Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Khoa học xã hội Tổng họp và nghiên cứu tính chất quang của yật liệu a1203 cr3+ bằng phương pháp ...

Tài liệu Tổng họp và nghiên cứu tính chất quang của yật liệu a1203 cr3+ bằng phương pháp khuếch tán nhiệt

.DOCX
33
12
142

Mô tả:

TRƯỜNG ĐẠI HỌC sư PHẠM HÀ NỘI 2 KHOA HÓA HỌC LÊ THU THỦY TỔNG HỢP VÀ NGHIÊN cứu TÍNH CHẤT QUANG CỦA VẬT LIỆU AI2O3: Cr3+ BẰNG PHƯƠNG PHÁP KHUẾCH TÁN NHIỆT KHOÁ LUẬN TÓT NGHIỆP ĐẠI HỌC ••• Chuyên ngành: Hoá học phân tích • Người hướng dẫn khoa học ThS. NGUYỄN THỊ HẠNH Hà Nội - 2019 Em xin bày tỏ lòng kính trọng, lời cảm ơn sâu sắc tới cô ThS. Nguyễn Thị Hạnh - người đã tận tình hướng dẫn, chỉ bảo, giúp đỡ và tạo mọi điều kiện cho em trong suốt quá trình học tập, nghiên cứu và hoàn thành khỏa luận này. Em xin chân thành cảm ơn các thầy giáo, cô giáo trong khoa Hóa Học của trường đại học sư phạm Hà Nội 2 và toàn thể các thầy cô viện AISTĐại học Bách Khoa Hà Nội đã nhiệt tình giúp đỡ về mọi cơ sở vật chất và chỉ bảo em trong quá trình tiến hành thí nghiệm. Cuối cùng em xin chân thành cảm ơn sự trao đổi, đóng góp ý kiến thẳng thắn của các bạn sinh viên trong nhóm nghiên cứu khoa học khoa Hóa học trường Đại học sư phạm Hà Nội 2 đã giúp đỡ em rất nhiều trong quá trình hoàn thành khóa luận tốt nghiệp của mình và sự động viên, khích lệ của bạn bè, người thân đặc biệt là gia đình đã tạo niềm tin giúp em phấn đấu học tập và hoàn thành khóa luận này. Em xin chân thành cảm ơn! Hà Nội, ngày tháng 5 năm 2019 Sinh viên thực hiện Lê Thu Thủy LỜI CAM ĐOAN Em xin cam đoan bài khỏa luận tốt nghiệp này là công trình nghiên cứu của cá nhân em, được thực hiện trên cơ sở nghiên cứu lý thuyết, nghiên cứu khảo sát thực nghiệm dưới sự hướng dẫn khoa học của ThS. Nguyễn Thị Hạnh. Các số liệu và những kết quả đo được trong bài khóa luận là trung thực, do cá nhân em tiến hành thí nghiệm. Hà Nội, ngày tháng 5 năm 2019 Sinh viên thực hiện Lê Thu Thủy MỤC LỤC LỜI CAM ĐOAN DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT Tên tiêng Anh Tên tiêng Việt X Wavelength Bước sóng AE Transition energy Năng lượng chuyên tiêp T Duration luminescent Thời gian phát quang Field emission scanning electron microscopy Hiên vi điện tử quét phát xạ trường QE Quantum efficicency Hiệu suât lượng tử XRD X-ray Diffraction Nhiêu xạ tia X uv Ultraviolet Tử ngoại CRT Cathode ray tube Ông phóng tia catot LED Light emitting diode Điot phát quang SEM Scanning electron microscopy Hiên vi điện tử quét PL Photoluminescence spectrum Phô huỳnh quang Ký hiệu, chữ viết tắt FESEM PLE Photoluminescence excitation spectrum Phô kích thích huỳnh quang CRI Color rendering index Hệ sô trả màu LỜI CAM ĐOAN DANH MỤC CÁC HÌNH VẼ Hình 1.1. Sơ đồ quá trình huỳnh quang.......................................................... 8 Hình 1.2. Sự truyền năng lượng từ tâm s tới A.............................................9 Hình 1.3. Sự truyền năng lượng từ s tới A....................................................9 Hình 1.4. Cấu trúc tinh thể của bột halophosphate......................................12 Hình 1.5. Phổ phát xạ của bột Ca5(P04)3(F, Cl): Sb3+, Mn2+ và phổ đáp ứng của mắt người với vùng ánh sáng nhìn thấy........................14 Hình 1.6. Một số hình ảnh về đá quý ruby...................................................17 Hình 1.7. Cấu trúc tinh thể {X-AI2O3 (corundum)......................................18 Hình 1.8. Bình phản ứng dùng trong phương pháp thủy nhiệt.....................23 Hình 2.1. Quy trình thực nghiệm tổng hợp AI 2O3: Cr3+bằng phương pháp khuếch tán nhiệt.........................................................................26 Hình 2.2. Hiện tượng nhiễu xạ trên tinh thể.................................................29 Hình 2.3. Máy đo giản đồ nhiễu xạ tia X tại Đại học cần Thơ.....................30 Hình 2.4. Thiết bị đo ảnh FESEM được tích họp với đầu đo EDS tại Viện Tiên tiến Khoa học và Công nghệ (AIST)- Đại học Bách khoa Hà Nội......................................................................31 Hình 2.5. Hệ huỳnh quang (Nanolog, Horiba Jobin Yvon)nguồn kích thích là đèn Xenon công suất 450 w có bước sóng từ 250 -ỉ800 nm, tại viện Tiên tiến Khoa học và Công nghệ (AIST), Trường Đại học Bách khoa Hà Nội............................................32 Hình 3.1. a. Phổ nhiễu xạ tia X của vật liệu A1 203: Cr3+ được ủ ở các nhiệt độ từ 1000 °c đến 1300 °c trong thời gian 5 giờ; b. Thẻ chuẩn của AI2O3..........................................................................33 Hình 3.2. Anh FESEM của vật liệu AI2O3: Cr3+ được ủ tại nhiệt độ1100 °c và 1300 °c trong thòi gian 5 giờ.............................................35 Hình 3.3. Phổ kích thích huỳnh quang (PLE) của vật liệu AI 2O3: Cr3+ vói tỷ lệ pha tạp 0,1% ủ ở nhiệt độ 1300 °c trong thòi gian 5 giờ trong môi trường không khí và kích thích ở bước sóng 695 nm.......................................................................................36 Hình 3.4. Phổ huỳnh quang (PL) của vật liệu A1203: Cr3+ 0,1% ủ ở nhiệt độ 1300 °c trong thời gian 5 giờ và đo tại bước sóng 403nm. .37 Hình 3.5. Phổ huỳnh quang (PL) của vật liệu A1 203: Cr3+ (0,1%) với nhiệt độ khuếch tán từ 1000 °c đến 1300 °c ở bước sóng 403 nm..............................................................................................38 LỜI CAM ĐOAN Hình 3.6. Cường độ phát quang của vật liệu AI 2O3: Cr3+ (0,1%) ở đỉnh 695 nin tại các nhiệt độ từ 1000 °c đến 1300 °c.....................38 Hình 3.7. Phổ huỳnh quang (PL) phụ thuộc vào nồng độ pha tạp ion Cr3+ của vật liệu A1203: Cr3+ ở nhiệt độ ủ 1300 °c tại bước sóng 403 nm..............................................................................40 Hình 3.8. Cường độ phát quang của vật liệu AI 2O3: Cr3+Ở đỉnh 695 nm tại các nồng độ khác nhau từ 0,01%-^1%.................................40 Hình 3.9. a. Sự phát huỳnh quang khi nồng độ pha tạp ion Cr 3+ thấp.........41 b. Sự dập tắt huỳnh quang khi nồng độ pha tạp ion Cr 3+cao......41 Hình 3.10. Anh chụp LED phủ bột AI2O3: Cr3+ khi chưa kích thích và khi kích thích bởi Violet LED...................................................42 MỞ ĐẦU 1. Lý do chọn đề tài Trong những năm gần đây, vật liệu phát quang đã và đang trở thành đối tượng nghiên cứu hấp dẫn, ứng dụng rộng rãi trong chế tạo các thiết bị quang điện từ như các loại bóng đèn huỳnh quang, huỳnh quang compact, các thiết bị hiển thị như màn hình phát xạ CRT, màn hình LED...w. Cùng vói sự phát triển của khoa học kĩ thuật thì hiện nay thế giới đang tiếp tục phát triển công nghệ chiếu sáng LED dần thay thế hoàn toàn bóng đèn truyền thống do có nhiều ưu điểm như hiệu suất phát quang cao, thời gian sử dụng dài, tiêu thụ ít điện năng, dễ điều khiển và thân thiện với môi trường. Thể hiện thực tế là bộ Năng lượng Mỹ đã trông đợi loại bỏ bóng đèn dây tóc trong vòng 4 năm và đèn huỳnh quang compact trong vòng 10 năm tới. Yì vậy, đèn LED ngày càng chiếm lĩnh thị trường. Hiện tại ở Việt Nam có rất nhiều công ty sản xuất về lĩnh vực chiếu sáng tiêu biểu là công ty cổ phần bóng đèn phích nước Rạng Đông. Họ đang tập trung phát triển các công nghệ để chế tạo các vật liệu cấu trúc một chiều bằng các phương pháp vật lý, kết hợp vật lý và hóa học, phương pháp tổng họp hóa học. Trước kia, người ta sử dụng bột halophosphate là bột huỳnh quang truyền thống. Phổ phát xạ của loại bột này tập trung chủ yếu trong hai vùng xanh lam và vàng cam nên chúng còn thiếu thành phần phát xạ màu đỏ trong quang phổ ánh sáng trắng dẫn đến độ trả màu thấp (CRI 60-70), hiệu suất khá thấp (60-70 lm/W). Hơn nữa bột halophosphate có nguồn gốc từ các nhóm halogen nên độ bền của chúng không cao khi chịu bức xạ liên tục của tia tử ngoại (UV). Do đó, các nghiên cứu nhằm chế tạo các loại bột huỳnh quang có hiệu suất cao, có quang số lớn và chỉ số hoàn màu cao ứng dụng trong việc chế tạo bóng đèn huỳnh quang tiết kiệm năng lượng; chế tạo các loại điôt phát quang vẫn đang phát triển mạnh cả trên thế giới và Việt Nam. Bột huỳnh quang phát xạ đỏ được chế tạo nhằm tạo ra nguồn sáng có hiệu suất và chất lượng tốt hơn. Các loại bột huỳnh quang thương mại phát xạ đỏ hiện nay chủ yếu dựa trên vật liệu pha tạp các ion đất hiếm như: Eu 2+, 1 EU3+. .. Tuy nhiên vật liệu quang chứa đất hiếm luôn có giá thành cao và gây ô nhiễm môi trường sau thời gian sử dụng. Yì vậy, nghiên cứu bột huỳnh quang phát xạ đỏ có đặc tính tốt và không chứa đất hiếm đang được các nhà khoa học quan tâm. Trong rất nhiều các chất và hợp chất bán dẫn khác nhau như T1O2, ZnO, Si02... thì AI2O3 được biết đến là một họp chất bán dẫn đặc biệt có nhiều hơn 15 pha tinh thể khác nhau và sau khi biến đổi liên tiếp qua nhiều pha tình thể khác nhau, vật liệu này đạt đến trạng thái cấu trúc bền vững là pha lục giác (X-AI2O3, trong đó tấất cả các cation Al3+ được bao quanh bởi 6 anion o2 [3,4], Vật liệu AI2O3 có vai trò quan trọng trong rất nhiều ngành khoa học kỹ thuật bởi các tính chất vật lý đặc biệt như nhiệt độ nóng chảy cao, không ưa nước, suất đàn hồi lớn, độ trong suốt quang học cao, chiết suất lớn (vào khoảng 1,76 ở bước sóng 632,8 nm), có độ bền hóa học, độ ổn định nhiệt, tính axit bề mặt thấp, không dẫn điện [9], AI 2O3 có độ rộng vùng cấm lớn (cỡ 8 eV ở nhiệt độ phòng) nên AI2O3 có tác dụng như các hàng rào xuyên hầm (tunneling) trong các cảm biến từ thế hệ mới, và trong các transistor hữu cơ [3,9], Vật liệu AI2O3 đã từng tạo ra bước ngoặt trong lịch sử phát triển laser và sẽ còn tiếp tục đóng vai trò quan trong tương lai. Một trong các hướng nghiên cứu đang thu hút sự nhiều chú ý là vật liệu AI2O3 có sự pha tạp ion KLCT Cr3+ được sử dụng làm chất nền phát quang trong các loại đèn ống huỳnh quang. Trên thế giới, nhiều nhà khoa học đã cho thấy được sự quan tâm của mình đến vật liệu AI2O3 pha tạp ion Cr3+. “Rất nhiều công trình đã được đăng trên báo khoa học như: nhóm tác giả Dianguang Liu, Zhenfeng Zhu, Hui Liu, Zhengyang Zhang, Yanbin Zhang, Gege Li tổng hợp thành công bột huỳnh quang A1 203: Cr3+ bằng phương pháp thủy nhiệt (2012)” [11]; “hay Geeta Rani và P.D. Sahare đã tổng hợp thành công và khảo sát tính chất quang cũng như đặc tính cấu trúc của vật liệu AỊ2O3 pha tạp Cr3+ (2014)” [16]. “Tại Việt Nam, nhóm nghiên cứu Nguyễn Mạnh Sơn, Hoàng Phước Cao Nguyên và Nguyễn Văn Thanh đã tổng hợp thành công vật liệu phát quang a-Al 203 pha tạp chromium (Cr3+), manganese (Mn4+) được chế tạo bằng phương pháp nổ dung dịch ure-nitrat, sử dụng chất khử ure ở nhiệt độ thấp” [4]. 2 Xuất phát từ những lý do trên, chúng tôi chọn đề tài cho khóa luận này “Tổng họp và nghiên cứu tính chất quang của yật liệu A1 203: Cr3+ bằng phương pháp khuếch tán nhiệt”. 2. Mục tiêu nghiên cứu Nghiên cứu chế tạo vật liệu huỳnh quang trên cơ sở vật liệu AI2O3 pha 3+ tạp Cr bằng phương pháp khuếch tán nhiệt và định hướng ứng dụng trong chế tạo LED ánh sáng đỏ cho cây trồng. * Nghiên cứu xây dựng quy trình công nghệ và tối ưu hóa các thông số công nghệ tổng họp bột huỳnh quang AI2O3 pha tạp ion Cr3+ bằng phương pháp khuếch tán nhiệt. * Khảo sát tính chất quang của hệ vật liệu huỳnh quang 3+ AI2O3: Cr tổng họp được và đánh giá khả năng ứng dụng của chúng trong thực tế. 3. Phương pháp nghiên cứu Phương pháp nghiên cứu được lựa chọn trong khóa luận là thực nghiệm kết hợp với phương pháp nghiên cứu tài liệu. Vật liệu AI 2O3: Cr3+ được chế tạo bằng phương pháp khuếch tán nhiệt và được khảo sát cấu trúc tinh thể, hình thái bề mặt, tính chất quang bằng các phương pháp phân tích phổ huỳnh quang, phương pháp chụp ảnh FESEM, phương pháp phân tích cấu trúc (XRD), thử nghiệm vật liệu AI2O3: Cr3+ trong LED chiếu sáng nông nghiệp. 4. Nội dung nghiên cứu của đề tài Đe đạt được các mục tiêu đặt ra, các nội dung nghiên cứu chính của khóa luận được xác định như sau: - Nghiên cứu xây dựng quy trình công nghệ tổng họp vật liệu AỊ2O3 pha tạp ion Cr3+ bằng phương pháp khuếch tán nhiệt. - Khảo sát cấu trúc tinh thể, hình thái bề mặt và tính chất quang của vật liệu A1203: Cr3+ chế tạo được nhằm tối ưu hóa các thông số công nghệ chế tạo vật liệu huỳnh quang phát xạ ánh sáng đỏ-đỏ xa. 3 - Thử nghiệm vật liệu A1203: Cr3+ trong LED chiếu sáng nông nghiệp. 5. Bổ cuc khóa luân 9 • Các kết quả nghiên cứu của khóa luận, được tổng họp, phân tích và viết thành các chương với nội dung và bố cục cụ thể như sau: Chương 1: Trình bày tổng quan lý thuyết về tính chất quang của vật liệu A1203: Cr3+. Chương 2: Thực nghiệm Chương 3: Kết quả và thảo luận: Trình bày các kết quả nghiên cứu và thảo luận về vật liệu AI2O3 pha tạp ion Cr3+, cấu trúc tinh thể, hình thái bề mặt và tính chất quang của vật liệu. CHƯƠNG 1: TỔNG QUAN 1.1. Tổng quan về bột huỳnh quang 1.1.1. Hiện tượng phát quang Yật liệu hay chất chịu một sự tác động hoặc kích thích từ các nguồn năng lượng ở bên ngoài thì chất hay vật liệu sẽ có khả năng chuyển đổi năng lượng thành bức xạ điện từ. Khi đó, chúng ta gọi tên các vật liệu đó là vật liệu huỳnh quang. “Khi hấp thụ năng lượng kích thích, nguyên tà, phân tử chuyển từ mức năng lượng cơ bản lên các trạng thái có mức năng lượng cao hơn. Neu phân tử, nguyên tử hấp thụ ánh sáng nằm trong vùng nhìn thấy hoặc vùng tử ngoại thì năng lượng hấp thụ sẽ ứng với các mức điện tử, do đó sẽ có sự chuyển dời điện tà trong phân tử từ quỹ đạo này sang quỹ đạo khác. Ở trạng thái kích thích, điện tử trong nguyên tử, phân tử có thể trở về trạng thái cơ bản bằng các con đường khác nhau: hồi phục bức xạ hoặc hồi phục không bức xạ” [18], Quá trình hồi phục bức xạ được gọi là hiện tượng phát quang. Như vậy, ta có thể hiểu sự phát quang là hiện tượng khi các chất nhận năng lượng kích thích từ bên ngoài và phát ra ánh sáng. Có rất nhiều cách để phân loại hiện tượng phát quang: - Theo tính chất động học của quá trình phát quang xảy ra: 4 • Phát quang của những tâm bất biến liên tục • Phát quang tái hợp Tùy theo các loại năng lượng kích thích khác nhau người ta phân thành các loại phát quang khác nhau: • Quang huỳnh quang: Nguồn kích thích vật liệu là proton • Điện huỳnh quang: Năng lượng kích thích bằng điện trường • Huỳnh quang tia catot: Nguồn kích thích là một chùm điện tử năng lượng cao phát ra từ catot • Huỳnh quang tia X: Khi vật liệu bị bắn phá bởi chùm electron hoặc chùm tia X thì nó sẽ phát ra chùm tia X mới, đó là đặc tính của tia X • Điện hóa huỳnh quang: Sự kích thích được tạo ra do quá trình điện hóa • Nhiệt huỳnh quang: Các quá trình phá các bẫy (detrapping) được gây ra do làm nóng hoặc kích thích nhiệt Dựa vào thời gian bức xạ kéo dài sau khi ngừng kích thích ở nhiệt độ phòng. Khi đó, hiện tượng phát quang được phân thành hai loại: huỳnh quang và lân quang. • “Huỳnh quang là hiện tượng phát quang của các chất lỏng và chất khí. Có đặc điểm là ánh sáng phát quang bị tắt rất nhanh sau khi ánh sáng kích thích (tphátquang < 10"8s)” [18]. • “Lân quang là hiện tượng quang phát quang của chất rắn có đặc điểm là ánh sáng phát quang có thể kéo dài một khoảng thời gian nào đó sau khi tắt ánh sáng kích thích (tphátquang > 10 8s)” [18]. Theo cách thức chuyển dời từ trạng thái kích thích về trạng thái cơ bản cho bức quang: • Phát quang tự phát: Các tâm bức xạ tự phát chuyển từ trạng thái kích thích về trạng thái cơ bản để phát ra ánh sáng, không cần sự chi phối của một yếu tố nào từ bên ngoài. 5 • Phát xạ cưỡng bức (phát quang cảm ứng): sự phát quang xảy ra khi các tâm bức xạ chuyển từ trạng thái kích thích về trạng thái cơ bản nhờ tác động từ bên ngoài (ví dụ như ánh sáng, nhiệt độ). 1.1.2. Cơ chế phát quang của vật liệu Vật liệu huỳnh quang được nghiên cứu chế tạo trong khóa luận tốt nghiệp là vật liệu dạng bột, khi bị kích thích có khả năng phát ánh sáng trong vùng quang phổ mà mắt người cảm nhận được. Các vật liệu phát quang tinh khiết không thể phát quang mà nó chỉ có thể phát quang khi được pha thêm một lượng nhỏ các ion tạp chất. “Khi nồng độ pha tạp cao thì hiệu suất phát quang có thể giảm đi do hiện tượng dập tắt nồng độ” [18]. “Năng lượng kích thích sau khi được vật liệu hấp thụ thì truyền đến các tâm phát quang (các ion đất hiếm hoặc ion kim loại chuyển tiếp), hoặc có thể được hấp thụ bởi ion pha tạp này và truyền sang ion đồng pha tạp khác. Cơ chế phát quang của vật liệu phụ thuộc vào cấu hình điện tò của các tâm phát xạ” [1,18]. cấu tạo chính của vật liệu huỳnh quang bao gồm hai phần: chất nền (mạng chủ) và chất pha tạp (tâm huỳnh quang) thường gọi là tâm kích hoạt (activator). “Cấu hình điện tử của các nguyên tố chuyển tiếp hay nguyên tố đất hiếm được pha tạp làm cho mỗi cơ chế phát quang của vật liệu là khác nhau” [ 1]. Chất nền (mạng chủ) là những chất có vùng cấm rộng, được cấu tạo từ các ion có cấu hình điện tử lấp đầy nên thường không hấp thụ ánh sáng nhìn thấy. Chất pha tạp (tâm kích hoạt) là những nguyên tà hay ion có cấu hình điện tử với một số lớp chỉ lấp đầy một phần (ví dụ như các ion kim loại chuyển tiếp có lớp d chưa bị lấp đầy như Cu 2+, Cr3+, Mn2+, Co2+,... các ion đất hiếm có lớp f chưa bị lấp đầy như Eu3+.. .)• Yí dụ: Với hệ vật liệu huỳnh quang trình bày trong khóa luận này AỊ2O3 pha tạp Cr3+ thì mạng chủ là AI2O3, tâm kích hoạt là ion Cr3+ . Các quá trình huỳnh quang trong hệ được xảy ra như sau: Khi được kích thích với năng lượng đủ lớn, các điện tử ở trạng thái cơ bản sẽ nhảy lên 6 trạng thái kích thích. Do trạng thái kích thích không bền nên các điện tử sẽ quay trở lại trạng thái cơ bản và bức xạ ra các proton ánh sáng hoặc tạo ra các pronon (dao động mạng), về cơ chế kích thích thì tùy từng loại vật liệu có thể lựa chọn nguồn kích thích từ mạng nền hoặc kích thích trực tiếp các tâm kích thích. “Khi kích thích vật liệu bằng bức xạ điện từ, các photon bị vật liệu hấp thụ. Sự hấp thụ có thể xảy ra tại chính tâm kích hoạt hoặc tại chất nền” [1]. ❖ “Trường hợp thứ nhất: Phát xạ do chuyển mức tái hợp điện tử lỗ trống: Tâm kích hoạt hấp thụ photon, nó sẽ chuyển từ trạng thái cơ bản A lên trạng thái kích thích A* (hình 1.1), quá trình hồi phục từ trạng thái kích thích về trạng thái cơ bản sẽ bức xạ ánh sáng R” [1]. 7 ❖ “Trường hợp thứ hai: Phát xạ do chuyển vùng- vùng tức là chất nền hấp thụ photon, khi đó điện tử ở vùng hóa trị sẽ nhảy lên vùng dẫn làm sinh ra một lỗ trống ở vùng hóa trị. Sự tái hợp giữa điện tử ở vùng dẫn và lỗ trống ở vùng hóa trị thường không xảy ra mà điện tử và lỗ trống có thể sẽ bị bẫy tại các bẫy, sự tái hợp giữa điện tử và lỗ trống lúc này sẽ không bức xạ ánh sáng NR” [1]. ❖ “Trường hợp thứ ba: Phát xạ do chuyển mức giữa các exciton là điện tử không nhảy hẳn từ vùng hóa trị lên vùng dẫn mà chỉ nhảy lên một mức năng lượng gần đáy vùng dẫn, lúc này điện tử và lỗ trống không hoàn toàn độc lập với nhau mà giữa chúng có một mối liên kết thông qua tương tác tĩnh điện Coulomb. Trạng thái này được gọi là exciton (có năng lượng liên kết nhỏ hơn một chút so với năng lượng vùng cam Eg). Sự tái hợp exciton sẽ bức xạ ánh sáng” [1], A* NR Bức xạ kícii imiai R Hình 1.1. Sơ đồ quá trình huỳnh quang Bức xạ kích thích có thể không bị hấp thụ bởi các ion kích hoạt mà bởi các ion hoặc nhóm các ion khác. Ion hoặc nhóm ion này có thể hấp thụ bức xạ kích thích rồi truyền năng lượng cho tâm kích hoạt. Trong trường hợp này ion hấp thụ được gọi là ion tăng nhạy (hình 1.2). 8 Hình 1.2. Sự truyền năng lượng từ tâm s tới A Ngoài ra, thay vì kích thích vào các ion kích hoạt, người ta có thể thực hiện quá trình kích thích ngay vào mạng chủ. Trong trường họp này, mạng chủ truyền năng lượng kích thích của nó tới tâm kích hoạt. ET ss A Hình 1.3. Sự truyền năng lượng từ s tới A Dịch chuyển s —> s* là hấp thụ, dịch chuyển từ A*2 —> A là phát xạ. Mức A*1 là tích lũy nhờ sự truyền năng lượng (ET) sẽ phục hồi không phát xạ tói mức A*2 nằm thấp hơn một chút. Các quá trình vật lý cơ bản đóng vai trò quan trọng trong vật liệu huỳnh quang: - Sự hấp thụ (hoặc sự kích thích) có thể thực hiện ở chính các ion kích hoạt, ở ion tăng nhậy, hoặc mạng chủ. - Phát xạ từ tâm kích hoạt. - Quay trở về không bức xạ vói trạng thái cơ bản, quá trình này làm giảm hiệu suất huỳnh quang của vật liệu. 9 - Truyền năng lượng giữa các tâm huỳnh quang. 1.1.3. Các đặc trưng của bột huỳnh quang ❖ Hiệu suất phát xạ huỳnh quang (Luminescence efficiency) Hiệu suất phát xạ huỳnh quang (Luminescence efficiency) là kết quả của độ hấp thụ của bức xạ kích thích và hiệu suất lượng tử. Trong đó hiệu suất lượng tò (quantum efflcicency: QE) là tỷ số giữa số photon phát xạ trên số photon hấp thụ . Giá trị hiệu suất lượng tử của các bột huỳnh quang hiện đang dùng cho đèn huỳnh quang có thể được tính từ hiệu suất đèn. Thông thường đèn huỳnh quang có thể đạt hiệu suất huỳnh quang từ 0,55 - 0,95, giá trị phổ biến nhất thường là 0,7. “Ngày nay, với công nghệ nano và việc phát triển các loại bột huỳnh quang pha tạp các ion đất hiếm và kim loại chuyển tiếp đã làm tăng đáng kể hiệu suất phát xạ huỳnh quang” [ 21]. *1* Hấp thụ bức xạ kích thích “Các bột huỳnh quang cho đèn huỳnh quang được kích thích chủ yếu bởi bước sóng 254 nm của bức xạ hơi thủy ngân (Hg). Do đó, bột huỳnh quang phải hấp thụ mạnh bức xạ này, và chuyển nó thành phát xạ trong vùng nhìn thấy. Đe sử dụng (hấp thụ) đầy đủ năng lượng này, các bột huỳnh quang phải có vùng kích thích mở rộng thành một vùng có bước sóng dài hơn lên đến 380 nm” [21]. *1* Độ ổn định màu Sự thay đổi cấu trúc mạng nền dưới tác động của bức xạ tử ngoại năng lượng cao, dẫn tới làm thay đổi môi trường ( trường tinh thể) xung quanh các tâm phát quang; kết quả làm thay đổi phổ phát xạ của bột huỳnh quang. Khi màu sắc của đèn thay đổi theo thòi gian nhanh, ta có biết được đèn hay bột huỳnh quang sử dụng trong đèn này có độ ổn định màu thấp. “Các loại bột huỳnh quang truyền thống halophosphate được sử dụng trong các đèn hoi thủy ngân áp suất thấp có độ bền kém nên cấu trúc mạng nền bị phân rã nhanh dẫn đến sự suy hao quang hay quang giảm theo thời gian là khá lớn” [21]. Để khắc phục nhược điểm trên người ta có thể thay thế bột huỳnh quang halophosphate bằng loại bột ba phổ sử dụng các nền oxit kim loại bán dẫn có khả năng chịu bức xạ tử ngoại tốt hơn như lớp phủ ZnO; 1 0 AI2O3 hoặc phủ các lóp bảo vệ đặc biệt có khả năng hấp thụ bức xạ 185 nm của hơi thủy ngân như lóp phủ YAG. ❖ Hệ số trả màu (CRI) “Hệ số trả màu (CRI) hay chỉ số truyền đạt màu vừa là một chỉ số đặc trưng vừa là chỉ tiêu rất quan trọng đối với mọi nguồn sáng, nó phản ánh chất lượng của nguồn sáng thông qua sự cảm nhận đúng hay không đúng màu của các đối tượng được chiếu sáng” [21]. Để đo hệ số trả màu của một nguồn sáng người ta sử dụng các mẫu màu chuẩn để so sánh. Hệ số trả màu của nguồn sáng cần đo được tính tại mỗi màu làm chuẩn so sánh và tính theo công thức sau: Ri = 100- 4,6AEi (AEii độ lệch về năng lượng của nguồn sáng với màu chuẩn) Hệ số trả màu CRI của nguồn sáng là trung bình của các hệ số trả màu Ri tính theo công thức sau: CRI=—YR. 15 1 Người ta quy định, chỉ số CRI ánh sáng chuẩn tự nhiên hoặc bức xạ của vật đen tuyệt đối bằng 100. Hệ số trả màu của các nguồn sáng khác được so sánh với nguồn chuẩn và có giá trị từ 0 ^ 100. + CRI < 50: màu bị biến đổi nhiều. + 50 < CRI < 70: màu bị biến đổi. + 70 < CRI < 85: màu ít bị biến đổi- đây là MT chiếu sáng thông dụng. + CRI > 85: sự thể hiện màu rất tốt, sử dụng trong các công trình chiếu sáng yêu cầu chất lượng màu cao. ❖ Độ bền “Độ bền của bột huỳnh quang có thể bị ảnh hưởng do các nguyên nhân trong quá trình sản xuất đèn cũng như trong quá trình đèn hoạt động. Bóng đèn huỳnh quang hơi thủy ngân áp suất thấp thì vật liệu huỳnh quang cần có 1 1
- Xem thêm -

Tài liệu liên quan