi đó (a) ri C 6= ∅ và aff C = C. (b) Nếu x ∈ C và y ∈ C thì tx + (1 − t)y ∈ ri C, ∀t ∈ [0, 1] và do đó ri C lồi. (c) C = ri C, ri C = ri C. Mệnh đề 1.2.5. (Xem [2]) Cho C, D là hai tập lồi trong Rn . Khi đó, với α, β ∈ R ri(αC + βD) = α ri C + β ri D. Vì vậy, với α = −β = 1, ta có 0 ∈ ri(C − D) ⇔ ri C ∩ ri D 6= ∅. Mệnh đề 1.2.6. (Xem [2]) Cho C là tập lồi khác rỗng trong Rn . Khi đó (a) ri C ⊂ C ⊂ C. (b) C = C; ri(ri C) = ri C. (c) A(C) ⊂ A(C) và ri A(C) = A(ri C) trong đó A : Rn → Rn là ánh xạ tuyến tính. Hơn nữa, A−1 (S) = {x ∈ Rn | A(x) ∈ S} là nghịch ảnh của A với S ⊂ Rn . Khi đó, nếu A−1 (ri C) 6= ∅ thì ri(A−1 C) = A−1 (ri C); A−1 (C) = A−1 (C). 14 Định nghĩa 1.2.7. Tập K ⊂ Rn được gọi là nón nếu ∀x ∈ K, ∀t ≥ 0 ⇒ tx ∈ K. Nếu K là nón và là tập lồi thì ta nói K là nón lồi. Ví dụ 1.2.2. Các tập sau đây trong Rn {x ∈ Rn | xi ≥ 0, i = 1, ..., n} {x ∈ Rn | xi > 0, i = 1, ..., n} là các nón lồi. Mệnh đề 1.2.7. (Xem [2]) Giả sử K ⊂ Rn , các mệnh đề sau tương đương (a) K là nón lồi; (b) K là nón thỏa mãn K + K ⊂ K. Định nghĩa 1.2.8. Cho K ⊂ Rn , nón cực của K là một nón được xác định K ∗ = {y ∈ Rn | hy, xi ≤ 0, ∀x ∈ K}. Lưỡng cực (hay là song cực) của K là nón K ∗∗ = (K ∗ )∗ . Tính trực giao của các không gian con là một trường hợp đặc biệt của cực của nón. Cho M là không gian con của Rn M ∗ = M ⊥ = {y ∈ Rn | hy, xi = 0, ∀x ∈ M }. Mệnh đề 1.2.8. (Xem [2]) Cho K ⊂ Rn , nón cực K ∗ đóng, lồi và K ∗∗ = conv K. Nếu K đóng và lồi thì K ∗∗ = K. Mệnh đề 1.2.9. (Xem [2]) Cho K ⊂ Rn là nón lồi. Khi đó int K 6= ∅ khi và chỉ khi K ∗ là nón nhọn . 15 Định nghĩa 1.2.9. Cho C ⊂ Rn là tập lồi khác rỗng, nón pháp tuyến của C tại x, kí hiệu NC (x) được định nghĩa   {v ∈ Rn | hv, x − xi ≤ 0 ∀x ∈ C} nếu x ∈ C . NC (x) = ∅ nếu x ∈ /C Định nghĩa 1.2.10. Cho C ⊂ Rn là tập lồi khác rỗng, nón tiếp tuyến của C tại x, kí hiệu TC (x) được định nghĩa TC (x) = {d ∈ Rn | ∃ t > 0, x + td ∈ C}. Với x ∈ C, nón NC (x) và TC (x) là cực của nhau. Mệnh đề 1.2.10. (Xem [2]) Nón Ki ⊂ Rn , i = 1, ..., n. Khi đó (a) K1 ⊂ K2 ⇒ K2∗ ⊂ K1∗ và K1∗∗ ⊂ K2∗∗ . (b) K = K1 + K2 ⇒ K ∗ = K1∗ ∩ K2∗ . (c) K = K1 ∩ K2 với K1 , K2 đóng ⇒ K ∗ = K1∗ + K2∗ . Nếu 0 ∈ int (K1 − K2 ) thì K ∗ = K1∗ + K2∗ (d) Với họ nón {Ki | i ∈ I} trong Rn [ \ K= Ki ⇒ K ∗ = Ki∗ . i∈I i∈I (e) Cho A : Rn → Rn là ánh xạ tuyến tính và K là nón lồi đóng của Rn . Khi đó {x|Ax ∈ K}∗ = {AT y | y ∈ K}. Nếu 0 ∈ int (K − rge A) trong đó rge A = {Ax | x ∈ Rn } thì {x | Ax ∈ K}∗ = {AT y | y ∈ K}. Định nghĩa 1.2.11. Nón K ⊂ Rn được gọi là sinh hữu hạn nếu nó viết được dưới dạng p X K={ tp ap | ai ∈ Rn , ti ≥ 0, i = 1, ..., p}. i=1 16 Định nghĩa 1.2.12. Cho C là tập lồi khác rỗng trong Rn . Ta nói véc tơ d là một phương lùi xa của C nếu x + λd ∈ C; ∀x ∈ C, ∀λ > 0. Tập tất cả các phương lùi xa của C được gọi là nón lùi xa của C và được ký hiệu là o+ (C). Vậy o+ (C) = {d ∈ Rn | x + λd ∈ C; ∀x ∈ C, ∀λ > 0}. Ví dụ 1.2.3. Xét tập C = {(x1 , x2 ) | x1 > 0, x2 > 0} ∪ {(0, 0)}. Khi đó, d = (d1 , d2 ) ∈ o+ (C) ⇔ x + λd ∈ C, ∀λ > 0, ∀x = (x1 , x2 ) ∈ C.    x1 + λd1 > 0  d1 > 0       x2 + λd2 > 0 d >0  2  ⇔ ⇔ ⇒ o+ (C) = C     x1 + λd1 = 0 d1 = 0    x + λd = 0 d =0 2 2 2 Mệnh đề 1.2.11. (Xem [3]) Cho C là tập lồi đóng khác rỗng. Lúc đó, o+ (C) là nón lồi đóng và (a) d ∈ o+ (C) ⇔ ∃x0 ∈ C, ∀λ > 0 : x0 + λd ∈ C. T (b) o+ (C) = λ(C − x0 ); với mọi x0 ∈ C. λ>0 Định nghĩa 1.2.13. Cho C ⊂ Rn là tập khác rỗng, nón nhỏ nhất chứa C được gọi là bao dương (hay bao conic) của C, kí hiệu pos C pos C = {λx | x ∈ C, λ > 0} ∪ {0}. Bao dương pos C cũng được gọi là nón sinh bởi C. Định nghĩa 1.2.14. Tập P ⊂ Rn được gọi là tập đa diện nếu nó có dạng P = {x ∈ Rn | hai , xi ≤ bi , i = 1, ..., p} trong đó ai ∈ Rn , bi ∈ R, i = 1, ..., p. Khi bi = 0, ∀i = 1, ..., p thì P được gọi là nón đa diện. 17 Định nghĩa 1.2.15. Cho C ⊂ Rn là tập lồi khác rỗng. Tập F ⊂ C được gọi là mặt (hay diện, bề mặt) của C nếu ∀x, y ∈ C, F ∩ [x, y] 6= ∅ thì [x, y] ⊂ F. Định nghĩa 1.2.16. Điểm z ∈ C được gọi là biên của C nếu {z} là mặt, tức z không thể viết được dưới dạng z = λx + (1 − λ)y, x, y ∈ C, x 6= y, λ ∈ (0, 1). Tập các điểm biên của C, kí hiệu ext C. Định nghĩa 1.2.17. Tia cực biên của C là hướng của nửa đường thẳng là mặt của C. Tập các tia cực biên của C kí hiệu là extray C. Định lý 1.2.2. (Định lý Krein - Milman) (Xem [2]) Cho C là tập lồi đóng khác rỗng không chứa đường thẳng nào. Khi đó C = conv(ext C ∪ extray C). Định lý 1.2.3. (Định lý Minkowski) (Xem [2]) Cho C là tập lồi compact khác rỗng trong Rn . Khi đó C = conv(ext C). 1.2.2 Hàm lồi Định nghĩa 1.2.18. Cho f : Rn → R, các tập dom f = {x ∈ Rn | f (x) < ∞} epi f = {(x, α) ∈ Rn × R | f (x) ≤ α} được gọi lần lượt là miền hữu hiệu và trên đồ thị của f . Định nghĩa 1.2.19. Hàm f được gọi là chính thường nếu dom f 6= ∅ và f (x) > −∞, ∀x ∈ Rn . Trái lại, f được gọi là phi chính. 18 Định nghĩa 1.2.20. Với mỗi α ∈ R ta gọi tập hợp sau là tập mức của f lev(f, α) = {x ∈ Rn | f (x) ≤ α}. Cho f : Rn → R, kí hiệu inf f = inf{f (x) | x ∈ Rn } argmin f = argmin{f (x) | x ∈ Rn } = {x ∈ Rn | f (x) = inf f }. Định lý 1.2.4. (Xem [2]) Cho f : Rn → R, các mệnh đề sau tương đương: (a) f nửa liên tục dưới trên Rn ; (b) epi f là tập đóng trong Rn × R; (c) Tập mức lev(f, α) đóng trong Rn , ∀α ∈ R. Định nghĩa 1.2.21. Bao đóng của hàm f , kí hiệu là f , được xác định sao cho epi(f ) = epi f . Định nghĩa 1.2.22. Hàm f : Rn → R được gọi là lồi nếu epi f là tập lồi khác rỗng trong Rn × R. Hàm f được gọi là lõm nếu −f lồi. Định lý 1.2.5. (Xem [3]) Hàm f : Rn → R được gọi là lồi khi và chỉ khi ∀x, y ∈ Rn , ∀t ∈ (0, 1) ⇒ f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y). Định lý 1.2.6. (Bất đẳng thức Jensen) (Xem [3]) Cho f : Rn → R. Khi đó f là hàm lồi khi và chỉ khi ∀λi ≥ 0, m P i = 1, ..., m, λi = 1, ∀xi ∈ Rn i=1 f (λ1 x1 + · · · + λm xm ) ≤ λ1 f (x1 ) + · · · + λm f (xm ).
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng