Đăng ký Đăng nhập
Trang chủ Tổng hợp polymer...

Tài liệu Tổng hợp polymer

.DOCX
124
1
97

Mô tả:

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN KỸ THUẬT HÓA HỌC BỘ MÔN CÔNG NGHỆ HỮU CƠ – HÓA DAU ---------- TIỂU LUẬN MÔN HỌC Đề tài: Tổng hợp Polyme GVHD: PGS.TS. Nguyễn Hồng Liên 1 Mục lục LỜI NÓI ĐAU........................................................................................................................................... 7 Phần 1: Tổng quan về Polyme.................................................................................................................. 8 1. Lịch sử của Polyme............................................................................................................................... 8 2. Phân loại Polyme dựa trên lực phân tử............................................................................................... 8 3. Các loại Polyme thường gặp................................................................................................................ 9 3.1. Nhựa nhiệt dẻo................................................................................................................................ 9 3.1.1. Polyetylen.................................................................................................................................. 9 3.1.2. Polypropylen........................................................................................................................... 11 3.1.3. Polystyren............................................................................................................................... 11 3.1.4. Polyeste................................................................................................................................... 11 3.2. Nhựa nhiệt rắn.............................................................................................................................. 12 3.2.1. Nhựa ure................................................................................................................................. 12 3.2.2. Nhựa epoxy............................................................................................................................. 13 3.2.3. Polyeste không bão hòa.......................................................................................................... 13 3.2.4. Nhựa phenol -Formaldehyde................................................................................................. 13 3.2.5. Nhựa amin.............................................................................................................................. 13 3.3. Sợi tổng hợp.................................................................................................................................. 14 3.3.1. Sợi polyester............................................................................................................................ 14 3.3.2. Sợi polyamit............................................................................................................................ 14 3.3.3.Sợi acrylic................................................................................................................................ 16 3.3.4.Sợi graphit (sợi cacbon).......................................................................................................... 17 3.4. Cao su tổng hợp............................................................................................................................ 17 3.4.1.Cao su nitrile........................................................................................................................... 17 3.4.2.Polyisoprene............................................................................................................................. 18 3.4.3.Polychloroprene....................................................................................................................... 18 3.4.4.Cao su butyl............................................................................................................................. 19 3.4.5. Cao su etylen-propylen........................................................................................................... 19 Phần 2: Các phương pháp gia công Polyme.......................................................................................... 21 1. Phương pháp ép phun (ép đúc) nhựa................................................................................................. 21 2. Phương pháp ép đùn nhựa.................................................................................................................. 21 3. Phương pháp ép thổi nhựa.................................................................................................................. 21 4. Phương pháp ép nhựa định hình........................................................................................................ 21 5. So sánh các phương pháp.................................................................................................................... 22 Phần 3: Nhựa Polyvinylclorua (PVC).................................................................................................... 24 1. Tính chất, ứng dụng và các phương pháp sản xuất PVC................................................................. 24 1.1. Tính chất vật lý............................................................................................................................. 24 1.2. Tính chất hóa học......................................................................................................................... 24 1.3. Ứng dụng....................................................................................................................................... 24 1.4. Các phương pháp sản xuất.......................................................................................................... 25 2. Nguyên liệu sản xuất PVC................................................................................................................... 25 2.1 Etylen.............................................................................................................................................. 25 2.2. Chất khởi đầu (chất khơi mào).................................................................................................... 25 2.3. Nước mềm..................................................................................................................................... 26 2.4. Dung dịch đệm.............................................................................................................................. 26 2.5. Chất ổn định nhiệt........................................................................................................................ 27 2.6. Chất ổn định (đối với trùng hợp huyền phù).............................................................................. 27 2.7 . Chất dập tắt phản ứng............................................................................................................... 27 2.8. Chất chống đông (đối với trùng hợp huyền phù)....................................................................... 27 3. Hóa học và công nghệ tổng hợp PVC................................................................................................. 27 3.1 Cơ sở hóa học của quá trình sản xuất PVC................................................................................. 27 3.2 Quy trình công nghệ quá trình tổng hợp PVC............................................................................ 28 3.2.1. Dây chuyền sản suất EDC bằng phương pháp kết hợp oxi clo hóa và clo hóa....................28 3.2.2 Dây chuyền sản xuất VC theo phương pháp cracking EDC.................................................. 29 3.2.3. Dây chuyền sản xuất PVC theo phương pháp huyền phù..................................................... 31 3.2.4. Dây chuyền sản xuất PVC theo phương pháp trùng hợp nhũ tương.................................... 33 4. Tình hình thị trường của PVC trên thế giới và Việt Nam................................................................ 34 4.1. Trên thế giới.................................................................................................................................. 34 4.2. Tại Việt Nam................................................................................................................................. 36 Phần 4: Nhựa phenol-formaldehyde (PF).............................................................................................. 38 1. Tổng quan,phân loại và ứng dụng của nhựa PF................................................................................ 38 1.1. Tổng quan về nhựa PF................................................................................................................. 38 1.2. Phân loại nhựa PF........................................................................................................................ 38 1.3. Ứng dụng của nhựa PF................................................................................................................. 39 2. Nguyên liệu quá trình sản xuất........................................................................................................... 39 2.1. Formaldehyde............................................................................................................................... 39 2.1.1. Tính chất vật lý....................................................................................................................... 39 2.1.2. Tính chất hóa học:................................................................................................................. 40 2.1.3. Tổng hợp formaldehyde ( công nghệ BASF )........................................................................ 40 2.2. Phenol............................................................................................................................................ 42 2.2.1. Tính chất vật lý....................................................................................................................... 42 2.2.2. Tính chất hóa học................................................................................................................... 43 2.2.3. Tổng hợp phenol..................................................................................................................... 43 3 Dây chuyền sản xuất nhựa PF............................................................................................................. 46 Phần 5: Polypropylene (PP).................................................................................................................... 49 1. Tổng quan về nhựa polypropylene.................................................................................................... 49 1.1. Lịch sử ra đời và phát triển của nhựa polypropylene................................................................ 49 1.2. Các tính chất đặc trưng của polypropylene................................................................................ 49 1.3. Một số ứng dụng thực tế............................................................................................................... 50 2. Hóa học tổng hợp polypropylen......................................................................................................... 50 3. Nguyên liệu.......................................................................................................................................... 51 4. Quy trình công nghệ........................................................................................................................... 52 4.1. Công nghệ của Công ty MitsuiChemicals................................................................................... 52 4.2. Công nghệ Hypol-II của nhà cung cấp bản quyền Mitsui Chemical........................................ 54 4.3. Công nghệ Lummus Novolen....................................................................................................... 56 4.4. Công nghệ Spherizone của LyondellBasell................................................................................. 57 4.5. So sánh hai sơ đồ công nghệ........................................................................................................ 59 5. Nhu cầu sử dụng................................................................................................................................. 60 Phần 6: Cao su styren butadien (SBR)................................................................................................... 62 1. Tổng quan của cao su styren-butađien............................................................................................... 62 1.1. Lịch sử........................................................................................................................................... 62 1.2. Thành phần của SBR.................................................................................................................... 62 1.3. Ứng dụng....................................................................................................................................... 64 2. Nguyên liệu........................................................................................................................................... 65 2.1. Tính chất vật lý và hóa học của butadien.................................................................................... 65 2.1.1. Tính chất vật lý....................................................................................................................... 65 2.1.2. Tính chất hóa học................................................................................................................... 65 2.2. Tính chất vật lý và tính chất hóa học của Styren....................................................................... 66 2.2.1. Tính chất vật lý....................................................................................................................... 66 2.2.2. Tính chất hóa học................................................................................................................... 67 3. Phương pháp sản xuất........................................................................................................................ 68 3.1. Phản ứng........................................................................................................................................ 68 3.2. Trùng hợp bằng nhũ tương (E-SBR).......................................................................................... 69 4. Công nghệ sản xuất............................................................................................................................. 73 4.1. Nguyên liệu sản xuất.................................................................................................................... 73 4.2. Quy trình sản xuất butadiene...................................................................................................... 73 4.2.1. Các phương pháp tổng hợp butadiene:.................................................................................. 73 4.2.2 Tách butadien từ phân đoạn C4 của quá trình steam cracking............................................. 74 4.3. Quy trình sản xuất Styren........................................................................................................... 76 4.3.1. Nguyên liệu của quá trình sản xuất Styren........................................................................... 76 4.3.2. Dehydro hóa đoạn nhiệt etylbenzen....................................................................................... 77 4.4. Công nghệ của quá trình trùng hợp nhũ tương.......................................................................... 81 5. Nhu cầu sử dụng.............................................................................................................................. 83 Phần 7: Polyetylen (PE)........................................................................................................................... 85 1. Tính chất và ứng dụng của PE............................................................................................................ 85 1.1 Tính chất........................................................................................................................................ 85 1.2. Phân loại và ứng dụng.................................................................................................................. 85 2. Nguyên liệu chính của quá trình sản xuất PE: Etylen...................................................................... 86 2.1 Tính chất vật lý.............................................................................................................................. 86 2.2 Tính chất hóa học.......................................................................................................................... 87 3. Hóa học tổng hợp PE........................................................................................................................... 87 4.Quy trình công nghệ quá trình sản xuất PE....................................................................................... 88 4.1 Sản xuất PE ở áp suất cao............................................................................................................. 88 4.2. Sản xuất PE ở áp suất thấp.......................................................................................................... 92 5. Tình hình thị trường của PE trên thế giới và việt nam..................................................................... 95 5.1. Trên thế giới.................................................................................................................................. 95 5.2. Tại Việt Nam................................................................................................................................. 96 Phần 8: Polyethylene terephthalate PET............................................................................................... 98 1. Tính chất, ứng dụng và các phương pháp sản xuất PET.................................................................. 98 1.1. Tính chất vật lý............................................................................................................................. 98 1.2. Tính chất hóa học......................................................................................................................... 98 1.3. Độ nhớt đặc trưng......................................................................................................................... 99 1.3.1. Định nghĩa độ nhớt đặc trưng................................................................................................ 99 1.3.2. Ý nghĩa của độ nhớt đặc trưng............................................................................................... 99 1.3.3. Xác định độ nhớ đặc trưng theo ISO 1628/5......................................................................... 99 1.4. Ứng dụng..................................................................................................................................... 100 1.5. Các phương pháp sản xuất PET................................................................................................ 101 1.5.1. Phản ứng giữa axit Terephtalic với Etylen glycol............................................................... 101 1.5.2. Phản ứng trao đổi este giữa Dimetyl Terephtalat (DMT) và EG........................................ 102 1.5.3. Phản ứng giữa Terephtaloyl diclorid và Etylen glycol........................................................ 102 2. Nguyên liệu quá trình tổng hợp PET............................................................................................... 102 2.1. Nguyên liệu p-xylen.................................................................................................................... 103 2.1.1. Tính chất hóa lý:................................................................................................................... 103 2.1.2. Sản xuất p-xylen................................................................................................................... 103 2.2. Nguyên liệu MEG....................................................................................................................... 104 2.2.1. Tính chất hóa lý:................................................................................................................... 104 2.2.2. Sản xuất MEG...................................................................................................................... 104 3. Quy trình công nghệ quá trình sản xuất PET.................................................................................. 105 3.1. Dây chuyền sản xuất PTA (Purified terephthalic acid)........................................................... 105 3.2. Dây chuyền sản xuất PET từ TPA............................................................................................. 106 3.2.1. Công nghệ NG3TM của Invista........................................................................................... 106 3.2.2. Công nghệ Lurgi Zimmer DHI............................................................................................ 107 4. Tình hình thị trường của PET trên thế giới và việt nam................................................................ 109 4.1. Trên thế giới................................................................................................................................ 109 4.2. Tại Việt Nam............................................................................................................................... 110 Kết luận.................................................................................................................................................. 111 Tài liệu tham khảo................................................................................................................................. 112 LỜI NÓI ĐAU Công nghiệp chất dẻo là một trong những ngành công nghiệp còn rất trẻ. Đặc biệt trong những năm gần đây, khi các nguồn nguyên liệu truyền thống như: sắt, thép, gỗ bắt đầu sắp cạn kiệt, thì các ngành công nghiệp chất dẻo trên thế giới phát triển mạnh mẽ. Sản phẩm của ngành công nghiệp chất dẻo dần dần thay thế các sản sản phẩm truyền thống. Ở các nước phát triển, ngành công nghiệp chất dẻo phát triển rất mạnh, sản phẩm đa dạng. So với các vật liệu khác như gỗ, sắt, …thì vật liệu nhựa có nhiều ưu điểm như nhẹ hơn nhưng có độ bền cơ học tốt, sản phẩm đa dạng, màu sắc đẹp, giá cả phù hợp…Do vậy, vật liệu nhựa đã được sử dụng rất nhiều trong các lĩnh vực khác nhau của đời sống xã hội như sản xuất hàng gia dụng (bàn, ghế, vỏ chai, ống nước…), sản xuất vỏ bọc dây điện, keo dán, sơn, dùng làm vật liệu composite, kể cả trong lĩnh vực nghiên cứu vũ trụ, hàng không và đại dương. Do vậy nhóm chúng em quyết định chọn đề tài “Tổng hợp Polymer” để giúp mọi người hiểu rõ hơn phần nào về Polymer. Do kiến thức hạn chế nên chúng em không tránh khỏi sai sót trong quá trình làm bài. Mong Cô và các bạn thông cảm cũng như góp ý để bài tiểu luận được hoàn chỉnh hơn. Phần 1: Tổng quan về Polyme Polyme là khái niệm được dùng cho các hợp chất cao phân tử (hợp chất có khối lượng phân tử lớn và trong cấu trúc của chúng có sự lặp đi lặp lại nhiều lần những mắt xích cơ bản) 2. 1. Lịch sử của Polyme Những năm 1870 – 1900, trong quá trình tìm kiếm nguyên liệu thay thế cho ngà voi, John Hyatt, một nhà hóa học người Mỹ, đã phát triển Parkesin – hợp chất nhựa đầu tiên thành một hợp chất ổn định và mang tính ứng dụng cao hơn với tên gọi là “celluloid”. Celluloid ngay sau đó đã trở thành vật liệu được ưa chuộng do giá thành rẻ và dễ gia công, ứng dụng rất rộng rãi trong các ngành công nghiệp sản xuất đồ chơi và đồ dùng cá nhân. Những năm 1900 – 1930, trong giai đoạn từ 1920 – 1930, một loại nguyên liệu nhựa quan trọng được đưa vào sản xuất công nghiệp, đó chính là PolyVinyl Clorua (PVC). Lịch sử của PVC bắt đầu từ rất sớm khi ngay từ năm 1872, người ta đã tìm ra cách tổng hợp PVC từ nguyên liệu chính là Vinyl Clorua. Tuy nhiên tính ứng dụng của PVC tại thời điểm đó còn rất hạn chế do tính kém ổn định, độ cứng cao và khó gia công. Mãi đến năm 1926, sau khi tiến sĩ Waldo Semon phát minh ra phương pháp dẻo hóa, PVC mới bắt đầu được đưa vào sản xuất công nghiệp. Những năm 1930 – 1990, giai đoạn đầu những năm 1930 là giai đoạn bản lề cho sự phát triển của ngành công nghiệp nhựa hiện đại khi các nhà sản xuất đã tìm ra phương pháp để sản xuất nguyên liệu nhựa từ dầu mỏ với quy mô công nghiệp. Giai đoạn 1950 – 1960, sau khi chiến tranh thế giới thứ 2 kết thúc, các nhà sản xuất nhựa bắt đầu tìm kiếm một thị trường mới để bán sản phẩm của mình khi nhu cầu từ chiến tranh không còn. Thị trường mới mà các nhà sản xuất hướng tới trong giai đoạn này là thị trường tiêu dùng. Các nguyên liệu nhựa trước kia dùng phục vụ chủ yếu cho chiến tranh dần biến thành những sản phẩm tiêu dùng hàng ngày. Trong những năm 1970 - 1990, vật liệu nhựa ngày càng trở nên phổ biến hơn trong các ngành sản xuất ô tô, các thiết bị điện tử viễn thông nhờ đặc tính bền, nhẹ, chịu lực tốt và cách điện tốt. Trong những năm 1990 – nay, ngành công nghiệp nhựa hiện nay tuy đang tăng trưởng chậm lại và có dấu hiệu bão hòa tuy nhiên các công nghệ mới vẫn không ngừng được phát minh giúp đưa vật liệu nhựa trở thành vật liệu của tương lai điển hình như công nghệ in 3D hay công nghệ Nano. Phân loại Polyme dựa trên lực phân tử Dựa trên lực phân tử, Polyme gồm 4 loại  Nhựa nhiệt dẻo(Thermoplastics): là loại nhựa gồm nhiều chuỗi phân tử liên kết với nhau bằng các liên kết Van der Waals yếu, liên kết hiđrô, hoặc thậm chí là xếp thành các vòng thơm …. Nhựa nhiêt dẻo sẽ chảy mềm thành chất lỏng dưới tác dụng của nhiệt độ cao và đóng rắn lại khi làm nguội  Nhựa nhiệt rắn (Thermosetting Plastics): là hợp chất cao phân tử có khả năng chuyển sang trạng thái không gian ba chiều dưới tác dụng của nhiệt độ hoặc phản ứng hóa học do trong quá trình đúc thì loại nhựa này có được cấu trúc liên kết chéo 3 chiều với phần lớn là các liên kết cộng hóa trị mà các liên kết này thì sẽ vẫn giữ được độ bền và cấu trúc của chúng ngay cả khi đun nóng  Sợi tổng hợp (Synthetic Fibers) là loại nhựa có lực tương tác mạnh, dai, có độ bền kéo cao. sợi do con người tạo ra thông qua các quá trình tổng hợp hóa học từ quá trình trùng hợp các monomer để tạo thành polymer có khối lượng phân tử lớn.  Cao su tổng hợp (Synthetic rubber) là chất rắn giống như cao su, có lực tương tác yếu được con người chế tạo với chức năng chính là chất co giãn 3. Các loại Polyme thường gặp 3.1. Nhựa nhiệt dẻo 3.1.1. Polyetylen Polyetylen là một loại polyme bao gồm các đơn vị etylen lặp lại: - (CH2CH2) ntính chất thay đổi tùy thuộc vào số lượng đơn vị etylen tạo nên polyme. Đơn phân, etylen (CH2 = CH2), là một vật liệu khởi đầu có sẵn thông qua quá trình Cracking từ nhà máy lọc dầu. Các tính chất của polyetylen phụ thuộc vào cách thức polyme hóa etylen. 3.1.1.1. Polyetylen mật độ thấp (LDPE) Polyethylene mật độ thấp (LDPE) là một loại nhựa nhiệt dẻo bán cứng và mờ được làm từ monome ethylene. Đây là loại polyetylen đầu tiên, được sản xuất vào năm 1933 bởi Imperial Chemical Industries (ICI). Polyetylen mật độ thấp được sản xuất dưới áp suất cao với sự có mặt của chất khơi mào gốc tự do. Như với nhiều quá trình cộng chuỗi gốc tự do, LDPE có tính phân nhánh cao. Nó có độ kết tinh thấp hơn so với polyethylene mật độ cao. Qúa trình polyme hóa có thể xảy ra trong Tubular hoặc trong một thiết bị phản ứng có khuấy dạng Autoclave Trong Autoclave, nhiệt của phản ứng được hấp thụ bởi nguồn cấp etylen lạnh. Qúa trình khuấy giúp nhiệt độ đồng đều trong toàn bộ thiết bị phản ứng và ngăn chặn sự kết tụ của polyme. Trong Tubular, một lượng lớn nhiệt phản ứng bị thất thoát qua vỏ ống. Điều kiện phản ứng đối với phản ứng trùng hợp gốc tự do của etylen là 100 °C – 200°C (212°F – 39°F) và 1.500–2.000 psi. Hiệu suất chuyển hóa etylen ở mức thấp (10% –25%) để kiểm soát nhiệt và độ nhớt nhưng tổng hiệu suất sau khi hồi lưu lên tới 95%. Tốc độ trùng hợp có thể tăng bằng cách tăng nhiệt độ, nồng độ chất khơi mào và áp suất. Mức độ phân nhánh và phân phối trọng lượng phân tử phụ thuộc vào nhiệt độ và áp suất. Có thể thu được polyme mật độ cao hơn với sự phân phối trọng lượng phân tử hẹp hơn bằng cách tăng áp suất và giảm nhiệt độ. Độ kết tinh của polyme có thể thay đổi ở một mức độ nào đó bằng cách thay đổi các điều kiện phản ứng và bằng cách thêm các chất đồng phân tử như vinyl axetat hoặc etyl acrylat. Các chất đồng trùng hợp có độ kết tinh thấp hơn nhưng độ mềm dẻo tốt hơn, và polymer tạo thành có độ bền va đập cao hơn. 3.1.1.2. Polyetylen mật độ cao (HDPE) Polyetylen mật độ cao được sản xuất bằng quy trình áp suất thấp trong thiết bị phản ứng tầng sôi. Chất xúc tác được sử dụng để sản xuất polyetylen mật độ cao là Ziegler (phức chất của triethylen nhôm [Al (C 2H5)3] và α-titan triclorua (α-TiCl3) hoặc silica-alumina (SiO2-Al2O3) được ngâm tẩm với một oxit kim loại như oxit crom (Cr2O3) hoặc oxit molypden (Mo2O3) Các điều kiện phản ứng nhìn chung là nhẹ, nhưng chúng khác nhau giữa các quá trình. Ví dụ, trong quá trình Unipol, được sử dụng để sản xuất cả polyethylene mật độ cao và polyethylene mật độ thấp tuyến tính (LLDPE), phản ứng xảy ra trong pha khí. Ethylene và các comonome (propene, 1-butene, v.v.) được đưa vào lò phản ứng tầng sôi có các hạt ymer đang phát triển. Nhiệt độ và áp suất hoạt động xấp xỉ 100 °C (212°F) và 300 psi. Máy nén ly tâm một cấp sẽ tuần hoàn etylen chưa phản ứng. Sản phẩm từ lò phản ứng được trộn với các chất phụ gia và sau đó được tạo viên. Quá trình trùng hợp ethylene cũng có thể xảy ra trong hệ thống pha lỏng, nơi chất pha loãng hydrocacbon được thêm vào. Điều này yêu cầu một hệ thống thiết bị tái sinh hydrocacbon Polyetylen mật độ cao được đặc trưng bởi độ kết tinh cao hơn và nhiệt độ nóng chảy cao hơn polyetylen mật độ thấp do không phân nhánh. 3.1.1.3. Polyetylen mật độ tuyến tính thấp (LLDPE) Polyetylen mật độ tuyến tính thấp được sản xuất trong pha khí dưới áp suất thấp. Chất xúc tác được sử dụng là loại Ziegler hoặc các dẫn xuất metallocene thế hệ mới. LLDPE có câu trúc gốc tuyến tính với các nhánh ngắn, đồng nhất. Các nhánh ngắn này có thể trượt với nhau khi kéo dài mà không bị vướng víu như LDPE. LLDPE cực kỳ linh hoạt với cường độ tác động cao, cực kỳ tốt cho bộ đệm nhẹ và mạnh. Ngoài ra còn kháng hóa chất tốt, kháng hơi nước. Do đó LLDPE được dùng chủ yếu trong sản xuất màng đa năng, màng căng. Bao bì may mặc và màng công nghiệp 3.1.2. Polypropylen Polypropylen được sản xuất bằng phản ứng trùng hợp propylen (CH3CH = CH2). Cấu trúc phân tử tương tự như polyetylen, nhưng có nhóm metyl (–CH3). Trọng lượng phân tử rơi vào khoảng 501000–200000. Tính bền cơ học cao (bền xé và bền kéo đứt), khá cứng vững, không mềm dẻo như PE, không bị kéo giãn dài. Đặc biệt khả năng bị xé rách dễ dàng khi có một vết cắt hoặc một vết thủng nhỏ. PP không màu không mùi, không vị, không độc. PP cháy sáng với ngọn lửa màu xanh nhạt, có dòng chảy dẻo, có mùi cháy gần giống mùi cao su. 3.1.3. Polystyren Polystyrene là loại nhựa nhiệt dẻo có khối lượng lớn thứ tư được tạo thành từ phản ứng trùng hợp stiren. Công thức cấu tạo của Polystiren là: (CH[C6H5]CH2)n Styren là một sản phẩm quan trọng của bộ phận hóa dầu của nhà máy lọc dầu, được sản xuất bằng cách khử hydro của etylbenzen PS là loại nhựa cứng trong suốt, không có mùi vị, khi cháy cho ngọn lửa không ổn định. PS không màu và dễ tạo màu, hình thức đẹp, dễ gia công bằng phương pháp ép và ép phun Tính chất cơ học của PS phụ thuộc vào mức độ trùng hợp. PS có trọng lượng phân tử thấp rất dòn và co độ bền kéo thấp. Trọng lượng phân tử tăng lên thì độ bền cơ và nhiệt tăng, độ dòn giảm đi. Nếu vượt quá mức độ trùng hợp nhất định thì tính chất cơ học lại giảm 3.1.4. Polyeste Polyesters là một trong những loại nhựa nhiệt dẻo kỹ thuật khối lượng lớn được sản xuất bằng cách trùng ngưng axit terephthalic (1,4-HO2CC6H4CHO2H) với ethylene glycol (CH2OHCH2OH) tạo Polyethylene terephthalate ( PET) hoặc 1,4butanediol (HOCH2CH2CH2CH2OH) tạo Polybutylen terephthalate (PBT). PBT có cấu trúc tương tự như polyethylene terephthalate (PET) chỉ khác biệt ở số lượng nhóm -(CH2)- có trong các đơn vị lặp lại của phân tử polyme. Tính chất cơ học của hai vật liệu cũng tương tự nhau. Tuy nhiên, PBT có điểm nóng chảy thấp hơn (223°C [433°F]) so với PET (255°C [491°F]), vì vậy nó có thể được xử lý ở nhiệt độ thấp hơn. Đặc tính này, kết hợp với độ chảy của nó khi nóng chảy và kết tinh nhanh chóng khi làm mát, làm cho PBT rất thích hợp để ép phun thành các bộ phận rắn. Nó được sử dụng trong nhiều ứng dụng, đặc biệt là các bộ phận điện, nhờ khả năng chịu điện tuyệt vời, bề mặt nhẵn và độ bền tuyệt vời. Ống được làm bằng PBT trước đây phổ biến cho hệ thống ống nước dân dụng như một chất thay thế đồng giá rẻ và dễ xử lý, nhưng nó đã bị phân hủy sau khi tiếp xúc lâu với các hóa chất oxy hóa như clo ở thành phố, nguồn cung cấp nước, vì vậy nó không còn được sử dụng. Đặc tính nổi bật sau: ổn định nhiệt tốt, chịu hóa chất và thời tiết tốt, giữ độ bền khi va đập cao, và đa dạng. Phạm vi độ cứng (mềm, bán mềm, cứng), trọng lượng riêng thấp, tính chất cách điện tuyệt vời, tùy biến màu sắc dễ dàng và có thể tái chế. Do đó, nó có thể được sử dụng rộng rãi trong ngành công nghiệp ô tô, công nghiệp điện và điện tử, các bộ phận công nghiệp và đồ thể thao, và là một sự thay thế lý tưởng cho cao su chịu nhiệt Sợi polyester bị giảm độ bền khi ở lâu dưới ánh sáng mặt trời và nhiệt độ cao. Ở nhiệt độ thường, sợi xơ tương đối bền. Nhưng khi ở dưới nhiều độ 235 độ C, cấu trúc các sợi xơ sẽ bị mất định hướng. Ở nhiệt độ 285 độ C, cấu trúc xơ sẽ bị phá hủy hoàn toàn. Sợi xơ polyester có thể chịu được acid ở nồng độ loãng và độ bền giảm khi tiếp xúc với acid nồng độ cao. Polyester kém bền trong môi trường bazơ. Vải polyester kỵ với nước. Sợi polyester không bị ảnh hưởng bởi các vi sinh vật như vi khuẩn, nấm mốc, … Vải tổng hợp polyester được sử dụng nhiều trong thời trang may mặc (quần áo, đồ nội y), đồ nội thất (chăn ga gối đệm, rèm, ghế sofa), lều trại, áo mưa,... Polyester được ứng dụng nhiều trong ngành công nghiệp để sản xuất các loại sản phẩm như quần áo, đồ nội thất gia dụng, vải công nghiệp, vật liệu cách điện, đệm … 3.2. Nhựa nhiệt rắn 3.2.1. Nhựa ure Nhựa ure được sản xuất bằng phản ứng ngưng tụ của polyol và diisocyanat. Không có sản phẩm phụ nào được hình thành từ phản ứng này. Toluene diisocyanate là một chất được sử dụng rộng rãi làm monome. Nhựa ure cứng hoặc dẻo, tùy thuộc vào loại polyol được sử dụng. Các tính chất vật lý của polyuretan thay đổi theo tỷ lệ của polyol với diisocyanat. Nhựa ure cải tiến có thể được sản xuất bằng cách đồng trùng hợp. Các copolyme khối của polyuretan được kết nối với các đoạn của các dẫn xuất isobutylene sẽ thể hiện các đặc tính ở nhiệt độ cao, tính ổn định thủy phân và các đặc tính của lớp chắn. Các phân đoạn cứng của polyurethane ngăn polime gồm RNHCOOH, trong đó R thường chứa một gốc thơm. Công dụng chính của polyurethanes là sản xuất foam. Mật độ cũng như độ bền cơ học của loại cứng và loại mềm rất khác nhau tùy theo loại polyol và điều kiện phản ứng. 3.2.2. Nhựa epoxy Nhựa epoxy được sản xuất bằng cách cho phản ứng giữa epichlorohydrin và một diphenol. Bisphenol A là diphenol thường được sử dụng. Nhựa epoxy có nhiều trọng lượng phân tử (khoảng l, 000–10,000). Các đặc tính quan trọng của nhựa epoxy bao gồm khả năng bám dính mạnh mẽ vào bề mặt kim loại, khả năng chống lại hóa chất và độ ổn định kích thước cao của chúng. Chúng cũng có thể chịu được nhiệt độ lên đến 500 ° C. 3.2.3. Polyeste không bão hòa Polyeste không bão hòa là một nhóm các polyme và nhựa được sử dụng trong lớp phủ hoặc để đúc bằng styren. Các polyme này thường có gốc anhydrit maleic hoặc axit béo không bão hòa để truyền độ không bão hòa cần thiết. Ví dụ điển hình là phản ứng giữa anhydrit maleic và etylen glycol. Ngoài ra, anhydrit phthalic, một polyol và một axit béo không bão hòa thường được đồng trùng hợp đến polyeste không bão hòa cho mục đích phủ. Có thể có nhiều kết hợp khác theo tỷ lệ thay đổi để điều chế các loại nhựa này. 3.2.4. Nhựa phenol -Formaldehyde Nhựa phenol-fomanđehit là những polyme nhiệt rắn lâu đời nhất. Chúng được tạo ra bởi phản ứng trùng ngưng giữa phenol và fomandehit. Các đặc tính quan trọng của nhựa phenolic là độ cứng, khả năng chống ăn mòn, độ cứng và khả năng chống thủy phân của nước. Chúng cũng rẻ hơn nhiều loại polyme khác. 3.2.5. Nhựa amin Nhựa amin (aminoplasts) là các polyme nhiệt rắn ngưng tụ của formaldehyde với urê hoặc melamine. Melamine là sản phẩm ngưng tụ của ba phân tử urê. Nó cũng được điều chế từ cyanimide ở áp suất cao và nhiệt độ cao. Nhựa amin có đặc điểm là trong và cứng hơn (độ bền kéo) so với các dẫn xuất phenol. Tuy nhiên, độ bền va đập (khả năng chống vỡ) và khả năng chịu nhiệt của chúng thấp hơn. Nhựa melamine có khả năng chịu nhiệt và độ ẩm tốt hơn và độ cứng tốt hơn so với các chất ure tương tự. Việc sử dụng quan trọng nhất của nhựa amin là sản xuất chất kết dính cho ván dăm và ván ép gỗ cứng. 3.3. Sợi tổng hợp 3.3.1. Sợi polyester Polyester là thuộc nhóm quan trọng nhất trong sợi tổng hợp. Polyester là một loại sợi tổng hợp có nguồn gốc từ than đá, không khí, nước và dầu mỏ. Sợi polyester được hình thành từ phản ứng hóa học giữa acid hai chức và rượu hai chức. Trong phản ứng này, hai hoặc nhiều phân tử kết hợp với nhau để tạo ra một phân tử lớn có cấu trúc lặp đi lặp lại trong suốt chiều dài của nó. Các đặc tính quan trọng của polyeste là nhiệt độ nóng chảy tương đối cao 265°C (510°F), khả năng chống chịu cao với điều kiện thời tiết và ánh sáng mặt trời, độ bền kéo vừa phải có độ bền cơ học cao, và tương đối bền với tác dụng của axit, hầu hết các axit vô cơ và hữu cơ ở nồng độ không cao lắm ở nhiệt độ thường đều không ảnh hưởng đến độ bền của sợi polieste. Ngày nay, có hai dạng chính của polyester là PET (polyethylene terephthalate) và PCDT (poly-1, 4-cyclohexylene-dimethylene terephthalate). PET là loại phổ biến hơn, hữu dụng, đa dạng trong các ứng dụng. Nó bền vững hơn PCDT, mặc dù PCDT dẻo hơn và đàn hồi hơn. PCDT phù hợp để làm rèm cửa và lớp bọc đồ nội thất, còn PET có thể được sử dụng độc lập hoặc phối trộn với các loại vải khác để làm cho quần áo khỏi nhăn chống bụi bẩn và không co dãn 3.3.2. Sợi polyamit Polyamit (sợi nylon) là nhóm sợi tổng hợp lớn thứ hai sau polyester. Tơ tổng hợp poliamit là mạch cacbon dị nguyên tố có nhóm chức –CO-NH- trong phân tử. Khối lượng phân tử của poliamit khoảng 8000-25000 dvC. Sợi poliamit có độ bền cơ học cao, đặc biệt độ bền với ma sát thì cao hơn hẳn các sợi hóa học khác do phân tử có liên kết bó chặt chẽ nên tác dụng lực tương hỗ giữa các phân tử tăng, dẫn đến độ bền cơ học cao. Tuy nhiên lại làm cho sợi khó nhuộm màu. Polyamit tương đối bền với kiềm nhưng kém bền với axit nhất là axit khoáng và ở nhiệt độ cao. • Nilon 6-6 Nylon 6-6 (polyhexamethyleneadipat) được tạo ra bởi phản ứng của hexametylenđiamin và axit adipic. Điều này tạo ra muối adipate hexamethylene diammonium. Sản phẩm là một dung dịch muối loãng có nồng độ khoảng 60% và axit axetic được nạp vào lò phản ứng, nơi nước liên tục được loại bỏ. Sự có mặt của một lượng nhỏ axit axetic hạn chế mức độ trùng hợp đến mức mong muốn. Sau đó, nhiệt độ được tăng lên 270 ° C-300 ° C và áp suất đến khoảng 16 atm, điều này tạo điều kiện thuận lợi cho sự hình thành của polyme. Áp suất cuối cùng được giảm xuống khí quyển để cho phép loại bỏ nước hơn nữa. Sau tổng cộng 3 giờ, nylon 66 được ép đùn dưới áp suất nitơ • Nilon 6 Nylon 6 (polycaproamide) được tạo ra bằng phản ứng trùng hợp caprolactam. Đầu tiên, monome được trộn với nước, mở vòng lactam và tạo ra w-amino axit Axit amin được tạo thành phản ứng với chính nó hoặc với caprolactam ở khoảng 250 ° C-280 ° C để tạo thành polyme. Kiểm soát nhiệt độ là quan trọng, đặc biệt là đối với quá trình khử phân tử, tỷ lệ thuận với nhiệt độ phản ứng và hàm lượng nước. • Nilon 12 Nylon 12 (polylaurylamide) được sản xuất theo cách tương tự như nylon 6 bằng phản ứng trùng hợp mở vòng của laurolactam. Polyme có khả năng chứa nước thấp hơn nylon 6 do tính chất kỵ nước cao hơn. Phản ứng trùng hợp xảy ra chậm hơn so với caprolactam. Nhiệt độ cao hơn được sử dụng để tăng tốc độ của phản ứng Đơn phân (laurolactam) có thể được sản xuất từ 1,5,9-cyclododecatriene, một bộ ba của butadien. Trimer được epoxy hóa bằng axit peracetic hoặc acetaldehyde
- Xem thêm -

Tài liệu liên quan