Đăng ký Đăng nhập

Tài liệu Phương pháp tọa độ trong không gian

.PDF
60
351
58

Mô tả:

PP Toaï ñoä trong khoâng gian Traàn Só Tuøng CHÖÔNG III PHÖÔNG PHAÙP TOAÏ ÑOÄ TRONG KHOÂNG GIAN I. VECTÔ TRONG KHOÂNG GIAN 1. Ñònh nghóa vaø caùc pheùp toaùn · Ñònh nghóa, tính chaát, caùc pheùp toaùn veà vectô trong khoâng gian ñöôïc xaây döïng hoaøn toaøn töông töï nhö trong maët phaúng. · Löu yù: uuur uuur uuur + Qui taéc ba ñieåm: Cho ba ñieåm A, B, C baát kyø, ta coù: AB + BC = AC uuur uuur uuur + Qui taéc hình bình haønh: Cho hình bình haønh ABCD, ta coù: AB + AD = AC uuur uuur uuur uuuur + Qui taéc hình hoäp: Cho hình hoäp ABCD.A¢B¢C¢D¢, ta coù: AB + AD + AA ' = AC ' + Heâï thöùc trung ñieåm ñoaï thaú mr cuûuuu arñoaïnuur thaúng AB, O tuyø yù. uur nuu r nrg: Cho I laø trung ñieåuuu Ta coù: IA + IB = 0 ; OA + OB = 2OI + Heä thöùc troïng taâm tam c:r Cho c ABC, Or tuyø yù. uuurgiaùuuu uuurG laør troïng taâm cuû uuuar tam uuurgiaùuuu r uuu Ta coù: GA + GB + GC = 0; OA + OB + OC = 3OG + Heä thöùc troïng taâm töùuuu dieä : Cho Gr laø uuur troïng taâm cuûuuu a töù Or tuyø uuu yù.r r nuuu r uuu r dieä uuurn ABCD, uuur uuu r Ta coù: GA + GB + GC + GD = 0; OA + OB + OC + OD = 4OG r r r r r r + Ñieàu kieän hai vectô cuøng phöông: a vaø b cuøng phöông (a ¹ 0) Û $! k Î R : b = ka + Ñieåm M chia ñoaïn thaúng AB theo tæ soá k (k ¹ 1), O tuyø yù. uuur uuur uuur uuur uuur OA - kOB Ta coù: MA = k MB; OM = 1- k 2. Söï ñoàng phaúng cuûa ba vectô · Ba vectô ñöôïc goïi laø ñoàng phaúng neáu caùc giaù cuûa chuùng cuøng song song vôùi moät maët phaúng. r r r r r · Ñieàu kieän ñeå ba vectô ñoàng phaúng: Cho ba vectô a, b , c , trong ñoù a vaø b khoâng cuøng r r r r r r phöông. Khi ñoù: a, b , c ñoàng phaúng Û $! m, n Î R: c = ma + nb r r r r · Cho ba vectô a, b , c khoâng ñoàng phaúng, x tuyø yù. r r r r Khi ñoù: $! m, n, p Î R: x = ma + nb + pc 3. Tích voâ höôùng cuûa hai vectô · Goùc giöõa hai vectô trong khoâng gian: uuur r uuur r r r AB = u , AC = v Þ (u , v ) = · BAC (00 £ · BAC £ 1800 ) · Tích voâ höôùng cuûa hai vectô trong khoâng gian: r r r rr r r r r + Cho u , v ¹ 0 . Khi ñoù: u.v = u . v .cos(u , v ) r r r r rr + Vôùi u = 0 hoaëc v = 0 . Qui öôùc: u.v = 0 r r rr + u ^ v Û u.v = 0 r r + u = u2 Trang 26 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian II. HEÄ TOAÏ ÑOÄ TRONG KHOÂNG GIAN 1. Heä toïa ñoä Ñeâcac vuoâng goùc trong khoâng gian: Cho r r ba r truïc Ox, Oy, Oz vuoâng goùc vôùi nhau töøng ñoâi moät vaø chung moät ñieåm goác O. Goïi i, j, k laø caùc vectô ñôn vò, töông öùng treân caùc truïc Ox, Oy, Oz. Heä ba truïc nhö vaäy goïi laø heä toïa ñoä Ñeâcac vuoâng goùc Oxyz hoaëc ñôn giaûn laø heä toïa ñoä Oxyz. r2 r 2 r 2 rr rr r r Chuù yù: i = j = k = 1 vaø i. j = i.k = k . j = 0 . 2. Toïa ñoä cuûa vectô:r r r r r a) Ñònh nghóa: u = ( x; y; z ) Û u = xi + y j + zk r r b) Tính chaát: Cho a = (a1; a2 ; a3 ), b = (b1; b2 ; b3 ), k Î R r r · a ± b = (a1 ± b1; a2 ± b2 ; a3 ± b3 ) r · ka = (ka1; ka2 ; ka3 ) ìa1 = b1 r r ï · a = b Û ía2 = b2 ïa = b 3 î 3 r r r r · 0 = (0; 0; 0), i = (1; 0; 0), j = (0;1; 0), k = (0; 0;1) r r r r r r · a cuøng phöông b (b ¹ 0) Û a = kb (k Î R) ìa1 = kb1 a a a ï Û ía2 = kb2 Û 1 = 2 = 3 , (b1 , b2 , b3 ¹ 0) b1 b2 b3 ïa = kb 3 î 3 r r · a ^ b Û a1b1 + a2 b2 + a3b3 = 0 r · a = a12 + a22 + a22 rr · a.b = a1.b1 + a2 .b2 + a3 .b3 r · a 2 = a12 + a22 + a32 rr a1b1 + a2 b2 + a3b3 a.b r r r r r · cos(a , b ) = r r = (vôùi a, b ¹ 0 ) a.b a 2 + a 2 + a2 . b 2 + b2 + b 2 1 2 3 1 2 3 3. Toïa ñoä cuûa ñieåm: uuur a) Ñònh nghóa: M ( x; y; z) Û OM = ( x; y; z) (x : hoaønh ñoä, y : tung ñoä, z : cao ñoä) Chuù yù: · M Î (Oxy) Û z = 0; M Î (Oyz) Û x = 0; M Î (Oxz) Û y = 0 · M Î Ox Û y = z = 0; M Î Oy Û x = z = 0; M Î Oz Û x = y = 0 b) Tính chaát: Cho A( x A ; y A ; zA ), B( x B ; yB ; zB ) uuur · AB = ( xB - x A ; yB - y A ; zB - zA ) · AB = ( x B - x A )2 + ( yB - y A )2 + ( zB - zA )2 æ x - kxB yA - kyB zA - kzB ö · Toaï ñoä ñieåm M chia ñoaïn AB theo tæ soá k (k≠1): M ç A ; ; ÷ 1- k 1- k ø è 1- k æ x + x B y A + y B zA + zB ö · Toaï ñoä trung ñieåm M cuûa ñoaïn thaúng AB: M ç A ; ; ÷ è 2 2 2 ø · Toaï ñoä troïng taâm G cuûa tam giaùc ABC: æ x + xB + xC y A + yB + yC zA + zB + zC ö Gç A ; ; ÷ 3 3 3 è ø Trang 27 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng · Toaï ñoä troïng taâm G cuûa töù dieän ABCD: æ x + xB + xC + x D y A + y B + yC + yD zA + zB + zC + zC ö Gç A ; ; ÷ è 4 4 4 ø 4. Tích coù höôùng cuûa hai r vectô: (Chöông r trình naâng cao) a) Ñònh nghóa: Cho a = (a1, a2 , a3 ) , b = (b1 , b2 , b3 ) . r r æ a2 a1 a2 ö ÷ = ( a2 b3 - a3b2 ; a3b1 - a1b3 ; a1b2 - a2 b1 ) çb b b3 b1 b1 b2 ÷ø 3 è 2 Chuù yù: Tích coù höôùng cuûa hai vectô laø moät vectô, tích voâ höôùng cuûa hai vectô laø moät soá. b) Tính chaát: r r r r r r r r r r r r r r r éë j , k ùû = i ; [k , i ] = j · éë i , j ùû = k ; · [a, b] ^ a; [a, b] ^ b r r r r r r r r r r r · [a, b] = a . b .sin ( a, b ) · a, b cuøng phöông Û [a, b] = 0 [ ar , b ] = ar Ù b = ç a3 ; a3 a1 ; c) ÖÙng duïng cuûa tích coù höôùng: r r r r r r · Ñieàu kieän ñoàng phaúng cuûa ba vectô: a, b vaø c ñoàng phaúng Û [a, b].c = 0 uuur uuur · Dieän tích hình bình haønh ABCD: SY ABCD = éë AB, AD ùû 1 uuur uuur · Dieän tích tam giaùc ABC: SD ABC = éë AB, AC ùû 2 uuur uuur uuur · Theå tích khoái hoäp ABCD.A¢B¢C¢D¢: VABCD . A ' B ' C ' D ' = [ AB, AD ]. AA ' · Theå tích töù dieän ABCD: VABCD = 1 uuur uuur uuur [ AB, AC ]. AD 6 Chuù yù: – Tích voâ höôùng cuûa hai vectô thöôøng söû duïng ñeå chöùng minh hai ñöôøng thaúng vuoâng goùc, tính goùc giöõa hai ñöôøng thaúng. – Tích coù höôùng cuûa hai vectô thöôøng söû duïng ñeå tính dieän tích tam giaùc; tính theå tích khoái töù dieän, theå tích hình hoäp; chöùng minh caùc vectô ñoàng phaúng – khoâng ñoàng phaúng, chöùng minh caùc vectô cuøng phöông. r r rr a ^ brÛ a.b = 0 r r r r [ a vaø b cuø n g phöông Û a ,b] = 0 r r r r r r a, b , c ñoàng phaúng Û [ a , b ] .c = 0 5. Phöông trình maët caàu: · Phöông trình maët caàu (S) taâm I(a; b; c), baùn kính R: ( x - a )2 + ( y - b )2 + ( z - c )2 = R 2 · Phöông trình x 2 + y 2 + z 2 + 2ax + 2by + 2cz + d = 0 vôùi a2 + b 2 + c 2 - d > 0 laø phöông trình maët caàu taâm I(–a; –b; –c) vaø baùn kính R = a2 + b2 + c2 - d . Trang 28 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian VAÁN ÑEÀ 1: Caùc pheùp toaùn veà toaï ñoä cuûa vectô vaø cuûa ñieåm – Söû duïng caùc coâng thöùc veà toaï ñoä cuûa vectô vaø cuûa ñieåm trong khoâng gian. – Söû duïng caùc pheùp toaùn veà vectô trong khoâng gian. Baøi 1. Vieát toïa ñoä cuûa caùc vectô sau ñaây: r r r r r r r r r r r r a = -2i + j ; d = 3i - 4 j + 5k b = 7i - 8k ; c = -9k ; r r r Baøi 2. Vieát döôùi daïng xi + yj + zk moãi vectô sau ñaây: r r æ 1 1 ö 1 ö r æ 1 ö r æ4 a = ç 0; ; 2 ÷ ; b = (4; -5; 0) ; c = ç ; 0; ; d = çp; ; ÷ ÷ 2 ø 3ø è è3 è 3 5ø r r r r Baøi 3. Cho: a = ( 2; -5; 3) , b = ( 0; 2; -1) , c = (1; 7; 2 ) . Tìm toaï ñoä cuûa caùc vectô u vôùi: r r r 2r r r 1r r r r r a) u = 4a - b + 3c b) u = a - 4b - 2c c) u = -4b + c 2 3 r 1r 4r r r r 3r 2r r r r r e) u = a - b - 2c f) u = a - b - c d) u = 3a - b + 5c 2 3 4 3 r Baøi 4. Tìm toïa ñoä cuûa vectô x , bieát raèng: r r r r r r r r a) a + x = 0 vôùi a = (1; -2;1) b) a + x = 4a vôùi a = ( 0; -2;1) r r r r r c) a + 2 x = b vôùi a = ( 5; 4; -1) , b = ( 2; -5; 3) r Baøi 5. Cho a = (1; -3; 4) . r r a) Tìm y vaø z ñeå b = (2; y; z) cuøng phöông vôùi a . r r r r r b) Tìm toaï ñoä cuûa vectô c , bieát raèng a vaø c ngöôïc höôùng vaø c = 2 a . r r r Baøi 6. Cho ba vectô a = (1; -1;1) , b = ( 4; 0; -1) , c = ( 3; 2; -1) . Tìm: r r r r r r rr r r rr b) a 2 ( b .c ) c) a 2 b + b 2 c + c 2 a a) ( a.b ) c r rr r r r rr r r d) 3a - 2 ( a.b ) b + c 2 b e) 4a.c + b 2 - 5c 2 r r Baøi 7. Tính goùc giöõa hai vectô a vaø b : r r r r b) a = ( 2; 5; 4 ) , b = ( 6; 0; -3) a) a = ( 4; 3;1) , b = ( -1; 2; 3) r r r r c) a = (2;1; -2), b = (0; - 2 ; 2 ) d) a = (3; 2; 2 3 ), b = ( 3; 2 3; -1) r r r r e) a = (-4; 2; 4), b = (2 2; -2 2; 0) f) a = (3; -2;1), b = (2;1; -1) r Baøi 8. Tìm vectô u , bieát raèng: r r r r r r ìa = (2; -1; 3), b = (r1; -3; 2), c = (3; 2; -4) ìa = (2; 3; -1), b = (1; r-2; 3), c = (2; -1;1) a) í r r b) r rr r rr ír r u.b = -11, u.c = 20 u ^ b, u .c = -6 îa.u = -5, îu ^ a , r r r r r r ìa = (2; 3;1), b = (r1; -2; -1), c = (-2; 4; 3) ìa = (5; -3; 2), b =r (1; 4; -3), c = (-3; 2; 4) c) í r r d) r rr r rr ír r b .u = 4, c .u = 2 b .u = 9, c .u = -4 îa.u = 3, îa.u = 16, r r r ìa = (7; 2; 3), b = r(4; 3; -5), c = (1;1; -1) e) í r r r r r b .u = -7, c ^u îa.u = -5, r r Baøi 9. Cho hai vectô a , b . Tìm m ñeå: r r r ìar = (2;1; -2), b = (0; - 2 ; 2 ) ìa = (3; -2;1r), b = (2;1; -1) r r a) í r b) í r r r r r r r r îu = ma - 3b vaø v = 3a + 2mb vuoâng goùc îu = 2a + 3mb vaø v = ma - b vuoâng goùc r r ìa = (3; -2;1r), b = (2;1; -1) r c) í r r r r îu = ma - 3b vaø v = 3a + 2mb cuøng phöông Trang 29 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng r r Baøi 10. Cho hai vectô a , b . Tính X, Y khi bieát: r r r ì ar = 4, b = 6 ìar = (2; -1; -2), b = 6, ar - b = 4 b) í a) í r r r r îX = a - b îY = a + b r r r r 0 ìr ìr (r ) (r ) 0 c) í a = 4r, br = 6, ar, b r= 120 d) ía = (2r; -1r; -2), br = 6r, a, b = 60 îX = a - b , Y = a + b îX = a - b ,Y = a + b r r r r r r Baøi 11. Cho ba vectô a, b , c . Tìm m, n ñeå c = [ a, b ] : r r r a) a = ( 3; -1; -2 ) , b = (1; 2; m ) , c = ( 5;1; 7 ) r r r b) a = ( 6; -2; m ) , b = ( 5; n; -3) , c = ( 6; 33;10 ) r r r c) a = ( 2; 3;1) , b = ( 5; 6; 4 ) , c = ( m; n;1) r r r Baøi 12. Xeùt söï ñoàng phaúng cuûa ba vectô a, b , c trong moãi tröôøng hôïp sau ñaây: r r r r r r a) a = (1; -1;1) , b = ( 0;1; 2 ) , c = ( 4; 2; 3) b) a = ( 4; 3; 4 ) , b = ( 2; -1; 2 ) , c = (1; 2;1) r r r r r r c) a = ( -3;1; -2 ) , b = (1;1;1) , c = ( -2; 2;1) d) a = ( 4; 2; 5 ) , b = ( 3;1; 3) , c = ( 2; 0;1) r r r r r r f) a = (5; 4; -8), b = (-2; 3; 0), c = (1; 7; -7) e) a = (2; 3;1), b = (1; -2; 0), c = (3; -2; 4) r r r r r r h) a = (2; -4; 3), b = (-1; 3; -2), c = (3; -2;1) g) a = (2; -4; 3), b = (1; 2; -2), c = (3; -2;1) r r r Baøi 13. Tìm m ñeå 3 vectô a, b , c ñoàng phaúng: r r r a) a = (1; m; 2 ) , b = ( m + 1; 2;1) , c = ( 0; m - 2; 2 ) r r r b) a = (2m + 1;1; 2m - 1); b = (m + 1; 2; m + 2), c = (2m; m + 1; 2) r r r c) a = ( m + 1; m; m - 2 ) , b = ( m - 1; m + 2; m ) , c = (1; 2; 2 ) r r r d) a = (1; -3; 2 ) , b = ( m + 1; m - 2;1 - m ) , c = ( 0; m - 2; 2 ) r r r r r r r Baøi 14. Cho caùc vectô a, b , c , u . Chöùng minh ba vectô a, b , c khoâng ñoàng phaúng. Bieåu dieãn r r r r vectô u theo caùc vectô a, b , c : r r ìar = ( 2;1; 0 ) , b = (1; -1; 2 ) , cr = ( 2; 2; -1) ìar = (1; -7; 9 ) , b = ( 3; -6;1) , cr = ( 2;1; -7 ) a) í r b) í r îu = (3; 7; -7) îu = (-4;13; -6) r r ìar = (1; 0;1) , b = ( 0; -1;1) , cr = (1;1; 0 ) ìar = (1; 0; 2 ) , b = ( 2; -3; 0 ) , cr = ( 0; -3; 4 ) c) í r d) í r îu = (8; 9; -1) îu = (-1; -6; 22) r r ìar = ( 2; -3;1) , b = ( -1; 2; 5 ) , cr = ( 2; -2; 6 ) ìar = ( 2; -1;1) , b = (1; -3; 2 ) , cr = ( -3; 2; -2 ) e) í r f) í r îu = (3;1; 2) îu = (4; 3; -5) r r r r Baøi 15. Chöùng toû boán vectô a, b , c , d ñoàng phaúng: r r r r a) a = ( -2; -6;1) , b = ( 4; -3; -2 ) , c = ( -4; -2; 2 ) , d = (-2; -11;1) r r r r b) a = ( 2; 6; -1) , b = ( 2;1; -1) , c = ( -4; 3; 2 ) , d = (2;11; -1) r r r r Baøi 16. Cho ba vectô a, b , c khoâng ñoàng phaúng vaø vectô d . Chöùng minh boä ba vectô sau khoâng ñoàng phaúng: r r r r r r r r r r a) b , c , d = ma + nb (vôùi m, n ≠ 0) b) a , c , d = ma + nb (vôùi m, n ≠ 0) r r r r r r r r r r r r c) a , b , d = ma + nb + pc , (vôùi m, n, p ≠ 0) d) b , c , d = ma + nb + pc , (vôùi m, n, p ≠ 0) r r r r r r e) a , c , d = ma + nb + pc , (vôùi m, n, p ≠ 0) Trang 30 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian VAÁN ÑEÀ 2: Xaùc ñònh ñieåm trong khoâng gian. Chöùng minh tính chaát hình hoïc. Dieän tích – Theå tích. – Söû duïng caùc coâng thöùc veà toaï ñoä cuûa vectô vaø cuûa ñieåm trong khoâng gian. – Söû duïng caùc pheùp toaùn veà vectô trong khoâng gian. – Coâng thöùc xaùc ñònh toaï ñoä cuûa caùc ñieåm ñaëc bieät. – Tính chaát hình hoïc cuûa caùc ñieåm ñaëc bieät: uuur uuur uuur uuur uuur uuur r · A, B, C thaúng haøng Û AB, AC cuøng phöông Û AB = k AC Û éë AB, AC ùû = 0 uuur uuur · ABCD laø hình bình haønh Û AB = DC · Cho DABC coù caùc chaân E, F cuûa caùc ñöôøng phaân giaùc trong vaø ngoaøi cuûa goùc A cuûa DABC uuur uuur AB uuur AB uuur treân BC. Ta coù: EB = .EC , FB = .FC AC AC uuur uuur uuur uuur uuur uuur · A, B, C, D khoâng ñoàng phaúng Û AB, AC , AD khoâng ñoàng phaúng Û éë AB, AC ùû . AD ¹ 0 Baøi 1. Cho ñieåm M. Tìm toïa ñoä hình chieáu vuoâng goùc cuûa ñieåm M: · Treân caùc maët phaúng toïa ñoä: Oxy, Oxz, Oyz · Treân caùc truïc toïa ñoä: Ox, Oy, Oz b) M(3; -1; 2) c) M(-1;1; -3) d) M(1; 2; -1) a) M(1; 2; 3) e) M(2; -5; 7) f) M(22; -15; 7) g) M(11; -9;10) h) M(3; 6; 7) Baøi 2. Cho ñieåm M. Tìm toïa ñoä cuûa ñieåm M¢ ñoái xöùng vôùi ñieåm M: · Qua goác toaï ñoä · Qua mp(Oxy) · Qua truïc Oy b) M(3; -1; 2) c) M(-1;1; -3) a) M(1; 2; 3) e) M(2; -5; 7) f) M(22; -15; 7) g) M(11; -9;10) d) M(1; 2; -1) h) M(3; 6; 7) Baøi 3. Xeùt tính thaúng haøng cuûa caùc boä ba ñieåm sau: b) A(1;1;1), B(-4; 3;1), C (-9; 5;1) a) A(1; 3;1), B(0;1; 2), C (0; 0;1) d) A(-1; 5; -10), B(5; -7; 8), C(2; 2; -7) c) A(10; 9;12), B(-20; 3; 4), C (-50; -3; -4) Baøi 4. Cho ba ñieåm A, B, C. · Chöùng toû ba ñieåm A, B, C taïo thaønh moät tam giaùc. · Tìm toaï ñoä troïng taâm G cuûa DABC. · Xaùc ñònh ñieåm D sao cho ABCD laø hình bình haønh. · Xaùc ñònh toaï ñoä caùc chaân E, F cuûa caùc ñöôøng phaân giaùc trong vaø ngoaøi cuûa goùc A cuûa DABC treân BC. Tính ñoä daøi caùc ñoaïn phaân giaùc ñoù. · Tính soá ño caùc goùc trong DABC. · Tính dieän tích DABC. Töø ñoù suy ra ñoä daøi ñöôøng cao AH cuûa DABC. b) A(0;13; 21), B(11; -23;17), C (1; 0;19) a) A(1; 2; -3), B(0; 3; 7), C (12; 5; 0) c) A(3; -4; 7), B(-5; 3; -2), C (1; 2; -3) d) A(4; 2; 3), B(-2;1; -1), C (3; 8; 7) e) A(3; -1; 2), B(1; 2; -1), C (-1;1; -3) f) A(4;1; 4), B(0; 7; -4), C (3;1; -2) g) A (1; 0; 0 ) , B ( 0; 0;1) , C ( 2;1;1) h) A(1; -2; 6), B(2; 5;1), C (-1; 8; 4) Baøi 5. Treân truïc Oy (Ox), tìm ñieåm caùch ñeàu hai ñieåm: a) A(3;1; 0) , B(-2; 4;1) b) A(1; -2;1), B(11; 0; 7) d) A(3; -1; 2), B(1; 2; -1) e) A(3; -4; 7), B(-5; 3; -2) Baøi 6. a) c) e) c) A(4;1; 4), B(0; 7; -4) f) A(4; 2; 3), B(-2;1; -1) Treân maët phaúng Oxy (Oxz, Oyz), tìm ñieåm caùch ñeàu ba ñieåm: A(1;1;1), B(-1;1; 0), C (3;1; -1) b) A(-3; 2; 4), B(0; 0; 7), C (-5; 3; 3) A(3; -1; 2), B(1; 2; -1), C (-1;1; -3) d) A(0;13; 21), B(11; -23;17), C (1; 0;19) A(1; 0; 2), B(-2;1;1), C (1; -3; -2) f) A(1; -2; 6), B(2; 5;1), C (-1; 8; 4) Trang 31 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng Baøi 7. Cho hai ñieåm A, B. Ñöôøng thaúng AB caét maët phaúng Oyz (Oxz, Oxy) taïi ñieåm M. · Ñieåm M chia ñoaïn thaúng AB theo tæ soá naøo ? · Tìm toïa ñoä ñieåm M. a) A ( 2; -1; 7 ) , B ( 4; 5; -2 ) b) A(4; 3; -2), B(2; -1;1) c) A(10; 9;12), B(-20; 3; 4) d) A(3; -1; 2), B(1; 2; -1) e) A(3; -4; 7), B(-5; 3; -2) f) A(4; 2; 3), B(-2;1; -1) Baøi 8. Cho boán ñieåm A, B, C, D. · Chöùng minh A, B, C, D laø boán ñænh cuûa moät töù dieän. · Tìm toïa ñoä troïng taâm G cuûa töù dieän ABCD. · Tính goùc taïo bôûi caùc caïnh ñoái dieän cuûa töù dieän ABCD. · Tính theå tích cuûa khoái töù dieän ABCD. · Tính dieän tích tam giaùc BCD, töø ñoù suy ra ñoä daøi ñöôøng cao cuûa töù dieän veõ töø A. a) A(2; 5; -3), B(1; 0; 0), C (3; 0; -2), D (-3; -1; 2) b) A (1; 0; 0 ) , B ( 0;1; 0 ) , C ( 0; 0;1) , D ( -2;1; -1) c) A (1;1; 0 ) , B ( 0; 2;1) , C (1; 0; 2 ) , D (1;1;1) e) A(2; 3;1), B(4;1; -2), C (6; 3; 7), D (-5; -4; 8) g) A(2; 4;1), B(-1; 0;1), C (-1; 4; 2), D(1; -2;1) i) A(3; 4; 8), B(-1; 2;1), C (5; 2; 6), D (-7; 4; 3) Baøi 9. Cho hình hoäp ABCD.A'B'C'D'. · Tìm toaï ñoä caùc ñænh coøn laïi. · Tính theå tích khoái hoäp. a) A (1; 0;1) , B ( 2;1; 2 ) , D (1; -1;1) , C ' ( 4; 5; -5 ) c) A(0; 2;1), B(1; -1;1), D (0; 0; 0;), A '(-1;1; 0) d) f) h) k) A ( 2; 0; 0 ) , B ( 0; 4; 0 ) , C ( 0; 0; 6 ) , D ( 2; 4; 6 ) A(5; 7; -2), B(3;1; -1), C (9; 4; -4), D(1; 5; 0) A(-3; 2; 4), B(2; 5; -2), C (1; -2; 2), D(4; 2; 3) A(-3; -2; 6), B(-2; 4; 4), C (9; 9; -1), D (0; 0;1) b) A(2; 5; -3), B(1; 0; 0), C (3; 0; -2), A '(-3; -1; 2) d) A(0; 2; 2), B(0;1; 2), C (-1;1;1), C '(1; -2; -1) Baøi 10. Cho boán ñieåm S(3; 1; –2), A(5; 3; 1), B(2; 3; –4), C(1; 2; 0). a) Chöùng minh SA ^ (SBC), SB ^ (SAC), SC ^ (SAB). b) Chöùng minh S.ABC laø moät hình choùp ñeàu. c) Xaùc ñònh toaï ñoä chaân ñöôøng cao H cuûa hình choùp. Suy ra ñoä daøi ñöôøng cao SH. Baøi 11. Cho boán ñieåm S(1; 2; 3), A(2; 2; 3), B(1; 3; 3), C(1; 2; 4). a) Chöùng minh SA ^ (SBC), SB ^ (SAC), SC ^ (SAB). b) Goïi M, N, P laàn löôït laø trung ñieåm cuûa BC, CA, AB. Chöùng minh SMNP laø töù dieän ñeàu. c) Veõ SH ^ (ABC). Goïi S¢ laø ñieåm ñoái xöùng cuûa H qua S. Chöùng minh S¢ABC laø töù dieän ñeàu. Baøi 12. Cho hình hoäp chöõ nhaä OABC.DEFG. Goïi Iuuu laø cuûra hình hoäp. uur t uuu r r taâ uuum r uuu a) Phaân tích caùc vectô OI , AG theo caùc vectô OA, OC , OD . uur uuur uuur uur b) Phaân tích vectô BI theo caùc vectô FE , FG , FI . Baøi 13. Cho hình laäp phöông uuur ABCD.EFGH. uuur uuur uuur a) Phaân tích vectô AE theo caùc vectô AC , AF , AH . uuur uuur uuur uuur b) Phaân tích vectô AG theo caùc vectô AC , AF , AH . Baøi 14. Cho hình hoäp ABCD.A'B'C'D'. Goïi M, N laàn löôït laø trung ñieåm cuûa AD vaø BB¢. Chöùng minh raèng MN ^ A¢C. Baøi 15. Cho hình laäp phöông ABCD.A'B'C'D' vôùi caïnh baèng 1. Treân caùc caïnh BB¢, CD, A¢D¢ laàn löôït laáy caùc ñieåm M, N, P sao cho B¢M = CN = D¢P = x (0 < x < 1). Chöùng minh AC¢ vuoâng goùc vôùi maët phaúng (MNP). Trang 32 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian VAÁN ÑEÀ 3: Phöông trình maët caàu Ñeå vieát phöông trình maët caàu (S), ta caàn xaùc ñònh taâm I vaø baùn kính R cuûa maët caàu. Daïng 1: (S) coù taâm I(a; b; c) vaø baùn kính R: (S): ( x - a)2 + ( y - b)2 + ( z - c )2 = R 2 Daïng 2: (S) coù taâm I(a; b; c) vaø ñi qua ñieåm A: Khi ñoù baùn kính R = IA. Daïng 3: (S) nhaän ñoaïn thaúng AB cho tröôùc laøm ñöôøng kính: x + xB y +y z +z – Taâm I laø trung ñieåm cuûa ñoaïn thaúng AB: xI = A ; yI = A B ; zI = A B . 2 2 2 AB – Baùn kính R = IA = . 2 Daïng 4: (S) ñi qua boán ñieåm A, B, C, D (maët caàu ngoaïi tieáp töù dieän ABCD): – Giaû söû phöông trình maët caàu (S) coù daïng: x 2 + y 2 + z 2 + 2ax + 2by + 2cz + d = 0 (*). – Thay laàn löôït toaï ñoä cuûa caùc ñieåm A, B, C, D vaøo (*), ta ñöôïc 4 phöông trình. – Giaûi heä phöông trình ñoù, ta tìm ñöôïc a, b, c, d Þ Phöông trình maët caàu (S). Daïng 5: (S) ñi qua ba ñieåm A, B, C vaø coù taâm I naèm treân maët phaúng (P) cho tröôùc: Giaûi töông töï nhö daïng 4. Daïng 6: (S) coù taâm I vaø tieáp xuùc vôùi maët caàu (T) cho tröôùc: – Xaùc ñònh taâm J vaø baùn kính R¢ cuûa maët caàu (T). – Söû duïng ñieàu kieän tieáp xuùc cuûa hai maët caàu ñeå tính baùn kính R cuûa maët caàu (S). (Xeùt hai tröôøng hôïp tieáp xuùc trong vaø tieáp xuùc ngoaøi) Chuù yù: Vôùi phöông trình maët caàu (S): x 2 + y 2 + z 2 + 2ax + 2by + 2cz + d = 0 vôùi a2 + b 2 + c 2 - d > 0 thì (S) coù taâm I(–a; –b; –c) vaø baùn kính R = a2 + b2 + c2 - d . Baøi 1. Tìm taâm vaø baùn kính cuûa caùc maët caàu sau: a) x 2 + y 2 + z 2 - 8 x + 2 y + 1 = 0 b) x 2 + y 2 + z 2 + 4 x + 8y - 2 z - 4 = 0 c) x 2 + y 2 + z2 - 2 x - 4 y + 4 z = 0 d) x 2 + y 2 + z 2 - 6 x + 4 y - 2z - 86 = 0 e) x 2 + y 2 + z2 - 12 x + 4 y - 6 z + 24 = 0 f) x 2 + y 2 + z2 - 6 x - 12 y + 12 z + 72 = 0 g) x 2 + y 2 + z 2 - 8 x + 4 y + 2 z - 4 = 0 h) x 2 + y 2 + z2 - 3 x + 4 y = 0 i) 3 x 2 + 3y 2 + 3z2 + 6 x - 3y + 15z - 2 = 0 k) x 2 + y 2 + z2 - 6 x + 2 y - 2z + 10 = 0 Baøi 2. Xaùc ñònh m, t, a, … ñeå phöông trình sau xaùc ñònh moät maët caàu, tìm taâm vaø baùn kính cuûa caùc maët caàu ñoù: a) x 2 + y 2 + z2 - 2(m + 2) x + 4my - 2mz + 5m 2 + 9 = 0 b) x 2 + y 2 + z2 - 2(3 - m) x - 2(m + 1) y - 2mz + 2m 2 + 7 = 0 c) x 2 + y 2 + z2 + 2(cos a + 1) x - 4 y - 2 cos a .z + cos 2a + 7 = 0 d) x 2 + y 2 + z2 + 2(3 - 2 cos 2 a ) x + 4(sin 2 a - 1) y + 2 z + cos 4a + 8 = 0 e) x 2 + y 2 + z2 - 2 ln t.x + 2 y - 6 z + 3 ln t + 8 = 0 f) x 2 + y 2 + z2 + 2(2 - ln t ) x + 4 ln t.y + 2(ln t + 1)z + 5 ln 2 t + 8 = 0 Trang 33 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng Baøi 3. Vieát phöông trình maët caàu coù taâm I vaø baùn kính R: a) I (1; -3; 5), R = 3 b) I (5; -3; 7), R = 2 c) I (1; -3; 2), R = 5 d) I (2; 4; -3), R = 3 Baøi 4. Vieát phöông trình maët caàu coù taâm I vaø ñi qua ñieåm A: a) I (2; 4; -1), A(5; 2; 3) b) I (0; 3; -2), A(0; 0; 0) d) I (4; -4; -2), A(0; 0; 0) e) I (4; -1; 2), A(1; -2; -4) Baøi 5. Vieát phöông trình maët caàu coù ñöôøng kính AB, vôùi: b) A(0; 3; -2), B(2; 4; -1) a) A(2; 4; -1), B(5; 2; 3) d) A(4; -3; -3), B(2;1; 5) e) A(2; -3; 5), B(4;1; -3) Baøi 6. a) c) e) c) I (3; -2;1), A(2;1; -3) c) A(3; -2;1), B(2;1; -3) f) A(6; 2; -5), B(-4; 0; 7) Vieát phöông trình maët caàu ngoaïi tieáp töù dieän ABCD, vôùi: A (1;1; 0 ) , B ( 0; 2;1) , C (1; 0; 2 ) , D (1;1;1) b) A ( 2; 0; 0 ) , B ( 0; 4; 0 ) , C ( 0; 0; 6 ) , D ( 2; 4; 6 ) A(2; 3;1), B(4;1; -2), C (6; 3; 7), D (-5; -4; 8) d) A(5; 7; -2), B(3;1; -1), C (9; 4; -4), D(1; 5; 0) A(6; -2; 3), B(0;1; 6), C (2; 0; -1), D(4;1; 0) f) A(0;1; 0), B(2; 3;1), C (-2; 2; 2), D(1; -1; 2) Baøi 7. Vieát phöông trình maët caàu ñi qua ba ñieåm A, B, C vaø coù taâm naèm trong maët phaúng (P) cho tröôùc, vôùi: ì A(1; 2; 0), B(-1;1; 3), C (2; 0; -1) ì A(2; 0;1), B(1; 3; 2), C (3; 2; 0) a) í b) í P Oxz ( ) º ( ) î î( P ) º (Oxy ) Baøi 8. Vieát phöông trình maët caàu (S) coù taâm I vaø tieáp xuùc vôùi maët caàu (T), vôùi: ìI (-5;1;1) ìI (-3; 2; 2) b) í a) í 2 2 2 2 2 2 î(T ) : x + y + z - 2 x + 4 y - 6 z + 5 = 0 î(T ) : x + y + z - 2 x + 4 y - 8z + 5 = 0 VAÁN ÑEÀ 4: Vò trí töông ñoái giöõa hai maët caàu maët caàu Cho hai maët caàu S1(I1, R1) vaø S2(I2, R2). · I1I 2 < R1 - R2 Û (S1), (S2) trong nhau · I1I 2 > R1 + R2 Û (S1), (S2) ngoaøi nhau · I1I 2 = R1 - R2 Û (S1), (S2) tieáp xuùc trong · I1I 2 = R1 + R2 Û (S1), (S2) tieáp xuùc ngoaøi · R1 - R2 < I1I 2 < R1 + R2 Û (S1), (S2) caét nhau theo moät ñöôøng troøn. Baøi 1. Xeùt vò trí töông ñoái cuûa hai maët caàu: ïì x 2 + y 2 + z2 - 8 x + 4 y - 2 z - 4 = 0 a) í 2 2 2 ïî x + y + z + 4 x - 2 y - 4 z + 5 = 0 ìï( x + 1)2 + ( y - 2)2 + ( z - 3)2 = 9 b) í 2 2 2 ïî x + y + z - 6 x - 10 y - 6z - 21 = 0 ìï x 2 + y 2 + z2 - 2 x + 4 y - 10 z + 5 = 0 c) í 2 2 2 ïî x + y + z - 4 x - 6 y + 2z - 2 = 0 ïì x 2 + y 2 + z2 - 2 x - 6 y + 4z + 5 = 0 e) í 2 2 2 ïî x + y + z - 6 x + 2 y - 4z - 2 = 0 ìï x 2 + y 2 + z2 - 8 x + 4 y - 2z - 15 = 0 d) í 2 2 2 ïî x + y + z + 4 x - 12 y - 2 z + 25 = 0 ïì x 2 + y 2 + z2 + 4 x - 2 y + 2 z - 3 = 0 f) í 2 2 2 ïî x + y + z - 6 x + 4 y - 2z - 2 = 0 Baøi 2. Bieän luaän theo m vò trí töông ñoái cuûa hai maët caàu: ìï( x - 3)2 + ( y + 2)2 + ( z + 1)2 = 81 ïì( x - 2)2 + ( y - 1)2 + ( z + 3)2 = 64 a) í b) í 2 2 2 2 2 2 2 2 ïî( x - 4) + ( y + 2) + ( z - 3) = (m + 2) ïî( x - 1) + ( y - 2) + ( z - 3) = (m - 3) ìï( x + 2)2 + ( y - 2)2 + ( z - 1)2 = 25 c) í 2 2 2 2 ïî( x + 1) + ( y + 2) + ( z + 3) = (m - 1) ìï( x + 3)2 + ( y + 2)2 + (z + 1)2 = 16 d) í 2 2 2 2 ïî( x - 1) + ( y - 2) + ( z - 3) = (m + 3) Trang 34 Traàn Só Tuøng 1. PP Toaï ñoä trong khoâng gian VAÁN ÑEÀ 5: Taäp hôïp ñieåm laø maët caàu – Taäp hôïp taâm maët caàu Taäp hôïp ñieåm laø maët caàu Giaû söû tìm taäp hôïp ñieåm M thoaû tính chaát (P) naøo ñoù. – Tìm heä thöùc giöõa caùc toaï ñoä x, y, z cuûa ñieåm M. Chaúng haïn coù daïng: ( x - a )2 + ( y - b )2 + ( z - c )2 = R 2 2. hoaëc: x 2 + y 2 + z 2 + 2ax + 2by + 2cz + d = 0 – Tìm giôùi haïn quó tích (neáu coù). Tìm taäp hôïp taâm maët caàu ì x = f (t ) ï – Tìm toaï ñoä cuûa taâm I, chaúng haïn: í y = g(t ) (*) ïîz = h(t ) – Khöû t trong (*) ta coù phöông trình taäp hôïp ñieåm. – Tìm giôùi haïn quó tích (neáu coù). Baøi 1. Cho hai ñieåm A(1; 2; 1), B(3; 1; –2). Tìm taäp hôïp caùc ñieåm M(x; y; z) sao cho: MA a) MA 2 + MB 2 = 30 b) =2 c) MA 2 + MB 2 = k 2 (k > 0) MB Baøi 2. Cho hai ñieåm A(2; –3; –1), B(–4; 5; –3). Tìm taäp hôïp caùc ñieåm M(x; y; z) sao cho: MA 3 = MB 2 c) · AMB = 900 a) MA 2 + MB 2 = 124 b) d) MA = MB e) MA 2 + MB 2 = 2(k 2 + 1) (k > 0) Baøi 3. Tìm taäp hôïp caùc taâm I cuûa maët caàu sau khi m thay ñoåi: a) x 2 + y 2 + z2 - 4 x - 6 y + 2(m - 3)z + 19 - 2m = 0 b) x 2 + y 2 + z 2 + 2(m - 2) x + 4 y - 2 z + 2m + 4 = 0 c) x 2 + y 2 + z2 + 2 x - 4 y + 2(m + 1)z + 2m 2 + 6 = 0 d) x 2 + y 2 + z2 - 4(2 + cos m) x - 2(5 + 2 sin m )y - 6 z + cos 2m + 1 = 0 e) x 2 + y 2 + z2 + 2(3 - 4 cos m) x - 2(4 sin m + 1)y - 4 z - 5 - 2 sin 2 m = 0 Trang 35 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng III. PHÖÔNG TRÌNH MAËT PHAÚNG 1. Vectô phaùp tuyeán – Caëp vectô chæ phöông cuûa maët phaúng r r r · Vectô n ¹ 0 laø VTPT cuûa (a) neáu giaù cuûa n vuoâng goùc vôùi (a). r r · Hai vectô a , b khoâng cuøng phöông laø caëp VTCP cuûa (a) neáu caùc giaù cuûa chuùng song song hoaëc naèm treân (a). r r Chuù yù: · Neáu n laø moät VTPT cuûa (a) thì kn (k ≠ 0) cuõng laø VTPT cuûa (a). r r r r r · Neáu a , b laø moät caëp VTCP cuûa (a) thì n = [ a , b ] laø moät VTPT cuûa (a). 2. Phöông trình toång quaùt cuûa maët phaúng Ax + By + Cz + D = 0 vôùi A2 + B 2 + C 2 > 0 r · Neáu (a) coù phöông trình Ax + By + Cz + D = 0 thì n = ( A; B; C ) laø moät VTPT cuûa (a). r · Phöông trình maët phaúng ñi qua M0 ( x0 ; y0 ; z0 ) vaø coù moät VTPT n = ( A; B; C ) laø: A( x - x0 ) + B( y - y0 ) + C ( z - z0 ) = 0 3. Caùc tröôøng hôïp rieâng Caùc heä soá D=0 A=0 B=0 C=0 A=B=0 A=C=0 B=C=0 Chuù yù: Phöông trình maët phaúng (a) Ax + By + Cz = 0 By + Cz + D = 0 Ax + Cz + D = 0 Ax + By + D = 0 Cz + D = 0 By + D = 0 Ax + D = 0 Tính chaát maët phaúng (a) (a) ñi qua goác toaï ñoä O (a) // Ox hoaëc (a) É Ox (a) // Oy hoaëc (a) É Oy (a) // Oz hoaëc (a) É Oz (a) // (Oxy) hoaëc (a) º (Oxy) (a) // (Oxz) hoaëc (a) º (Oxz) (a) // (Oyz) hoaëc (a) º (Oyz) · Neáu trong phöông trình cuûa (a) khoâng chöùa aån naøo thì (a) song song hoaëc chöùa truïc töông öùng. x y z · Phöông trình maët phaúng theo ñoaïn chaén: + + =1 a b c (a) caét caùc truïc toaï ñoä taïi caùc ñieåm (a; 0; 0), (0; b; 0), (0; 0; c) 4. Vò trí töông ñoái cuûa hai maët phaúng Cho hai maët phaúng (a), (b) coù phöông trình: (a): A1 x + B1y + C1z + D1 = 0 (b): A2 x + B2 y + C2 z + D2 = 0 · (a), (b) caét nhau Û A1 : B1 : C1 ¹ A2 : B2 : C2 · (a) // (b) Û A1 B1 C1 D1 = = ¹ A2 B2 C2 D2 · (a) º (b) Û A1 B1 C1 D1 = = = A2 B2 C2 D2 · (a) ^ (b) Û A1 A2 + B1B2 + C1C2 = 0 5. Khoaûng caùch töø ñieåm M0(x0; y0; z0) ñeán maët phaúng (a): Ax + By + Cz + D = 0 Ax0 + By0 + Cz0 + D d ( M0 ,(a ) ) = A2 + B 2 + C 2 Trang 36 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian VAÁN ÑEÀ 1: Vieát phöông trình maët phaúng Ñeå laäp phöông trình maët phaúng (a) ta caàn xaùc ñònh moät ñieåm thuoäc (a) vaø moät VTPT cuûa noù. r Daïng 1: (a) ñi qua ñieåm M ( x0 ; y0 ; z0 ) coù VTPT n = ( A; B;C ) : (a): A ( x - x0 ) + B ( y - y0 ) + C ( z - z0 ) = 0 r r Daïng 2: (a) ñi qua ñieåm M ( x0 ; y0 ; z0 ) coù caëp VTCP a , b : r r r Khi ñoù moät VTPT cuûa (a) laø n = [ a , b ] . Daïng 3: (a) ñi qua ñieåm M ( x0 ; y0 ; z0 ) vaø song song vôùi maët phaúng (b): Ax + By + Cz + D = 0: (a): A ( x - x0 ) + B ( y - y0 ) + C ( z - z0 ) = 0 Daïng 4: (a) ñi qua 3 ñieåm khoâng thaúng haøng A, B, C: r uuur uuur Khi ñoù ta coù theå xaùc ñònh moät VTPT cuûa (a) laø: n = éë AB, AC ùû Daïng 5: (a) ñi qua moät ñieåm M vaø moät ñöôøng thaúng (d) khoâng chöùa M: r – Treân (d) laáy ñieåm A vaø VTCP u . uuur r r – Moät VTPT cuûa (a) laø: n = éë AM , u ùû Daïng 6: (a) ñi qua moät ñieåm M vaø vuoâng goùc vôùi moät ñöôøng thaúng (d): r VTCP u cuûa ñöôøng thaúng (d) laø moät VTPT cuûa (a). Daïng 7: (a) ñi qua 2 ñöôøng thaúng caét nhau d1, d2: r r – Xaùc ñònh caùc VTCP a , b cuûa caùc ñöôøng thaúng d1, d2. r r r – Moät VTPT cuûa (a) laø: n = [ a , b ] . – Laáy moät ñieåm M thuoäc d1 hoaëc d2 Þ M Î (a). Daïng 8: (a) chöùa ñöôøng thaúng d1 vaø song song vôùi ñöôøng thaúng d2 (d1, d2 cheùo nhau): r r – Xaùc ñònh caùc VTCP a , b cuûa caùc ñöôøng thaúng d1, d2. r r r – Moät VTPT cuûa (a) laø: n = [ a , b ] . – Laáy moät ñieåm M thuoäc d1 Þ M Î (a). Daïng 9: (a) ñi qua ñieåm M vaø song song vôùi hai ñöôøng thaúng cheùo nhau d1, d2: r r – Xaùc ñònh caùc VTCP a , b cuûa caùc ñöôøng thaúng d1, d2. r r r – Moät VTPT cuûa (a) laø: n = [ a , b ] . Daïng 10: (a) ñi qua moät ñöôøng thaúng (d) vaø vuoâng goùc vôùi moät maët phaúng (b): r r – Xaùc ñònh VTCP u cuûa (d) vaø VTPT nb cuûa (b). r r r – Moät VTPT cuûa (a) laø: n = éë u , nb ùû . – Laáy moät ñieåm M thuoäc d Þ M Î (a). Daïng 11: (a) ñi qua ñieåm M vaø vuoâng goùc vôùi hai maët phaúng caét nhau (b), (g): r r – Xaùc ñònh caùc VTPT nb , ng cuûa (b) vaø (g). r r r – Moät VTPT cuûa (a) laø: n = éëub , ng ùû . Daïng 12: (a) ñi qua ñöôøng thaúng (d) cho tröôùc vaø caùch ñieåm M cho tröôùc moät khoaûng k cho tröôùc: – Giaû söû (a) coù phöông trình: Ax + By + Cz+D = 0 ( A2 + B 2 + C 2 ¹ 0 ) . – Laáy 2 ñieåm A, B Î (d) Þ A, B Î (a) (ta ñöôïc hai phöông trình (1), (2)). – Töø ñieàu kieän khoaûng caùch d ( M ,(a )) = k , ta ñöôïc phöông trình (3). – Giaûi heä phöông trình (1), (2), (3) (baèng caùch cho giaù trò moät aån, tìm caùc aån coøn laïi). Daïng 13: (a) laø tieáp xuùc vôùi maët caàu (S) taïi ñieåm H: – Giaû söû maët caåu (S) coù taâm I vaø baùn kính R. Trang 37 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng uur r – Moät VTPT cuûa (a) laø: n = IH Chuù yù: Ñeå vieát phöông trình maët phaúng caàn naém vöõng caùc caùch xaùc ñònh maët phaúng ñaõ hoïc ôû lôùp 11. r Baøi 1. Vieát phöông trình maët phaúng (P) ñi qua ñieåm M vaø coù VTPT n cho tröôùc: r r r a) M ( 3;1;1) , n = ( -1;1;2 ) b) M ( -2;7; 0 ) , n = ( 3; 0;1) c) M ( 4; -1; -2 ) , n = ( 0;1;3 ) r r r d) M ( 2;1; -2 ) , n = (1; 0; 0 ) e) M ( 3;4;5 ) , n = (1; -3; -7 ) f) M (10;1;9 ) , n = ( -7;10;1) Baøi 2. Vieát phöông trình maët phaúng trung tröïc cuûa ñoaïn thaúng AB cho tröôùc, vôùi: b) A(1; -1; -4), B(2; 0; 5) c) A(2; 3; -4), B(4; -1; 0) a) A(2;1;1), B(2; -1; -1) 1 ö 1 ö æ1 ö æ æ 2 1ö æ d) A ç ; -1; 0 ÷ , B ç 1; - ;5 ÷ e) A ç 1; ; ÷ , B ç -3; ;1 ÷ f) A(2; -5; 6), B(-1; -3; 2) 2 ø 3 ø è2 ø è è 3 2ø è r r Baøi 3. Vieát phöông trình maët phaúng ñi qua ñieåm M vaø coù caëp VTCP a , b cho tröôùc, vôùi: r r r r a) M (1; 2; -3), a = (2;1; 2), b = (3; 2; -1) b) M (1; -2; 3), a = 3; -1; -2), b = (0; 3; 4) r r r r d) M (-4; 0; 5), a = (6; -1; 3); b = (3; 2;1) c) M (-1; 3; 4), a = (2; 7; 2), b = (3; 2; 4) Baøi 4. Vieát phöông trình maët phaúng (a) ñi qua ñieåm M vaø song song vôùi maët phaúng (b ) cho tröôùc, vôùi: a) M ( 2;1; 5 ) , ( b ) = (Oxy ) b) M (1; -2;1) , ( b ) : 2 x - y + 3 = 0 c) M ( -1;1; 0 ) , ( b ) : x - 2 y + z - 10 = 0 d) M ( 3; 6; -5) , ( b ) : - x + z - 1 = 0 e) M (2; -3; 5), ( b ) : x + 2 y - z + 5 = 0 f) M (1;1;1), ( b ) : 10 x - 10 y + 20z - 40 = 0 Baøi 5. Vieát phöông trình maët phaúng (a) ñi qua ñieåm M vaø laàn löôït song song vôùi caùc maët phaúng toaï ñoä, vôùi: a) M ( 2;1; 5 ) b) M (1; -2;1) c) M ( -1;1; 0 ) d) M ( 3; 6; -5 ) e) M(2; -3; 5) f) M(1;1;1) g) M(-1;1; 0) h) M(3; 6; -5) Baøi 6. Vieát phöông trình maët phaúng (a) ñi qua ba ñieåm A, B, C khoâng thaúng haøng cho tröôùc, vôùi: b) A(0; 0; 0), B(-2; -1; 3), C (4; -2;1) a) A(1; -2; 4), B(3; 2; -1), C (-2;1; -3) c) A(-1; 2; 3), B(2; -4; 3), C (4; 5; 6) d) A(3; -5; 2), B(1; -2; 0), C (0; -3; 7) e) A(2; -4; 0), B(5;1; 7), C (-1; -1; -1) f) A(3; 0; 0), B(0; -5; 0), C (0; 0; -7) Baøi 7. Vieát phöông trình maët phaúng (a) ñi qua ñieåm A vaø vuoâng goùc vôùi ñöôøng thaúng ñi qua hai ñieåm B, C cho tröôùc, vôùi: a) A(1; -2; 4), B(3; 2; -1), C (-2;1; -3) b) A(0; 0; 0), B(-2; -1; 3), C (4; -2;1) c) A(-1; 2; 3), B(2; -4; 3), C (4; 5; 6) d) A(3; -5; 2), B(1; -2; 0), C (0; -3; 7) e) A(2; -4; 0), B(5;1; 7), C (-1; -1; -1) f) A(3; 0; 0), B(0; -5; 0), C (0; 0; -7) Baøi 8. Vieát phöông trình maët phaúng (a) ñi qua hai ñieåm A, B vaø vuoâng goùc vôùi maët phaúng (b) cho tröôùc, vôùi: ì A(3;1; -1), B(2; -1; 4) ì A(-2; -1; 3), B(4; -2;1) ì A(2; -1; 3), B(-4; 7; -9) a) í b) í c) í î( b ) : 2 x - y + 3z - 1 = 0 î( b ) : 2 x + 3y - 2 z + 5 = 0 î( b ) : 3x + 4 y - 8z - 5 = 0 ì A(3; -1; -2), B(-3;1; 2) d) í î( b ) : 2 x - 2 y - 2 z + 5 = 0 Baøi 9. Vieát phöông trình maët phaúng (a) ñi qua ñieåm M vaø vuoâng goùc vôùi hai maët phaúng (b), (g) cho tröôùc, vôùi: a) M (-1; -2; 5), ( b ) : x + 2 y - 3z + 1 = 0, (g ) : 2 x - 3y + z + 1 = 0 Trang 38 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian b) M (1; 0; -2), ( b ) : 2 x + y - z - 2 = 0, ( g ) : x - y - z - 3 = 0 c) M (2; -4; 0), ( b ) : 2 x + 3y - 2z + 5 = 0, (g ) : 3 x + 4 y - 8z - 5 = 0 d) M (5;1; 7), ( b ) : 3x - 4 y + 3z + 6 = 0, (g ) : 3x - 2 y + 5z - 3 = 0 Baøi 10. Vieát phöông trình maët phaúng (a) ñi qua ñieåm M vaø giao tuyeán cuûa hai maët phaúng (P), (Q) cho tröôùc, vôùi: a) M (1; 2; -3) , ( P ) : 2 x - 3y + z - 5 = 0, ( Q ) : 3 x - 2 y + 5z - 1 = 0 b) M ( 2;1; -1) , ( P ) : x - y + z - 4 = 0, (Q ) : 3x - y + z - 1 = 0 c) M ( 3; 4;1) , ( P ) : 19 x - 6 y - 4z + 27 = 0, ( Q ) :42 x - 8y + 3z + 11 = 0 d) M ( 0; 0;1) , ( P ) : 5 x - 3y + 2 z - 5 = 0, (Q ) : 2 x - y - z - 1 = 0 Baøi 11. Vieát phöông trình maët phaúng (a) qua giao tuyeán cuûa hai maët phaúng (P), (Q), ñoàng thôøi song song vôùi maët phaúng (R) cho tröôùc, vôùi: a) ( P ) : y + 2z - 4 = 0, (Q ) : x + y - z - 3 = 0, ( R) : x + y + z - 2 = 0 b) ( P ) : x - 4 y + 2z - 5 = 0, (Q) : y + 4 z - 5 = 0, ( R) : 2 x - y + 19 = 0 c) ( P ) : 3x - y + z - 2 = 0, (Q ) : x + 4 y - 5 = 0, ( R) : 2 x - z + 7 = 0 Baøi 12. Vieát phöông trình maët phaúng (a) qua giao tuyeán cuûa hai maët phaúng (P), (Q), ñoàng thôøi vuoâng goùc vôùi maët phaúng (R) cho tröôùc, vôùi: a) ( P ) : 2 x + 3y - 4 = 0, (Q ) : 2 y - 3z - 5 = 0, ( R) : 2 x + y - 3z - 2 = 0 b) ( P ) : y + 2z - 4 = 0, (Q ) : x + y - z + 3 = 0, ( R) : x + y + z - 2 = 0 c) ( P ) : x + 2 y - z - 4 = 0, (Q ) : 2 x + y + z + 5 = 0, ( R) : x - 2 y - 3z + 6 = 0 d) ( P ) : 3x - y + z - 2 = 0, (Q ) : x + 4 y - 5 = 0, ( R) : 2 x - z + 7 = 0 Baøi 13. Vieát phöông trình maët phaúng (a) qua giao tuyeán cuûa hai maët phaúng (P), (Q), ñoàng thôøi caùch ñieåm M cho tröôùc moät khoaûng baèng k, vôùi: a) ( P ): x - y - 2 = 0, (Q ) : 5 x - 13y + 2 z = 0, M (1; 2; 3), k = 2 VAÁN ÑEÀ 2: Vò trí töông ñoái cuûa hai maët phaúng Baøi 1. Xeùt vò trí töông ñoái cuûa caùc caëp maët phaúng sau: ì2 x + 3y - 2z + 5 = 0 ì3 x - 4 y + 3z + 6 = 0 b) í a) í î3 x + 4 y - 8z - 5 = 0 î3 x - 2 y + 5z - 3 = 0 ì2 x - 2 y - 4z + 5 = 0 ï e) í 25 ïî5 x - 5y - 10z + 2 = 0 Baøi 2. Xaùc ñònh m, n ñeå caùc caëp maët phaúng sau: · song song ì3 x + my - 2 z - 7 = 0 ì5 x - 2 y + mz - 11 = 0 a) í b) í î nx + 7 y - 6 z + 4 = 0 î 3x + ny + z - 5 = 0 ì3 x - y + mz - 9 = 0 ì 2 x + y + 3z - 5 = 0 d) í e) í î2 x + ny + 2 z - 3 = 0 îmx - 6 y - 6 z - 2 = 0 ì 6 x - 4 y - 6z + 5 = 0 d) í î12 x - 8y - 12z - 5 = 0 ì5 x + 5 y - 5z - 1 = 0 c) í î3 x + 3y - 3z + 7 = 0 ì3 x - 2 y - 6 z - 23 = 0 f) í î3 x - 2 y - 6 z + 33 = 0 · caét nhau · truøng nhau ì2 x + my + 3z - 5 = 0 c) í înx - 6 y - 6 z + 2 = 0 ì3 x - 5y + mz - 3 = 0 f) í î 2 x + y - 3z + 1 = 0 ì x + my - z + 2 = 0 ì2 x - ny + 2z - 1 = 0 ì3 x - (m - 3) y + 2z - 5 = 0 g) í h) í i) í î2 x + y + 4nz - 3 = 0 î3 x - y + mz - 2 = 0 î(m + 2) x - 2 y + mz - 10 = 0 Baøi 3. Xaùc ñònh m ñeå caùc caëp maët phaúng sau vuoâng goùc vôùi nhau ì2 x - 7 y + mz + 2 = 0 ì(2m - 1) x - 3my + 2 z + 3 = 0 a) í b) í î 3x + y - 2 z + 15 = 0 î mx + (m - 1)y + 4 z - 5 = 0 Trang 39 PP Toaï ñoä trong khoâng gian ìmx + 2 y + mz - 12 = 0 c) í x + my + z + 7 = 0 î ì 4 x - 3y - 3z = 0 e) í mx + 2 y - 7z - 1 = 0 î Traàn Só Tuøng ì3 x - (m - 3) y + 2z - 5 = 0 d) í î(m + 2) x - 2 y + mz - 10 = 0 ì3 x - 5y + mz - 3 = 0 f) í î x + 3y + 2 z + 5 = 0 VAÁN ÑEÀ 3: Khoaûng caùch töø moät ñieåm ñeán moät maët phaúng. Khoaûng caùch giöõa hai maët phaúng song song. Hình chieáu cuûa moät ñieåm treân maët phaúng . Ñieåm ñoái xöùng cuûa moät ñieåm qua maët phaúng. · Khoaûng caùch töø ñieåm M0(x0; y0; z0) ñeán maët phaúng (a): Ax + By + Cz + D = 0 Ax0 + By0 + Cz0 + D d ( M0 ,(a ) ) = A2 + B 2 + C 2 · Khoaûng caùch giöõa hai maët phaúng song song baèng khoaûng caùch töø moät ñieåm baát kì treân maët phaúng naøy ñeán maët phaúng kia. Chuù yù: Neáu hai maët phaúng khoâng song song thì khoaûng caùch giöõa chuùng baèng 0. uuuur ì MH , nr cuøng phöông · Ñieåm H laø hình chieáu cuûa ñieåm M treân (P) Û í H Î (P) uuuuurî uuuur · Ñieåm M¢ ñoái xöùng vôùi ñieåm M qua (P) Û MM ¢ = 2 MH Baøi 1. Cho maët phaúng (P) vaø ñieåm M. · Tính khoaûng caùch töø M ñeán (P). · Tìm toaï ñoä hình chieáu H cuûa M treân (P). · Tìm toaï ñoä ñieåm M¢ ñoái xöùng vôùi M qua (P). a) ( P ) : 2 x - y + 2z - 6 = 0, M (2; -3; 5) b) ( P ) : x + y + 5z - 14 = 0, M (1; -4; -2) c) ( P ) : 6 x - 2 y + 3z + 12 = 0, M (3;1; -2) d) ( P ) : 2 x - 4 y + 4z + 3 = 0, M (2; -3; 4) e) ( P ) : x - y + z - 4 = 0, M (2;1; -1) f) ( P ) : 3x - y + z - 2 = 0, M (1; 2; 4) Baøi 2. Tìm khoaûng caùch giöõa hai maët phaúng: ì x - 2 y + 3z + 1 = 0 ì6 x - 2 y + z + 1 = 0 ì 2 x - y + 4z + 5 = 0 a) í b) í c) í î2 x - y + 3z + 5 = 0 î6 x - 2 y + z - 3 = 0 î3 x + 5y - z - 1 = 0 ì4 x - y + 8z + 1 = 0 ì 2 x - y + 4z + 5 = 0 ì3 x + 6 y - 3z + 7 = 0 d) í e) í f) í 4 x y + 8 z + 5 = 0 3 x + 5 y z 1 = 0 î î î x + 2y - z + 1 = 0 Baøi 3. Tìm taäp hôïp caùc ñieåm caùch maët phaúng moät khoaûng baèng k cho tröôùc: b) 3 x - 2 y - 6z + 5 = 0, k = 4 a) 6 x - 3y + 2z - 7 = 0, k = 3 c) 6 x - 2 y + 3z + 12 = 0, k = 2 d) 2 x - 4 y + 4z - 14 = 0, k = 3 Baøi 4. Tìm taäp hôïp caùc ñieåm caùch ñeàu hai maët phaúng: ì x - 2 y + 3z + 1 = 0 ì6 x - 2 y + z + 1 = 0 a) í b) í î2 x - y + 3z + 5 = 0 î6 x - 2 y + z - 3 = 0 d) Baøi 5. a) Baøi 6. ì 2 x - y + 4z + 5 = 0 c) í î3 x + 5y - z - 1 = 0 ì4 x - y + 8z + 1 = 0 ì 2 x - y + 4z + 5 = 0 ì3 x + 6 y - 3z + 7 = 0 e) í f) í í4 x - y + 8z + 5 = 0 3 x + 5 y z 1 = 0 î î î x + 2y - z + 1 = 0 Tìm taäp hôïp caùc ñieåm coù tyû soá caùc khoaûng caùch ñeán hai maët phaúng baèng k cho tröôùc: ì x + 2 y - 2z - 10 = 0 ì6 x - 2 y + z + 1 = 0 ì6 x + 3 y - 2 z - 1 = 0 ïï2 x + 4 y - 4z + 3 = 0 ï b) ï6 x - 2 y + z - 3 = 0 c) ïï2 x + 2 y - z + 6 = 0 í í í ïk = 1 ïk = 2 ïk = 4 ïî ïî ïî 3 2 7 Tìm ñieåm M treân truïc Ox (Oy, Oz) caùch ñeàu ñieåm N vaø maët phaúng (P): Trang 40 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian a) ( P ) : 2 x + 2 y + z - 5 = 0, N (1; 2; -2) c) ( P ) : 6 x - 2 y + 3z + 12 = 0, N (3;1; -2) e) ( P ) : x - y + z - 4 = 0, N (2;1; -1) b) ( P ) : x + y + 5z - 14 = 0, N (1; -4; -2) d) ( P ) : 2 x - 4 y + 4 z + 3 = 0, N (2; -3; 4) f) ( P ) : 3 x - y + z - 2 = 0, N (1; 2; 4) Baøi 7. Tìm ñieåm M treân truïc Ox (Oy, Oz) caùch ñeàu hai maët phaúng: ìx + y - z +1 = 0 ì x + 2 y - 2z + 1 = 0 a) í b) í c) îx - y + z - 5 = 0 î2 x + 2 y + z - 5 = 0 ì4 x - y + 8z + 1 = 0 ì 2 x - y + 4z + 5 = 0 e) í f) d) í î4 x - y + 8z + 5 = 0 î3 x + 5y - z - 1 = 0 ì 2 x - y + 4z + 5 = 0 í4 x + 2 y - z - 1 = 0 î ì3 x + 6 y - 3z + 7 = 0 í x + 2y - z + 1 = 0 î Baøi 8. Tìm phöông trình toång quaùt cuûa maët phaúng (P) ñi qua ñieåm A vaø song song vôùi maët phaúng (Q) cho tröôùc. Tính khoaûng caùch giöõa (P) vaø (Q): a) A (1; 2; –3) , (Q) : 2 x - 4 y - z + 4 = 0 . b) A ( 3; 1; –2 ) , (Q ) : 6 x - 2 y + 3z + 12 = 0 . Baøi 9. Tìm phöông trình toång quaùt cuûa maët phaúng (P) song song vôùi maët phaúng (Q) vaø caùch ñieåm A moät khoaûng k cho tröôùc: b) (Q) : 2 x - 4 y + 4 z + 3 = 0, A(2; -3; 4), k = 3 a) (Q) : x + 2 y - 2 z + 5 = 0, A(2; -1; 4), k = 4 Baøi 10. Tìm phöông trình toång quaùt cuûa maët phaúng (P) caùch maët phaúng (Q) moät khoaûng k: a) (Q) : 3 x - y + 2 z - 3 = 0, k = 14 b) (Q) : 4 x + 3y - 2z + 5 = 0, k = 29 VAÁN ÑEÀ 4: Goùc giöõa hai maët phaúng Cho hai maët phaúng (a), (b) coù phöông trình: (a): A1x + B1y + C1z + D1 = 0 (b): A2 x + B2 y + C2 z + D2 = 0 r r Goùc giöõa (a), (b) baèng hoaëc buø vôùi goùc giöõa hai VTPT n1 , n2 . r r n1.n2 A1 A2 + B1B2 + C1C2 cos ( (a ),( b ) ) = r r = n1 . n2 A12 + B12 + C12 . A22 + B22 + C22 Chuù yù: ( ) · 00 £ · (a ),( b ) £ 900 . · (a ) ^ ( b ) Û A1 A2 + B1B2 + C1C2 = 0 Baøi 1. Tính goùc giöõa hai maët phaúng: ìx + y - z +1 = 0 ì x + 2 y - 2z + 1 = 0 ì 2 x - y + 4z + 5 = 0 a) í b) í c) í x y + z 5 = 0 2 x + 2 y + z 5 = 0 î î î4 x + 2 y - z - 1 = 0 ì2 x - y - 2 z + 3 = 0 ì ì4 x + 4 y - 2z + 7 = 0 e) í f) í 3 x - 3y + 3z + 2 = 0 d) í î2 x + 4 z - 5 = 0 î 2 y + 2z + 12 = 0 î4 x + 2 y + 4z - 9 = 0 Baøi 2. Tìm m ñeå goùc giöõa hai maët phaúng sau baèng a cho tröôùc: ì(2m - 1) x - 3my + 2 z + 3 = 0 ìmx + 2 y + mz - 12 = 0 ì(m + 2) x + 2my - mz + 5 = 0 ï ï ï a) ímx + (m - 1) y + 4z - 5 = 0 b) í x + my + z + 7 = 0 c) ímx + (m - 3) y + 2z - 3 = 0 ïîa = 900 ïîa = 450 ïîa = 900 ìmx - y + mz + 3 = 0 ï d) í(2m + 1) x + (m - 1) y + (m - 1)z - 6 = 0 ïîa = 300 Baøi 3. Cho töù dieän OABC coù caùc caïnh OA, OB, OC vuoâng goùc vôùi nhau töøng ñoâi moät. Goïi a , b , g laàn löôït laø caùc goùc hôïp bôûi caùc maët phaúng (OAB), (OBC), (OCA) vôùi maët phaúng (ABC). Baèng phöông phaùp toaï ñoä, chöùng minh raèng: a) Tam giaùc ABC coù ba goùc nhoïn b) cos 2 a + cos 2 b + cos 2 g = 1 Trang 41 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng VAÁN ÑEÀ 5: Vò trí töông ñoái giöõa maët phaúng vaø maët caàu. Phöông trình maët phaúng tieáp xuùc vôùi maët caàu Cho maët phaúng (a): Ax + By + Cz + D = 0 vaø maët caàu (S): ( x - a)2 + ( y - b)2 + ( z - c )2 = R 2 · (a) vaø (S) khoâng coù ñieåm chung Û d ( I ,(a )) > R · (a) tieáp xuùc vôùi (S) Û d ( I ,(a )) = R (a) laø tieáp dieän Ñeå tìm toaï ñoä tieáp ñieåm ta coù theå thöïc hieän nhö sau: – Vieát phöông trình ñöôøng thaúng d ñi qua taâm I cuûa (S) vaø vuoâng goùc vôùi (a). – Tìm toaï ñoä giao ñieåm H cuûa d vaø (a). H laø tieáp ñieåm cuûa (S) vôùi (a). · (a) caét (S) theo moät ñöôøng troøn Û d ( I ,(a )) < R Ñeå xaùc ñònh taâm H vaø baùn kính r cuûa ñöôøng troøn giao tuyeán ta coù theå thöïc hieän nhö sau: – Vieát phöông trình ñöôøng thaúng d ñi qua taâm I cuûa (S) vaø vuoâng goùc vôùi (a). – Tìm toaï ñoä giao ñieåm H cuûa d vaø (a). H laø taâm cuûa ñöôøng troøn giao tuyeán cuûa (S) vôùi (a). Baùn kính r cuûa ñöôøng troøn giao tuyeán: r = R 2 - IH 2 Baøi 1. Xeùt vò trí töông ñoái giöõa maët phaúng (P) vaø maët caàu (S): ì( P ) : 2 x + 2 y + z - 1 = 0 ì( P ) : 2 x - 3y + 6 z - 9 = 0 a) í b) í 2 2 2 2 2 2 î(S ) : x + y + z - 6 x - 2 y + 4z + 5 = 0 î(S ) : ( x - 1) + ( y - 3) + ( z + 2) = 16 ì( P ) : x + y - 2 z - 11 = 0 c) í 2 2 2 î(S ) : x + y + z + 2 x - 4 y - 2 z + 2 = 0 ì( P ) : x + 2 y + 2 z = 0 e) í 2 2 2 î(S ) : x + y + z - 6 x + 2 y - 2 z + 10 = 0 ì( P ) : x - 2 y + 2z + 5 = 0 d) í 2 2 2 î(S ) : x + y + z - 6 x - 4 y - 8z + 13 = 0 ì( P ) : z - 3 = 0 f) í 2 2 2 î(S ) : x + y + z - 6 x + 2 y - 16 z + 22 = 0 Baøi 2. Bieän luaän theo m, vò trí töông ñoái giöõa maët phaúng (P) vaø maët caàu (S): a) ( P ) : 2 x - 2 y - z - 4 = 0; (S ) : x 2 + y 2 + z2 - 2(m - 1) x + 4my + 4z + 8m = 0 b) ( P ) : 4 x - 2 y + 4 z - 5 = 0; (S ) : ( x - 1)2 + ( y + 2)2 + (z - 3)2 = (m - 1)2 c) ( P ) : 3x + 2 y - 6z + 7 = 0; (S ) : ( x - 2)2 + ( y - 1)2 + (z + 1)2 = (m + 2)2 d) ( P ) : 2 x - 3y + 6z - 10 = 0; (S ) : x 2 + y 2 + z2 + 4mx - 2(m + 1) y - 2z + +3m 2 + 5m - 4 = 0 Baøi 3. Vieát phöông trình maët caàu (S) coù taâm I vaø tieáp xuùc vôùi maët phaúng (P) cho tröôùc: a) I (3; -5; -2), (P ) : 2 x - y - 3z + 1 = 0 b) I (1; 4; 7), ( P ) : 6 x + 6 y - 7 z + 42 = 0 c) I (1;1; 2), ( P ) : x + 2 y + 2z + 3 = 0 d) I (-2;1;1), ( P ) : x + 2 y - 2 z + 5 = 0 Baøi 4. Vieát phöông trình maët phaúng (P) tieáp xuùc vôùi maët caàu (S) cho tröôùc: a) (S ) : ( x - 3)2 + ( y - 1)2 + ( z + 2)2 = 24 taïi M(-1; 3; 0) b) (S ) : x 2 + y 2 + z2 - 6 x - 2 y + 4 z + 5 = 0 taïi M(4; 3; 0) c) (S ) : ( x - 1)2 + ( y + 3)2 + (z - 2)2 = 49 taïi M(7; -1; 5) d) (S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 2z - 22 = 0 vaø song song vôùi maët phaúng 3 x - 2 y + 6z + 14 = 0 . e) (S ) : x 2 + y 2 + z 2 - 6 x + 4 y + 2z - 11 = 0 vaø song song vôùi maët phaúng 4 x + 3z - 17 = 0 . f) (S ) : x 2 + y 2 + z2 - 2 x - 4 y + 4 z = 0 vaø song song vôùi maët phaúng x + 2 y + 2z + 5 = 0 . g) (S ) : x 2 + y 2 + z 2 - 2 x + 6 y + 2 z + 8 = 0 vaø chöùa ñöôøng thaúng d : x = 4t + 4, y = 3t + 1, z = t + 1 Trang 42 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian h) Tieáp xuùc vôùi maët caàu ngoaïi tieáp töù dieän ABCD taïi A vôùi A(6; –2; 3), B(0; 1; 6), C(2; 0; – 1), D(4; 1; 0). i) Tieáp xuùc vôùi maët caàu: x 2 + y 2 + z 2 - 10 x + 2 y + 26 z - 113 = 0 vaø song song vôùi 2 ñöôøng thaúng: d1 : x + 5 y - 1 z + 13 x + 7 y +1 z - 8 = = , d1 : = = . -3 -2 2 2 3 0 Baøi taäp oân: Phöông trình maët phaúng Baøi 1. Cho töù dieän ABCD. · Vieát phöông trình caùc maët cuûa töù dieän. · Vieát phöông trình maët phaúng chöùa moät caïnh vaø song song vôùi caïnh ñoái dieän. · Vieát phöông trình maët phaúng ñi qua moät ñænh vaø song song vôùi maët ñoái dieän. · Vieát phöông trình maët phaúng ñi qua caïnh AB vaø vuoâng goùc vôùi (BCD). · Vieát phöông trình maët phaúng trung tröïc cuûa caùc caïnh töù dieän. · Tìm toaï ñoä caùc ñieåm A¢, B¢, C¢, D¢ laàn löôït laø caùc ñieåm ñoái xöùng vôùi caùc ñieåm A, B, C, D qua caùc maët ñoái dieän. · Tính khoaûng caùch töø moät ñænh cuûa töù dieän ñeán maët ñoái dieän. · Vieát phöông trình maët caàu (S) ngoaïi tieáp töù dieän ABCD. Xaùc ñònh taâm I vaø baùn kính R cuûa (S). · Vieát phöông trình caùc tieáp dieän cuûa (S) taïi caùc ñænh A, B, C, D cuûa töù dieän. · Vieát phöông trình caùc tieáp dieän cuûa (S) song song vôùi caùc maët cuûa töù dieän. a) A ( 5;1; 3) , B (1; 6; 2 ) , C ( 5; 0; 4 ) , D ( 4; 0; 6 ) b) A (1;1; 0 ) , B ( 0; 2;1) , C (1; 0; 2 ) , D (1;1;1) c) A ( 2; 0; 0 ) , B ( 0; 4; 0 ) , C ( 0; 0; 6 ) , D ( 2; 4; 6 ) d) A(2; 3;1), B(4;1; -2), C (6; 3; 7), D (-5; -4; 8) e) A(5; 7; -2), B(3;1; -1), C (9; 4; -4), D(1; 5; 0) f) A(0;1; 0), B(2; 3;1), C (-2; 2; 2), D(1; -1; 2) Baøi 2. Cho hai maët phaúng (P), (Q) laàn löôït caét ba truïc toaï ñoä taïi caùc ñieåm: A(1; 0; 0), B(0; 2; 0), C(0; 0; –3) vaø E(–2; 0; 0), F(0; 1; 0), G(0; 0; 1). a) Tìm phöông trình toång quaùt cuûa (P) vaø (Q). b) Tính ñoä daøi ñöôøng cao cuûa hình choùp O.ABC. c) Tính goùc giöõa hai maët phaúng (P), (Q). Baøi 3. Cho boán ñieåm: A(1; 1; 1), B(3; 3; 1), C(3; 1; 3) vaø D(1; 3; 3). a) Chöùng minh ABCD laø moät töù dieän ñeàu. b) Chöùng minh töù dieän ABCD coù caùc caëp caïnh ñoái ñoâi moät vuoâng goùc. c) Tìm phöông trình toång quaùt cuûa caùc maët phaúng (ABC), (ABD), (ACD), (BCD). d) Tính goùc giöõa caùc caëp maët phaúng: (ABC) vaø (ABD), (BCD) vaø (ACD). Trang 43 PP Toaï ñoä trong khoâng gian Traàn Só Tuøng IV. PHÖÔNG TRÌNH ÑÖÔØNG THAÚNG 1. Phöông trình tham soá cuûa ñöôøng thaúng · Phöông trình tham soá cuûa ñöôøng thaúng d ñi qua ñieåm M0 ( x0 ; y0 ; z0 ) vaø coù VTCP r a = (a1; a2 ; a3 ) : ì x = xo + a1t ï (d ) : í y = yo + a2 t ïz = z + a t 3 o î · Neáu a1a2 a3 ¹ 0 thì (d ) : ( t Î R) x - x0 y - y0 z - z0 = = ñgl phöông trình chính taéc cuûa d. a1 a2 a3 2. Vò trí töông ñoái giöõa hai ñöôøng thaúng Cho hai ñöôøng thaúng d, d¢ coù phöông trình tham soá laàn löôït laø: ì x = x0 + ta1 ì x = x0¢ + t ¢a1¢ ï ï vaø d : í y = y0 + ta2 d ¢ : í y = y0¢ + t ¢a2¢ ï z = z + ta ï z = z¢ + t ¢a¢ î 0 3 0 3 î r r ìa, a¢ cuøng phöông ï ï ì x + ta1 = x0¢ + t ¢a1¢ · d // d¢ Û í ï 0 heä y + ta2 = y0¢ + t ¢a2¢ (aån t , t ¢) voâ nghieäm ï í 0 ïî ïî z0 + ta3 = z0¢ + t ¢a3¢ r r r r r ìï[ ar , ar¢] = 0 ¢ cuøng phöông ìa, auuuuuur ìa, a¢ cuøng phöông r Û í Û ír Û í r uuuuuur é a, M M ¢ ù ¹ 0 ¢ a , M M khoâ n g cuø n g phöông î M0 ( x0 ; y0 ; z0 ) Ï d ¢ ï 0 0 î 0 0û îë ì x0 + ta1 = x0¢ + t ¢a1¢ ï · d º d¢ Û heä í y0 + ta2 = y0¢ + t ¢a¢2 (aån t, t ¢) coù voâ soá nghieäm ï z + ta = z¢ + t¢a¢ î 0 3 0 3 r r r r uuuuuur ìa, a¢ cuøng phöông Û í Û a, a¢, M0 M0¢ ñoâi moät cuøng phöông î M0 ( x0 ; y0 ; z0 ) Î d ¢ r r r r uuuuuur Û [ a , a¢] = ëé a , M0 M0¢ ûù = 0 ì x0 + ta1 = x0¢ + t ¢a1¢ ï · d, d¢ caét nhau Û heä í y0 + ta2 = y0¢ + t ¢a2¢ (aån t, t¢) coù ñuùng moät nghieäm ï îz0 + ta3 = z0¢ + t ¢a3¢ r r r r r ì ìa, a¢ khoâ [ ¢ ] n g cuø n g phöông a , a ¹ 0 ï Û í r r uuuuuur Û í r r uuuuuur ¢ ¢ a , a , M M ñoà n g phaú n g ïî[ a , a¢] .M0 M0¢ = 0 0 0 î r r ìa, a¢ khoâng cuøng phöông ïï ì x + ta1 = x0¢ + t ¢a1¢ · d, d¢ cheùo nhau Û í ï 0 heä y + ta2 = y0¢ + t ¢a2¢ (aån t , t ¢) voâ nghieäm ï í 0 ïî ïî z0 + ta3 = z0¢ + t ¢a3¢ r r uuuuuur r r uuuuuur Û a, a¢, M0 M0¢ khoâng ñoàng phaúng Û [ a , a¢] .M0 M0¢ ¹ 0 r r rr · d ^ d¢ Û a ^ a¢ Û a.a¢ = 0 Trang 44 Traàn Só Tuøng PP Toaï ñoä trong khoâng gian 3. Vò trí töông ñoái giöõa moät ñöôøng thaúng vaø moät maët phaúng ì x = x0 + ta1 ï Cho maët phaúng (a): Ax + By + Cz + D = 0 vaø ñöôøng thaúng d: í y = y0 + ta2 ïz = z + ta î 0 3 Xeùt phöông trình: A( x0 + ta1 ) + B( y0 + ta2 ) + C (z0 + ta3 ) + D = 0 (aån t) (*) · d // (a) Û (*) voâ nghieäm · d caét (a) Û (*) coù ñuùng moät nghieäm · d Ì (a) Û (*) coù voâ soá nghieäm 4. Vò trí töông ñoái giöõa moät ñöôøng thaúng vaø moät maët caàu ì x = x0 + ta1 ï Cho ñöôøng thaúng d: í y = y0 + ta2 (1) vaø maët caàu (S): ( x - a)2 + ( y - b)2 + ( z - c )2 = R 2 (2) ïz = z + ta î 0 3 5. 6. 7. 8. Ñeå xeùt VTTÑ cuûa d vaø (S) ta thay (1) vaøo (2), ñöôïc moät phöông trình (*). · d vaø (S) khoâng coù ñieåm chung Û (*) voâ nghieäm Û d(I, d) > R · d tieáp xuùc vôùi (S) Û (*) coù ñuùng moät nghieäm Û d(I, d) = R · d caét (S) taïi hai ñieåm phaân bieät Û (*) coù hai nghieäm phaân bieät Û d(I, d) < R Khoaûng caùch töø moät ñieåm ñeán moät ñöôøng thaúng (chöông trình naâng cao) r Cho ñöôøng thaúng d ñi qua M0 vaø coù VTCP a vaø ñieåm M. uuuuur é M M , ar ù ë 0 û d(M , d) = r a Khoaûng caùch giöõa hai ñöôøng thaúng cheùo nhau (chöông trình naâng cao) Cho hai ñöôøng thaúng cheùo nhau d1 vaø d2. r r d1 ñi qua ñieåm M1 vaø coù VTCP a1 , d2 ñi qua ñieåm M2 vaø coù VTCP a2 r r uuuuuur éë a1 , a2 ùû . M1M2 d (d1, d2 ) = r r éë a1, a2 ùû Chuù yù: Khoaûng caùch giöõa hai ñöôøng thaúng cheùo nhau d1, d2 baèng khoaûng caùch giöõa d1 vôùi maët phaúng (a) chöùa d2 vaø song song vôùi d1. Khoaûng caùch giöõa moät ñöôøng thaúng vaø moät maët phaúng song song Khoaûng caùch giöõa ñöôøng thaúng d vôùi maët phaúng (a) song song vôùi noù baèng khoaûng caùch töø moät ñieåm M baát kì treân d ñeán maët phaúng (a). Goùc giöõa hai ñöôøng thaúng r r Cho hai ñöôøng thaúng d1, d2 laàn löôït coù caùc VTCP a1 , a2 . r r Goùc giöõa d1, d2 baèng hoaëc buø vôùi goùc giöõa a1 , a2 . r r a1.a2 r r cos ( a1, a2 ) = r r a1 . a2 9. Goùc giöõa moät ñöôøng thaúng vaø moät maët phaúng r r Cho ñöôøng thaúng d coù VTCP a = (a1; a2 ; a3 ) vaø maët phaúng (a) coù VTPT n = ( A; B; C ) . Goùc giöõa ñöôøng thaúng d vaø maët phaúng (a) baèng goùc giöõa ñöôøng thaúng d vôùi hình chieáu d¢ cuûa noù treân (a). Aa1 + Ba2 + Ca3 sin · d ,(a ) = A2 + B 2 + C 2 . a12 + a22 + a32 ( ) Trang 45
- Xem thêm -

Tài liệu liên quan