Đăng ký Đăng nhập
Trang chủ Luận văn phân tích ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến ph...

Tài liệu Luận văn phân tích ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của nhà cao tầng

.PDF
118
1
115

Mô tả:

i LỜI CAM ĐOAN Tôi xin cam đoan luận văn này là công trình nghiên cứu của riêng tôi. Các số liệu, và kết quả trong luận văn là trung thực và chưa được công bố trong các tạp chí khoa học và công trình nào khác. Các thông tin số liệu trong luận văn này đều có nguồn gốc và được ghi chú rõ ràng./. Tác giả Bùi Minh Phúc iii TÓM TẮT LUẬN VĂN THẠC SĨ Đề tài: Phân tích ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của nhà cao tầng Tác giả luận văn : Bùi Minh Phúc Khoá: 4 ( Lớp 16CHXD1) Người hướng dẫn: Ts. Nguyễn Hồng Ân Nội dung tóm tắt: 1. Lý do chọn đề tài Hiện nay khi thiết kế nhà cao tầng đa phần các kỹ sư chỉ xét đến tính đàn hồi của công trình ( vì nó đơn giản và cho ra kết quả nhanh chóng ) mà bỏ qua sự làm việc ngoài miền đàn hồi của vật liệu và ảnh hưởng của hiệu ứng P - Delta. Trong thực tế khi công trình chịu tác động của động đất, nếu chỉ xét tính đàn hồi của công trình thì sẽ không cho ra kết quả chính xác cao. Vì khi có động đất xảy ra thì công trình còn chịu thêm phi tuyến vật liệu và phi tuyến hình học.Vì vậy khi thiết kế nhà cao tầng nếu chỉ xét tính đàn hồi mà bỏ qua việc xét đến phi tuyến vật liệu và phi tuyến hình học là không thực tế và không an toàn. 2. Lợi ích, ý nghĩa của đề tài Đề tài mong muốn mang lại sự thấu hiểu về ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của công trình. Kết quả của đề tài sẽ cho thấy khi thiết kế nhà cao tầng nếu xét riêng phi tuyến vật liệu hoặc xét riêng phi tuyến hình học, hoặc trường xét cả phi tuyến vật liệu và phi tuyến hình học cùng lúc sẽ cho ra kết quả sai lệch như thế nào so với chỉ xét tính đàn hồi của nhà cao tầng. 3. Mục tiêu, đối tượng và phạm vi nghiên cứu 3.1 Mục tiêu tổng quát Phân tích ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của nhà cao tầng. 1 MỞ ĐẦU 1. Lý do chọn đề tài Hiện nay khi thiết kế nhà cao tầng đa phần các kỹ sư chỉ xét đến tính đàn hồi của công trình ( vì nó đơn giản và cho ra kết quả nhanh chóng ) mà bỏ qua sự làm việc ngoài miền đàn hồi của vật liệu và ảnh hưởng của hiệu ứng P - Delta. Trong thực tế khi công trình chịu tác động của động đất, nếu chỉ xét tính đàn hồi của công trình thì sẽ không cho ra kết quả chính xác cao. Vì khi có động đất xảy ra thì công trình còn chịu thêm phi tuyến vật liệu và phi tuyến hình học.Vì vậy khi thiết kế nhà cao tầng nếu chỉ xét tính đàn hồi mà bỏ qua việc xét đến phi tuyến vật liệu và phi tuyến hình học là không thực tế và không an toàn. 2. Lợi ích, ý nghĩa của đề tài Đề tài mong muốn mang lại sự thấu hiểu về ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của công trình. Kết quả của đề tài sẽ cho thấy khi thiết kế nhà cao tầng nếu xét riêng phi tuyến vật liệu hoặc xét riêng phi tuyến hình học, hoặc trường xét cả phi tuyến vật liệu và phi tuyến hình học cùng lúc sẽ cho ra kết quả sai lệch như thế nào so với chỉ xét tính đàn hồi của nhà cao tầng. 3. Mục tiêu, đối tượng và phạm vi nghiên cứu 3.1 Mục tiêu tổng quát Phân tích ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của nhà cao tầng. 3.2 Mục tiêu cụ thể Để thấy được mức độ ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học đến phản ứng chịu địa chấn của công trình khi chịu ảnh hưởng của động đất, đề tài sẽ tiến hành phân tích một công trình có chiều cao 21 tầng và tầng hầm chịu một bộ động đất có sẵn, ứng với các trường hợp sau: + Trường hợp 1 : Chỉ xét đến tính đàn hồi. + Trường hợp 2 : Chỉ xét phi tuyến vật liệu. + Trường hợp 3 : Chỉ xét phi tuyến hình học. + Trường hợp 4 : Xét cả phi tuyến vật liệu và phi tuyến hình học. 2 4. Đối tượng và phạm vi nghiên cứu Phân tích một công trình có chiều cao 21 tầng và tầng hầm ở thành phố HCM với kết cấu khung BTCT. Để đánh giá mức độ ảnh hưởng của phi tuyến vật liệu và phi tuyến hình học, đề tài sẽ đánh giá thông qua các chỉ tiêu: chuyển vị tầng, độ lệch tầng, và nội lực của các cấu kiện. 5. Phương pháp nghiên cứu Sử dụng phương pháp phân tích theo miền thời gian. Phương pháp phân tích động đất theo miền thời gian cho phép xác định được toàn bộ quá trình phản ứng của hệ kết cấu dưới tác động của tải trọng động đất. Phương pháp này dựa trên cơ sở các biểu đồ gia tốc nền động đất có sẵn theo hàm thời gian. 6. Dự kiến kết quả đạt được Kết quả sau khi nghiên cứu đề tài sẽ làm rõ sự cần thiết của việc phải xét đến phi tuyến vật liệu và phi tuyến hình học trong thiết kế nhà cao tầng có khả năng chịu địa chấn. 3 CHƯƠNG I: TỔNG QUAN VỀ NHÀ CAO TẦNG VÀ ĐỘNG ĐẤT 1.1 Tổng quan về nhà cao tầng Với tốc độ phát triển kinh tế xã hội như hiện nay. Nhà cao tầng bắt đầu trên cuộc đua thống trị các công trình xây dựng có quy mô lớn, ở các quốc gia và vùng lãnh thổ trên thế giới. Các công trình xây dựng trên thế giới nói chung và Việt Nam nói riêng đang phát triển cấp tiến về chiều cao cũng như độ phức tạp. Hệ kết cấu trong nhà cao tầng phải đáp ứng được các yêu cầu về biến dạng, chuyển vị và cường độ chịu tải của tòa nhà. Đặc biệt là việc xác định phản ứng của công trình trước các yếu tố tác động của điều kiên bên ngoài như tải trọng gió, động đất v.v… là rất quan trọng trong việc thiết kế kết cấu nhà cao tầng khi chịu tác động của tải trọng ngang. Nhà cao tầng khi có chiều cao càng lớn thì ảnh hưởng của tải trọng ngang tác động lên kết cấu nhà cao tầng càng lớn. Lúc đó sự biến dạng và chuyển vị theo phương ngang không những chỉ ảnh hưởng đến điều kiện sử dụng bình thường của công trình mà còn ảnh hưởng đến sự an toàn của kết cấu thông qua hiệu ứng P-Delta (Dựa trên bài toán phi tuyến hình học). P-Delta là hiệu ứng gây ra moment uốn khá lớn trong cột do chuyển vị ngang tương đối lớn giữa hai đầu cột. Nhằm đáp ứng yêu cầu chính xác trong thiết kế kết cấu nhà cao tầng chịu tải trọng ngang, khi tính toán xét đến hiệu ứng P-Delta cần được quan tâm một cách đúng mức. 1.2 Tổng quan về động đất Động đất là một trong những thảm họa thiên nhiên nghiêm trọng từ hàng ngàn năm. Các trận động đất lớn đã gây ra bất ổn xã hội nặng nề ở các vùng lân cận của tâm chấn. Đặc biệt là với các công trình kiến trúc, nhà cao tầng bị hư hỏng, gây thiệt hại cho người và tài sản, nhất là trong khu vực thành thị, nơi tập trung nhiều các công trình xây dựng. Điều đáng sợ hơn là cho đến nay khoa học và kỹ thuật đương đại vẫn chưa dự báo chính xác thời điểm và địa điểm động đất sẽ xảy ra. Do đó, con người chưa có biện pháp phòng chống chủ động đối với từng trận động đất. Và như một hệ lụy tất yếu, khi động đất xảy ra gây thiệt hại rất to lớn về người và tài sản. 4 Để hạn chế các tổn thất do động đất và đảm bảo an toàn, cần phải không ngừng nghiên cứu phân tích thiết kế kết cấu, cũng như đưa ra các giải pháp tính toán phù hợp nhằm giúp cho các công trình ngày càng nâng cao khả năng chịu lực dưới tác động của các trận động đất. 1.3 Tổng quan về thiết kế nhà cao tầng Theo quan niệm hiện đại trong thiết kế kháng chấn, sự làm việc của một công trình xây dựng trong thời gian xảy ra động đất phụ thuộc vào hai yếu tố chính: Cường độ động đất và Chất lượng công trình. Nếu chất lượng công trình là một yếu tố có độ tin cậy tương đối cao vì nó phụ thuộc vào những điều kiện có thể kiểm soát như phương pháp thiết kế, tính toán, thi công…thì cường độ động đất lại là một yếu tố có độ tin cậy rất thấp bởi các số liệu động đất còn rất hạn chế. Do đó quan điểm thiết kế kháng chấn đúng đắn nhất hiện nay là chấp nhận tính không chắc chắn của hiện tượng động đất để tập trung vào việc thiết kế các công trình có mức độ an toàn chấp nhận được. Các công trình xây dựng được thiết kế theo quan điểm này phải có độ cứng, độ bền và độ dẽo ở mức độ thích hợp nào đó nhằm bảo đảm trong trường hợp động đất xảy ra sinh mạng con người được bảo vệ, các hư hỏng được hạn chế và những công trình quan trọng có chức năng bảo vệ cư dân vẫn có thể duy trì hoạt động. Vì vậy mục tiêu của việc thiết kế kháng chấn hiện nay là giảm đến mức tối đa xác suất hư hỏng ở các công trình xây dựng khi xảy ra các trận động đất trung bình và chấp nhận các hư hại lớn (nhưng không sụp đổ) ở các kết cấu chịu lực khi xảy ra các trận động đất mạnh. 1.4 Các nghiên cứu tương tự 1.4.1 Các nghiên cứu trên thế giới Tantala M.W. và Deodatis G. (2002) Nghiên cứu tập trung vào việc đánh giá độ tin cậy của các tòa nhà cao tầng chịu tải trọng động đất. Những nhược điểm của kết cấu nhà cao tầng được thể hiện qua sự phát triển các đường cong xác suất phá hủy (fragility curves). Các đường cong này cho thấy khả năng vượt quá mức quy định thiệt hại của một loạt các cường độ chuyển động mặt đất. Do đó chúng cực kỳ quan trọng 5 trong việc đánh giá các rủi ro cho công trình chịu tác động bởi các trận động đất tiềm ẩn. Jack P. Moehle (2006) Trình bày xu hướng trong thiết kế kháng chấn của các tòa nhà cao tầng là sử dụng phương pháp tiếp cận dựa trên hiệu quả phân tích động phi tuyến để mô phỏng phản ứng dự kiến trận động đất. Liel A.B. , Haselton C.B. , Deierlein G.G. và Baker J.W. (2009) Trình bày và đánh giá sự tác động của mô hình không chắc chắn của các tòa nhà. Nghiên cứu bao gồm việc đánh giá xác suất của sự sụp đổ cấu trúc rủi ro thông qua mô phỏng phản ứng phi tuyến, do sự kết hợp chặt chẽ những bất ổn liên quan đến chuyển động mặt đất và mô hình hóa kết cấu. Leon O.D. (2010) Đánh giá thiệt hại do địa chấn của các kết cấu bê tông cốt thép. Bài viết này tập trung vào một số kỹ thuật đánh giá xác định tổn thất có thể đối với các tòa nhà bê tông cốt thép trong trường hợp xảy ra động đất. Nghiên cứu cho thấy mặc dù có nhiều tiến bộ trong lĩnh vực dự báo địa chấn, tuy nhiên động đất vẫn không thể dự đoán chính xác về thời gian, cường độ hoặc vị trí. Ngay cả khi có thể dự đoán chính xác, thì sự xuất hiện động đất và khả năng gây ra hậu quả của nó là không thể ngăn chặn được. Nguy hiểm địa chấn và các nguy cơ không thể được loại bỏ, nhưng ta có thể ngăn chặn một phần hoặc giảm thiểu thiệt hại bằng cách kết hợp các loại dữ liệu có sẵn để đưa vào phân tích, áp dụng. Lựa chọn để ứng dụng những mô hình có độ tin cậy hoặc các công trình áp dụng các kỷ thuật công nghệ kháng chấn phát triển đã được nghiên cứu. 1.4.2 Các nghiên cứu trong nước Đinh Văn Thuật (2011) Trình bày một phương pháp đánh giá chuyển vị ngang phi tuyến lớn nhất của kết cấu nhà nhiều tầng được thiết lập dựa theo kết quả phân tích tĩnh phi tuyến kết cấu chịu tải trọng động đất và kết hợp sử dụng phổ gia tốc thiết kế đàn hồi qui định trong TCXDVN 9386-2012 với các mức cản nhớt khác nhau. Trong nghiên cứu này, một ví dụ tính toán minh hoạ được thực hiện cho kết cấu khung nhà thép cao 10 tầng được thiết kế xây dựng ở Hà Nội, và được kiểm chứng với kết quả phân tích động phi tuyến theo lịch sử thời gian dưới tác dụng của 10 băng gia tốc nền 6 nhân tạo tương ứng với phổ gia tốc thiết kế đàn hồi. Kết quả đã chỉ ra rằng phương pháp đánh giá tương đối tốt chuyển vị ngang phi tuyến lớn nhất ở đỉnh mái của kết cấu nhà nhiều tầng. Trần Thanh Tuấn, Nguyễn Hồng Ân & Nguyễn Khánh Hùng (2014) Trình bày cách đánh giá độ chính xác và sai lệch của chuyển vị mục tiêu được xác định bằng phương pháp đẩy dần MPA (Modal Pushover Analysis) dựa trên phổ khả năng (Capacity Spectrum Method) cho khung thép phẳng một nhịp với 3, 6, 9, 12, 15 và 18 tầng chịu tác động của hai bộ động đất với tần suất xảy ra là 2% và 10% trong 50 năm. Kết quả của phương pháp MPA-CSM được so sánh với kết quả phương pháp đẩy dần chuẩn SPA (Standard Pushover Analysis), phương pháp MPA (Modal Pushover Analysis) và kết quả chính xác của phương pháp phân tích theo miền thời gian NLRHA (Nonlinear Response History Analysis). Nguyễn Thế Sơn (2014) Sử dụng phương pháp thiết kế kháng chấn khung bê tông cốt thép dựa vào phân tích tĩnh phi đàn hồi đẩy dần SPA (pushover) thay cho phương pháp phân tích đàn hồi tuyến tính có sử dụng hệ số ứng xử q như đã đề cập trong tiêu chuẩn Eurocode 8, Minh họa chi tiết cho ưu và nhược điểm của phương pháp nghiên cứu này bằng một khung BTCT 10 tầng được thiết kế theo tiêu chuẩn Eurocode 8, Các cấp độ làm việc và chuyển vị mục tiêu của hệ kết cấu theo Eurodode 8 được nghiên cứu và so sánh với FEMA273 bằng phần mềm ETABS. Nguyễn Hồng Hải, Nguyễn Hồng Hà và Vũ Xuân Thương (2014) Trình bày nghiên cứu của một số tác giả trên thế giới liên quan tới việc sử dụng phổ chuyển vị trong phân tích ứng xử của kết cấu nhà cao tầng chịu động đất theo phương pháp dựa trên chuyển vị. So sánh kết quả phân tích khi áp dụng phổ chuyển vị theo tiêu chuẩn Việt Nam TCVN 9386:2012 và tiêu chuẩn Mỹ ASCE 7-2010, Kết quả cho thấy phổ chuyển vị theo tiêu chuẩn TCVN 9386:2012 không phù hợp để xác định chuyển vị mục tiêu cho kết cấu nhà cao tầng đồng thời kiến nghị sử dụng phổ chuyển vị theo ASCE 7 để phân tích. 7 2.1 Thế nào là nhà cao tầng ? 2.1.1 Định nghĩa Nhà cao tầng, được phân loại theo nhiều tiêu chí khác nhau, tùy thuộc vào điều kiện kinh tế xã hội của từng nước. Nhà nhiều tầng không có định nghĩa cụ thể. Theo Ủy ban Nhà cao tầng Quốc tế: “Ngôi nhà mà chiều cao của nó là yếu tố quyết định các điều kiện thiết kế, thi công hoặc sử dụng khác với ngôi nhà thông thường được gọi là nhà cao tầng”. Trong cuộc hội thảo quốc tế về nhà cao tầng, người ta đã phân loại nhà cao tầng như sau: + Nhà nhiều tầng là nhà có số tầng từ 10 – 12 tầng. + Nhà cao tầng là nhà có số tầng từ 25 – 30 tầng. + Nhà chọc trời là nhà có số tầng lớn hơn 30 tầng. Các định nghĩa trên cũng chỉ là qui ước. Bởi vậy nhà cao tầng theo định nghĩa trên còn có thể gọi là nhà nhiều tầng để phân biệt với nhà ít tầng. 2.1.2 Phân loại Phân loại theo mục đích sử dụng: nhà ở, nhà làm việc và các dịch vụ khác. Phân loại theo hình dạng: + Nhà tháp: mặt bằng vuông, tròn, tam giác hay đa giác đều. Việc giao thông theo phương đứng, tập trung ở một khu vực duy nhất (khách sạn, phòng làm việc). + Nhà dạng thanh: mặt bằng hình chữ nhật, có nhiều đơn vị giao thông theo phương đứng (nhà ở). Phân loại theo chiều cao nhà: + Nhà cao tầng loại I: từ 9 đến 16 tầng (từ 40 đến 50m). + Nhà cao tầng loại II: từ 17 đến 25 tầng (dưới 80m). 5 + Nhà cao tầng loại III: từ 26 đến 40 tầng (dưới 100m). + Nhà rất cao: trên 40 tầng (trên 100m). Phân loại theo vật liệu cơ bản dùng để thi công kết cấu chịu lực: + Nhà cao tầng bằng bê tông cốt thép. 8 + Nhà cao tầng bằng thép. + Nhà cao tầng có kết cấu hỗn hợp bê tông cốt thép và thép. 2.1.3 Tải trọng tác động 2.1.3.1 Tải trọng thẳng đứng Tải trọng thường xuyên: là tải trọng có vị trí, phương, chiều tác động và giá trị không đổi trong quá trình sử dụng. Tải trọng tạm thời: là tải trọng tác động không thường xuyên như: người, vật dụng trong nhà … có phương, chiều, điểm đặt và giá trị có thể thay đổi. 2.1.3.2 Tải trọng ngang Tải trọng gió do tác động của khí hậu và thời tiết thay đổi theo thời gian, độ cao, địa điểm dưới dạng áp lực trên các mặt hứng gió hoặc hút gió của ngôi nhà. Tải trọng động đất là một trong những tải trọng đặc biệt, là các lực quán tính phát sinh trong công trình khi nền đất chuyển động. Tải trọng động đất có thể tác dụng đồng thời theo phương thẳng đứng và phương ngang. Trong tính toán kết cấu nhà cao tầng thường chỉ xét đến tác động ngang của tải trọng động đất. Nhà cao tầng là một hệ thống kết cấu chịu lực khá phức tạp. Trước hết, tải trọng thẳng đứng và tải trọng ngang ở các tầng dưới rất lớn, đồng thời có nhiều khả năng xuất hiện moment xoắn tổng thể cả ngôi nhà với giá trị lớn do gió và động đất. Điều đó gây nguy hiểm cho kết cấu. Trong nhà nhiều tầng người ta bố trí một hệ kết cấu không gian gồm các kết cấu phát triển theo phương đứng như khung, vách, lõi và các kết cấu phát triển theo phương ngang là sàn các tầng. Các kết cấu này liên kết với nhau thành một hệ không gian để chống lại các lực dọc, moment uốn và moment xoắn xuất hiện trong hệ kết cấu. 2.1.3.3 Các loại tải trọng khác Tác động do co ngót, từ biến của bê tông. Tác động do ảnh hưởng của sự lún không đều. Tác động do ảnh hưởng của sự thay đổi nhiệt độ, độ ẩm môi trường. Tác động do các sai lệch khi thi công, do thi công các công trình lân cận… 9 Ngoài ra còn có các tải trọng đặc biệt khác phát sinh do hoạt động của con người như hỏa hoạn, cháy nổ, máy móc, xe cộ, thiết bị va đập vào công trình … Bảng 1.1 Một số công trình nhà cao tầng trên thế giới Tên công trình Quốc gia Chiều cao ( m ) Tháp Burj Khalifa Dubai 827,8 Tháp Thượng Hải Trung Quốc 634 Tháp Abraj Al-Bait Ả Rập Saudi 600,7 Trung tâm Thương mại Thế giới 1 Tháp Đài Bắc 101 Mỹ 541 Đài Loan 509 Tháp đôi Petronas Malaysia 452 Tháp Willis Mỹ 442,3 Marina 101 Chung cư 432 Park Avenue Tháp Al Hamra Dubai 426 Mỹ 425,5 Tháp Burj Khalifa Kuwait 413 ( Nguồn: Tác giả tự thực hiện ) Tháp Đài Bắc 101 10 Tháp đôi Petronas Tháp Abraj AI Bait 1 ( Nguồn: Internet ) Hình 1.1 Nhà cao tầng trên thế giới - Ở đất nước ta, những năm gần đây đã và đang xây dựng rất nhiều công trình nhà cao tầng các công trình nhà cao tầng. Nhà cao tầng đã đem lại cho các đô thị một bộ mặt mới, một cảnh quan mới, một không gian kiến trúc hiện đại, tạo ra biểu tượng cho nền văn minh và tiến bộ khoa học kỹ thuật. Việt Nam trong những năm gần đây số lượng nhà trên 20 tầng tăng nhanh. Bảng 1.2 Một số công trình nhà cao tầng ở Việt Nam Tên công trình Số tầng Chiều cao ( m ) The Landmark 81 81 461,3 Keangnam Hanoi 72 336 Hanoi Lotte Center 65 265 Tháp Bitexco 68 262 Tháp VietcomBank 35 206 Saigon Center 2 42 193,7 Diamond Flower Tower 34 177 ( Nguồn: Tác giả tự thực hiện ) 11 Toà thị chính Đà Nẵng Landmark 81 Bitexco Financial Tower Vietcombank Tower ( Nguồn: Internet ) Hình 1.2 Một số toà nhà cao tầng ở Việt Nam 12 2.1.4 Những hệ kết cấu chịu lực nhà cao tầng 2.1.4.1 Các cấu kiện chịu lực cơ bản Các cấu kiện chịu lực chính tạo thành các hệ chịu lực nhà cao tầng bao gồm: + Cấu kiện dạng thanh: cột, dầm, thanh chống, thanh giằng. + Cấu kiện dạng tấm: Tường, sàn. + Cấu kiện không gian: là các vách nhiều cạnh hở hoặc khép kín, tạo thành các hộp bố trí bên trong nhà, được gọi là lõi cứng. Ngoài lõi cứng bên trong, còn có các dãy cột bố trí theo chu vi nhà với khoảng cách nhỏ tạo thành một hệ khung biến dạng tường vây. Tiết diện cột ngoài biên có thể đặc hoặc rỗng. Khi là những cột rỗng hình hộp vuông hoặc hình tròn sẽ tạo nên hệ kết cấu được gọi là ống trong ống. 2.1.4.2 Các hệ kết cấu chịu lực cơ bản Trong nhà cao tầng, khi có sự hiện diện của các khung thì tuỳ theo các làm việc của các cột trong khung mà hệ kết cấu chịu lực được phân thành các loại sơ đồ: sơ đồ khung, sơ đồ giằng, và sơ đồ khung- giằng. Phụ thuộc vào các giải pháp kiến trúc, từ 3 thành phần kết cấu chính (Cấu kiện dạng thanh, tấm, không gian) có thể liên kết tạo thành 2 nhóm kết cấu chịu lực: Nhóm 1: Gồm 1 cấu kiện chịu lực độc lập – khung, tường, vách, lõi hộp (ống). Nhóm 2: Hệ chịu lực được tổ hợp từ 2 hoặc 3 cấu kiện cơ bản trở lên: + Kết cấu KHUNG + VÁCH. + Kết cấu KHUNG + LÕI. + Kết cấu KHUNG + VÁCH + LÕI v.v… (Nguồn:Giáo trình kết cấu nhà cao tầng bê tông cốt thép, Huỳnh Quốc Hùng, 2012) Hình 1.3 Sơ đồ tổ hợp các hệ chịu lực nhà cao tầng 13 2.1.5 Phương pháp lựa chọn hệ kết cấu nhà cao tầng 2.1.5.1 Lựa chọn theo chiều cao, số tầng Để đảm bảo độ cứng, hạn chế chuyển vị ngang, tránh mất ổn định tổng thể cần hạn chế chiều cao và độ mảnh (tỷ lệ chiều cao trên chiều rộng công trình) lấy theo bảng sau: Bảng 1.3 Bảng chiều cao tối đa (m) và tỷ số giới hạn giữa chiều cao và chiều rộng H/B Trường Trường hợp có động đất cấp hợp Hệ kết cấu không 6 và 7 8 9 60m 60-55m 45m 25m 5 5-5 4 2 130m 130-120m 100m 50m 5 5-5 4 3 140m 140-120m 120m 60m 5 6-6 4 4 180m 180-150m 120m 70m 6 6-6 5 4 động đất Nhà khung MaxH = H/B Nhà khung vách MaxH = và khung ống Nhà vách H/B MaxH = H/B Nhà ống và ống MaxH = trong ống H/B ( Nguồn: Bách khoa toàn thư mở, Internet ) 2.1.5.2 Bố trí mặt bằng kết cấu Để tránh được những bất lợi do biến dạng xoắn, mặt bằng nhà cần chọn hình đơn giản, có trục đối xứng ít nhất là một phương, đặc biệt là đối xứng trong cách bố trí kết cấu chịu lực. Khi bố trí kết cấu chịu lực nhà cao tầng chịu tải trọng động đất còn cần chú ý: + Mặt bằng nên đối xứng cả hai phương trục n. + Mối quan hệ giữa chiều dài (L), chiều rộng công trình (B), độ nhô ra của các bộ phận công trình (l), vị trí các góc lõm trên mặt bằng cần thỏa mãn các yêu cầu trong bảng sau: 14 Bảng 1.4 Bảng giới hạn của L, B, l Cấp động đất L/B L/Bmax l/b 7 ≤6 ≤5 ≤2 8 và 9 ≤5 ≤4 ≤ 1,5 ( Nguồn:Bách khoa toàn thư mở, Internet) 2.1.5.3 Bố trí khe co giãn nhiệt, khe lún, khe kháng chấn Khe kháng chấn phải đặt theo suốt chiều cao công trình, và có thể không phải kéo tới móng. Khe biến dạng còn được xác định trên cơ sở xác định chuyển vị lớn nhất thường ở các tầng mái công trình do các tổ hợp tải trọng bất lợi nhất gây ra theo công thức: Dmin = u1 + u2 + 20mm Trong đó: u1 và u2 là chuyển vị lớn nhất theo phương nằm ngang của hai khối kết cấu kề nhau. Khi công trình nằm trong vùng có động đất thì chiều rộng khe lún, khe co dãn phải lấy bằng hoặc lớn hơn bề rộng tối thiểu của khe kháng chấn theo bảng sau: Bảng 1.5 Bảng bề rộng tối thiểu của khe kháng chấn (mm) Hệ kết cấu Cấp động đất thiết kế (MSK-64) 6 7 8 9 Khung 4H + 10 5H – 5 7H – 35 10H – 80 Khung – vách cứng 3,5H + 9 4,2H – 4 6H – 30 8,5H – 68 Vách - lõi 2,8H + 7 3,5H – 3 5H – 25 7H – 55 ( Nguồn:Bách khoa toàn thư mở, Internet ) 2.1.5.4 Bố trí kết cấu theo phương thẳng đứng Trong nhà cao tầng cần thiết kế các kết cấu chịu lực có độ cứng đồng đều, tránh sự thay đổi đột theo chiều cao. Trên mặt cắt thẳng đứng, kết cấu cũng cần đạt đến độ đối xứng về hình học cũng như về khối lượng (chất tải). Sự thay đổi đột ngột độ cứng của hệ kết cấu (như việc thông tầng, giảm cột hoặc dạng cột hẫng, dạng sàn giật cấp) cũng như việc dùng các sơ đồ kết cấu có các cánh 15 mỏng và kết cấu dạng công xon dài theo phương ngang nhà đều gây ra sự bất lợi dưới tác động của các tải trọng động. 2.1.5.5 Bố trí khung chịu lực Nên chọn sơ đồ khung sao cho tải trọng tác động theo phương ngang và thẳng đứng được truyền trực tiếp và ngắn nhất xuống móng. Tránh sử dụng sơ đồ khung hẫng cột tầng dưới. Nếu bắt buộc phải hẫng cột như vậy, phải có giải pháp tăng cường các dầm đỡ có đủ độ cứng chống uốn và cắt dưới tác động của các tải trọng tập trung lớn. Không nên thiết kế dạng khung thông tầng. Khi thiết kế khung cần chọn độ cứng tương đối của dầm nhỏ hơn của cột nhằm tránh khả năng cột bị phá hoại trước dầm. 2.1.5.6 Bố trí vách cứng Trong các mặt bằng nhà hình chữ nhật nên bố trí từ ba vách trở lên theo cả hai phương. Vách theo phương ngang cần bố trí đều đặn, đối xứng tại các vị trí gần đầu hồi công trình, gian thang máy, tại các vị trí có biến đổi hình dạng trên mặt bằng và những vị trí có tải trọng lớn (sàn đặt bể nước hoặc các thiết bị kỹ thuật khác). Nên thiết kế các vách giống nhau (về độ cứng cũng như kích thước hình học) và bố trí sao cho tâm cứng của hệ kết cấu trùng với tâm trọng lực (trọng tâm hình học mặt bằng) ngôi nhà. Độ cứng của các vách thường chiếm tỷ lệ lớn trong tổng độ cứng của toàn hệ. Vì vậy, các vách nên có chiều cao chạy suốt từ móng lên mái và có độ cứng không đổi trên toàn bộ chiều cao hoặc nếu phải giảm thì giảm dần từ dưới lên trên. 2.1.5.7 Bố trí lõi ống Nên bố trí các lõi, hộp đối xứng trên mặt bằng Việc thiết kế ống trong ống cần thỏa mãn các yêu cầu sau: Tỷ số giữa chiều cao và chiều rộng của ống cần lớn hơn 3, Khoảng cách giữa các trụ - ống ngoài chu vi không nên lớn hơn chiều cao tầng và nên nhỏ hơn 3m. Mặt cắt trụ - ống ngoài cần dùng dạng chữ nhật hoặc chữ T. Diện tích của cột góc có thể dùng vách góc hình chữ L hoặc ống góc. Khoảng cách giữa ống trong và ống ngoài không nên lớn hơn 10m. 16 2.1.6 Những lưu ý cần thiết khi thiết kế nhà cao tầng 2.1.6.1 Tải trọng Kết cấu nhà cao tầng cần tính toán thiết kế với các tổ hợp tải trọng thẳng đứng, tải trọng gió và tải trọng động đất. Ngoài ra phải kiểm tra ảnh hưởng của sự thay đổi nhiệt độ, ảnh hưởng của từ biến, tác động của nước ngầm, của đất và các tải trọng phát sinh trong quá trình thi công. 2.1.6.2 Nội dung và phương pháp tính toán Kết cấu nhà cao tầng cần phải được tính toán kiểm tra về độ bền, biến dạng, độ cứng, ổn định và dao động. Nội lực và biến dạng của kết cấu nhà cao tầng được tính toán theo phương pháp đàn hồi. Các cấu kiện dầm có thể được điều chỉnh lại theo quy luật liên quan đến sự phân bố lại nội lực do biến dạng dẻo. 2.1.6.3 Các chỉ tiêu kiểm tra kết cấu Kiểm tra độ bền, biến dạng, ổn định tổng thể và ổn định cục bộ của kết cấu được tiến hành theo các tiêu chuẩn thiết kế hiện hành. Ngoài ra kết cấu nhà cao tầng còn phải thỏa mãn các diều kiện sau đây: + Kiểm tra ổn định chống lật: tỷ lệ giữa mô men lật do tải trọng ngang gây ra phải thỏa mãn điều kiện: MCL / ML ≥ 1,5 Trong đó: MCL, ML là mô men chống lật và mô men lật. + Kiểm tra độ cứng Chuyển vị theo phương ngang tại đỉnh kết cấu của nhà cao tầng tính theo phương pháp đàn hồi phải thỏa mãn điều kiện: + Kết cấu khung BTCT: f/H ≤ 1/500 + Kết cấu khung – vách: f/H ≤ 1/750 + Kết cấu tường BTCT: f/H ≤ 1/1000 Trong đó f và H là chuyển vị theo phương ngang của kết cấu và chiều cao của công trình. + Kiểm tra dao động. 17 Theo yêu cầu sử dụng, gia tốc cực đại của chuyển động tại đỉnh công trình dưới tác động của gió có giá trị nằm trong giới hạn cho phép: y| ≤ [Y] Trong đó: |y|: Giá trị tính toán của gia tốc cực đại [Y]: Giá trị cho phép của gia tốc, lấy bằng 150mm/s2 . Khi thiết kế kết cấu nhà nhiều tầng ta phải tính toán về cường độ và ổn định để bảo đảm cho ngôi nhà không bị sụp đổ dưới tác động của các dạng tải trọng tĩnh và tải trọng động (Trọng lượng bản thân, gió, động đất, hoạt tải sử dụng, nhiệt độ), phải tính toán về biến dạng (Hạn chế chuyển vị ngang của đỉnh nhà và chuyển vị tương đối giữa hai sàn liền kề) và hạn chế dao động ở các mức sàn để đảm bảo an toàn và mức độ dễ chịu của người sử dụng. Tải trọng ngang do gió và động đất tác động lên nhà nhiều tầng là rất lớn, phải hạn chế chuyển vị ngang do chúng gây ra. Đối với nhà càng cao thì ảnh hưởng của tải trọng gió và động đất gây hư hại đến nhà cao tầng càng lớn. Tuy nhiên ảnh hưởng của động đất được chú ý xem xét khá cẩn thận vì tầng số rung động của động đất có thể dẫn đến phá vỡ kết cấu chịu lực trong nhà cao tầng. 2.2 Thế nào là động đất 2.2.1 Khái niệm Động đất hay còn gọi là địa chấn là sự rung chuyển của mặt đất do kết quả của sự giải phóng năng lượng bất ngờ ở lớp vỏ trái đất. Chúng được gây ra bởi các nguyên nhân như: + Do vận động kiến tạo của các mảng trái đất. + Do thiên thạch va chạm vào trái đất. + Các vụ trượt lở đất đá với khối lượng lớn. + Do các kích động có chủ ý của con người trong việc khai thác hay xây dựng, đặc biệt là các vụ thử hạt nhân. Trong quan niệm thông thường thì động đất được hiểu là các rung chuyển đủ mạnh trên diện tích đủ lớn, ở mức nhiều người cảm nhận được, có thể để lại các dấu 18 vết phá hủy hay nứt đất ở vùng nào đó. Về mặt vật lý, các rung chuyển đó phải có biên độ đủ lớn, có thể vượt giới hạn đang hồi của môi trường đất đá và gây nứt vỡ. Nguyên nhân tự nhiên nội sinh liên quan đến vận động của các lớp và khối của trái đất. Tuy rất chậm, các lớp vỏ và trong lòng đất vẫn luôn chuyển động. Khi ứng suất cao hơn sức chịu đựng thể chất của trái đất thì sự đứt gãy xảy ra, giải phóng năng lượng và xảy ra động đất. Động đất xảy ra hằng ngày trên trái đất, nhưng hầu hết không đáng chú ý và không gây ra thiệt hại. Động đất lớn có thể gây thiệt hại trầm trọng về tài sản và nhân mạng bằng nhiều cách. Riêng đối với nhà cao tầng, ảnh hưởng của động đất đến sự rung chuyển của tòa nhà là rất nguy hiểm. Không giống như tải trọng gió, gió tác động chủ yếu vào phạm vi phía trên của tòa nhà, làm biến dạng khung và gây chuyển vị đỉnh trong nhà cao tầng. Động đất khi xảy ra sẽ tạo các dạng sóng năng lượng hay còn gọi là sóng địa chấn, sẽ trải dài trong một diện tích lớn và tác động trược tiếp vào phần kết cấu chính toà nhà là phần móng. Vì thế tác động của động đất đến nhà cao tầng là tác động từ dưới lên và dễ dàng phá hoại kết cấu chịu lực của công trình. Đối với những công trình nhà cao tầng càng cao thì ảnh hưởng của động đất đến nhà cao tầng càng lớn. Các nhà khoa học thường có thể xác định được điểm trung tâm của các chuyển động địa chấn, nơi phát ra năng lượng về mặt lý thuyết, là nơi mà các song địa chấn bắt đầu. Điểm này được gọi là chấn tiêu. Hình chiếu của chấn tiêu lên mặt đất được gọi là chấn tâm. Khoảng cách từ chấn tiêu đến chấn tâm được gọi là độ sâu chấn tiêu (H). Khoảng cách từ chấn tiêu và chấn tâm đến điểm quang trắc được gọi tương ứng là tiêu cự hoặc khoảng cách chấn tiêu (D) và tâm cự hoặc khoảng cách chấn tâm (L). Tùy thuộc vào độ sâu của chấn tiêu (H) mà động đất có thể được phân thành các loại sau: + Động đất nông: H < 70 km. + Động đất trung bình: H = 70 – 300 km. + Động đất sau: H = 300 – 700 km
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất