Đăng ký Đăng nhập
Trang chủ Tìm kiếm đơn cực từ Cơ sở lý thuyết và thực nghiệm...

Tài liệu Tìm kiếm đơn cực từ Cơ sở lý thuyết và thực nghiệm

.PDF
66
20535
101

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA VẬT LÝ  TÁC GIẢ: NGUYỄN THỊ NGỌC HẰNG ĐỀ TÀI LUẬN VĂN: TÌM KIẾM ĐƠN CỰC TỪ: CỞ SỞ LÝ THUYẾT VÀ THỰC NGHIỆM LUẬN VĂN TỐT NGHIỆP ĐẠI HỌC TP. HỒ CHÍ MINH – NĂM 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA VẬT LÝ  TÁC GIẢ: NGUYỄN THỊ NGỌC HẰNG ĐỀ TÀI LUẬN VĂN: TÌM KIẾM ĐƠN CỰC TỪ: CỞ SỞ LÝ THUYẾT VÀ THỰC NGHIỆM NGÀNH : SƯ PHẠM VẬT LÝ MSSV: K33102017 NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TSKH. LÊ VĂN HOÀNG TP. HỒ CHÍ MINH – NĂM 2011 LỜI CẢM ƠN Trước tiên tôi xin gửi lời cảm ơn chân thành đến thầy Lê Văn Hoàng, người đã tận tình hướng dẫn, động viên và tạo mọi điều kiện thuận lợi giúp tôi hoàn thành luận văn tốt nghiệp này. Tôi xin gởi lời tri ân đến quý thấy cô Khoa Vật Lý – Trường ĐHSP. TP. HCM đã tận tình giảng dạy, trạng bị những kiến thức quý báu cho tôi trong suốt những năm học vừa qua. Sự tận tụy của thầy cô là tấm gương để tôi suốt đời noi theo và phấn đấu cho sự nghiệp giáo dục. Tôi xin gửi lời cảm ơn đến tất cả bạn bè đã giúp đỡ, động viên, khích lệ tôi trong suốt quá trình làm luận văn cũng như những năm tháng trên giảng đường đại học. Cuối cùng tôi không thể thể hiện hết sự biết ơn của tôi đối với gia đình, ba, mẹ, các anh chị đã tạo mọi điều kiện thuận lợi cả về vật chất lẫn tinh thần giúp tôi vững tâm học tập trong suốt những năm học đại học cũng như trong suốt thời gian tôi làm luận văn. Xin gửi lời chúc sức khỏe đến thầy cô, gia đình và bạn bè. TP. Hồ Chí Minh, ngày 29-4-2011 Nguyễn Thị Ngọc Hằng MỤC LỤC LỜI CẢM ƠN........................................................................................................... 0 T 0 2 T 0 2 MỤC LỤC ................................................................................................................ 1 T 0 2 T 0 2 DANH MỤC CÁC TỪ VIẾT TẮT.......................................................................... 3 T 0 2 T 0 2 LỜI MỞ ĐẦU........................................................................................................... 4 T 0 2 T 0 2 CHƯƠNG 1: LÝ THUYẾT ĐƠN CỰC TỪ ........................................................... 7 T 0 2 T 0 2 1.1 Lịch sử đơn cực từ .................................................................................................... 7 T 0 2 T 0 2 1.2 Đơn cực từ Dirac ................................................................................................... 10 T 0 2 T 0 2 1.3 Những động lực vật lý để tìm kiếm đơn cực từ ..................................................... 13 T 0 2 T 0 2 1.3.1 Sự tồn tại của đơn cực từ giải thích sự lượng tử hóa của điện tích ..................... 13 T 0 2 T 0 2 1.3.2 Hệ phương trình Maxwell mở rộng đối xứng với đơn cực từ ............................. 15 T 0 2 T 0 2 1.3.3 Đơn cực từ trong lý thuyết thống nhất lớn.......................................................... 17 T 0 2 T 0 2 1.4 Đặc tính của đơn cực từ ......................................................................................... 19 T 0 2 T 0 2 1.4.1Khối lượng đơn cực từ ........................................................................................ 19 T 0 2 T 0 2 1.4.2 Phản ứng của đơn cực từ trong từ trường ........................................................... 23 T 0 2 T 0 2 1.4.3 Phản ứng của đơn cực từ với vật chất................................................................. 23 T 0 2 T 0 2 1.5 Kĩ thuật tìm kiếm đơn cực từ ................................................................................. 24 T 0 2 T 0 2 1.5.1 Máy dò cảm ứng siêu dẫn .................................................................................. 24 T 0 2 T 0 2 1.5.2 Máy dò ion hóa .................................................................................................. 25 T 0 2 T 0 2 1.5.3 Máy dò dấu vết hạt nhân (NTD) ....................................................................... 27 T 0 2 T 0 2 CHƯƠNG 2: TÌM KIẾM ĐƠN CỰC TỪ TRONG TỰ NHIÊN ......................... 30 T 0 2 T 0 2 2.1 Đơn cực từ GUT ..................................................................................................... 30 T 0 2 T 0 2 2.1.1 các giới hạn tìm kiếm trong vật lý thiên văn và vũ trụ. ........................................ 31 T 0 2 T 0 2 2.1.2 Tìm kiếm đơn cực từ bị giữ trong vật chất ......................................................... 32 T 0 2 T 0 2 2.1.3 tìm kiếm đơn cực từ trong các bức xạ vũ trụ ...................................................... 33 T 0 2 T 0 2 2.2 Một thể hiện của đơn cực từ trong môi trường vật chất đông đặc ....................... 40 T 0 2 T 0 2 CHƯƠNG 3: TÌM KIẾM ĐƠN CỰC TỪ TRONG MÁY GIA TỐC ................. 46 T 0 2 T 0 2 3.1 Lý thuyết tạo ra đơn cực từ trong máy gia tốc và tính toán các mặt cắt ............. 48 T 0 2 T 0 2 3.2 Mô hình thí nghiệm gián tiếp: ................................................................................ 52 T 0 2 T 0 2 3.3 Mô hình thí nghiệm trực tiếp: ................................................................................ 55 T 0 2 T 0 2 3.4 Thí nghiệm tìm kiếm đơn cực từ ở tương lai ........................................................ 58 T 0 2 T 0 2 3.4.1 Thí nghiệm MoDAL tại LHC [19] ..................................................................... 58 T 0 2 T 0 2 3.4.2 Dự tích tìm kiếm các đơn cực từ tại Relativistic Heavy Ion Collider (RHIC) [20] ................................................................................................................................... 59 T 0 2 T 0 2 KẾT LUẬN............................................................................................................. 61 T 0 2 T 0 2 TÀI LIỆU THAM KHẢO ..................................................................................... 62 T 0 2 T 0 2 DANH MỤC CÁC TỪ VIẾT TẮT GUT: Lý thuyết thống nhất lớn ( the Grand Unification Theories) SQUID: máy dò cảm ứng siêu dẫn (Superconducting Quantum Interference Device) NTD: máy dò dấu vết hạt nhân (Nuclear Track Detector) LỜI MỞ ĐẦU Kiến thức thông thường về điện từ học cho chúng ta biết một nam châm bao giờ cũng có một cực bắc và một cực nam, điện tích sinh ra điện trường còn từ trường là do điện tích chuyển động sinh ra. Tuy nhiên nếu xét trên phương diện đối xứng điện từ thì tại sao lại không tồn tại các hạt từ tích là nguồn của từ trường tương ứng với điện tích là nguồn của điện trường và tại sao lại chỉ tồn tại những hạt điện tích hoặc dương hoặc âm mà không tồn tại những hạt từ tích hoặc bắc hoặc nam? Đơn cực từ được đưa ra như những hạt giả thuyết trong vật chất. Sự tồn tại của từ tích hay đơn cực từ mang một ý nghĩa rất lớn trong khoa học. Sự tồn tại này không những không vi phạm bất kỳ định luật vật lý nào mà còn làm cho hệ phương trình Maxwell đối xứng. Năm 1931 Paul Dirac đã đưa ra lý thuyết lượng tử về đơn cực từ và giải quyết được bài toán sự lượng tử hóa của điện tích. Một vài lý thuyết quan trọng cũng đã được xây dựng dựa trên niềm tin về sự tồn tại của đơn cực từ như lý thuyết thống nhất lớn, thuyết dây, thuyết M…và sẽ là một bước tiến lớn trong khoa học nếu chứng minh được sự tồn tại đó. Nếu thành công thì các sách vật lý từ cấp đại học đến trung học đều phải sửa lại. Việc khám phá ra đơn cực từ điện tử sẽ mở ra một tương lai hoàn toàn mới cho ngành vật liệu học và công nghệ nếu các nhà khoa học có thể tạo ra một số lượng lớn. Các đơn cực từ có thể làm cho vật liệu đủ mạnh để trụ vững trong một vụ nổ hạt nhân và còn có thể cho phép bay bằng từ. Với những ý nghĩa nêu trên, việc truy tiềm những bằng chứng thật sự về sự tồn tại của đơn cực từ đã trở thành một vấn đề thời sự. Từ sau bài báo của Dirac xuất bản năm 1931 cho đến nay việc tìm kiếm đơn cực từ đã trở nên rất sôi động nhưng kết quả vẫn là số không, người ta tìm kiếm các đơn cực từ với các phòng thí nghiệm trên mặt đất, dưới lòng đất, trên các vệ tinh, trong các lớp đất đá, thiên thạch, đá mặt trăng, nước biển và trong tất cả các máy gia tốc ở tất cả các vùng năng lượng mới, đặc biệt với máy gia tốc LHC vừa mới đưa vào hoạt động vào năm 2009 với mức năng lượng chưa từng có hứa hẹn sẽ có nhiều khám mới trong thí nghiệm MoDAL do nhóm nghiên cứu trường đại học Alberta dự kiến đưa vào thực hiện vào cuối năm 2011. Vào năm 2009 những chuẩn hạt đơn cực từ đã được phát hiện trong tinh thể băng spin và vào tháng 10 năm 2010 các nhà khoa học đã công bố ảnh chụp các dây Dirac trong băng spin. Tuy đây chỉ là những giả đơn cực nhưng có thể là kim chỉ đường để phát hiện ra các đơn cực từ thực thụ. Đơn cực từ đã trở thành một đề tài hấp dẫn của nhiều nhóm nghiên cứu cả về lý thuyết lẫn thực nghiệm trên khắp thế giới bởi tính thời sự nó. Tuy nhiên ở Việt Nam chỉ có một số ít các nhóm nghiên cứu về đề tài này, việc nghiên cứu chủ yếu là về lý thuyết và vẫn chưa có một tài liệu nào khái quát hóa các kiến thức của đơn cực từ đặc biệt là về thực nghiệm tìm kiếm. Bài luận văn của tôi với mục đích hệ thống hóa các kiến thức cả về lý thuyết lẫn thực nghiệm của đơn cực từ một cách đơn giản, dễ hiểu và lý thú để phục vụ cho đối tượng sinh viên và học sinh muốn tìm hiểu về đề tài này. Đơn cực từ được nghiên cứu trong nhiều không gian nhiều chiều khác nhau nhưng trong phạm vi của một luận văn tốt nghiệp tôi chỉ chọn tìm hiểu về đơn cực từ trong không gian ba chiều. Phương pháp được sử dụng trong bài luận văn là tổng hợp và phân tích tài liệu, đầu tiên tôi thu thập tất cả các tài liệu liên quan đến đơn cực từ sau đó chỉ chọn sử dụng các tài liệu về đơn cực từ trong không gian ba chiều, chủ yếu tập trung vào các bài báo của Dirac, các báo cáo của các phòng thí nghiệm về đơn cực từ và các tài liệu mang tính tổng quát về một số khía cạnh khác nhau của đơn cực từ, sau khi đọc và phân tích tôi tìm thêm một số tài liệu liên quan. Bài luận văn của tôi thể hiện các nội dung về sự hình thành của lý thuyết đơn cực từ và các tính chất của đơn cực từ, các động lực để tìm kiếm đơn cực từ và những kỹ thuật để tìm kiếm đơn cực từ, hệ thống, phân loại và phân tích các thí nghiệm tìm kiếm đơn cực từ. Bài luận văn của tôi được chia thành ba chương chính không kể phần mở đầu và kết luận. Chương 1: “ lý thuyết đơn cực từ” tôi trình bày ngắn gọn tất cả các vấn đề cơ bản của đơn cưc từ bao gồm lịch sử đơn cực từ, lý luận của Dirac về sự tồn tại của đơn cực từ, những động lực thúc đẩy việc tìm kiếm đơn cực từ bao gồm sự lượng tử hóa của điện tích, hệ phương trình Maxwell đối xứng và sự hiện diện của đơn cực từ trong các lý thuyết khác nhưng ở đây tôi chỉ tập trung vào một lý thuyết duy nhất là lý thuyết thống nhất lớn. Trong chương này tôi còn trình bày các tính chất của đơn cực từ, từ những tính chất này người ta đã xây dựng các kỹ thuật dò tìm khác nhau. Giúp bạn đọc cái nhìn tổng quan về đơn cực từ, tầm quan trọng của việc tìm kiếm đơn cực từ và hiểu được các bố trí thí nghiệm tìm kiếm đơn cực từ được trình bày ở hai chương tiếp theo. Việc tìm kiếm đơn cực từ được chia thành 3 phần: trong chương 2 tôi trình bày phần thứ nhất là tìm kiếm các đơn cực từ trong tự nhiên hình thành trong giai đoạn ban đầu của vũ trụ theo lý thuyết thống nhất lớn (GUT) gọi là đơn cực từ GUT và phần thứ hai là tìm kiếm một dạng đơn cực từ trong môi trường vật chất đông đặc. Trong chương 3 tôi trình bày phần thứ ba là tìm kiếm các đơn cực từ sinh ra trong máy gia tốc. Trong hai chương này tôi không trình bày cụ thể tất cả các thí nghiệm mà chỉ trình mô hình tổng quát sau đó phân tích một vài thí dụ để người đọc hiểu rõ hơn về cơ chế của thí nghiệm. CHƯƠNG 1: LÝ THUYẾT ĐƠN CỰC TỪ 1.1 Lịch sử đơn cực từ Năm 1931 Paul Dirac đưa ra giả thiết rằng thế giới không chỉ có điện tích, mà còn có cả “từ tích”. Từ tích, hay còn gọi là đơn cực từ, là nguồn của từ trường. Bình thường một nam châm bao giờ cũng có cực bắc và cực nam.Ta cứ tưởng tượng có thể tách hai cực của nam châm ra khỏi nhau, thì hai phần đó là hai đơn cực từ. Đơn cực từ chỉ mang một cực, hoặc là bắc, hoặc là nam, cũng như điện tích có thể dương, có thể âm. Hình 1.1: Mô phỏng hai cực của nam châm bị tách ra thành hai đơn cực từ Cho đến tận ngày nay đơn cực từ vẫn là một trong những vấn đề cơ bản gây nhiều tranh cãi và chưa được giải quyết trong vật lý. Vấn đề này có một lịch sử rất dài. Từ thế kỷ thứ VII TCN loài người đã biết đến các hiện tượng điện từ, từ thế kỷ thứ VIII đã biết đến nam châm vĩnh cữu. Vào năm 1269 Petrus Peregrinus đã quy ước các cực của nam châm gồm có cực bắc và cực nam. Ở thế kỷ XVII khi nghiên cứu về các hiện tượng điện và từ người ta xem đây là hai lĩnh vực khác nhau và không liên quan gì đến nhau. Đến thế kỷ XVIII các nhà khoa học đều đồng ý với nhau là có chất điện và chất từ. Đến khi Oersted phát hiện ra sự tương tác của dòng điện lên kim nam châm thì điện và từ được xem là hai lĩnh vưc có liên hệ chặt chẽ với nhau. Khi so sánh các hiện tượng trong hai lĩnh vực này ta sẽ nhận thấy những nét đối xứng tương đồng. Như ta đã biết trong tự nhiên tồn tại hai loại điện tích có những vật chỉ mang điện tích dương, có những vật chỉ mang điện tích âm và cũng có những vật mang cả hai loại điện tích một cách tách biệt, một đầu mang điện tích âm còn đầu kia mang điện tích dương. Ta có thể xem đó như một lưỡng cực điện. So sánh với lưỡng cực điện, ta có thể coi những nam châm có hai cực là những lưỡng cực từ, hai cực của nam châm chứa hai từ tích khác nhau, tương tự như điện tích dương và âm của lưỡng cực điện. Ta có thể nhận thấy cách hành sử của lưỡng cực điện giống hệt như một thanh nam châm cùng cực thì đẩy nhau khác cực thì hút nhau. Không những thế, năm 1788 Coulomb đã thiết lập định luật lực tương tác vuông góc cho cả điện tích và các cực từ cho thấy lực giữa các thanh nam châm thay đổi theo khoảng cách và góc giống như lực giữa hai lưỡng cực điện. Đây được xem như một sự đối xứng điện từ. Hình 1.2: Đường sức điện trường của một lưỡng cực điện (hình bên trái); đường sức từ trường của một thanh nam châm (hình bên phải) Nhưng khác với điện tích, trong thực tế không có nam châm nào chỉ có một cực tứt không tồn tại đơn cực từ. Vào năm 1269 kỷ sư quân sự Pierre de Maricourt đã phá vỡ các thanh nam châm, cố gắng tách các cực của nó thành những phần riêng biệt để phục vụ cho mục đích quân sự nhưng thất bại. Khi cắt một nam châm thành hai phần ta thu được hai nam châm có hai cực như thường nhưng nhỏ hơn. Lý giải cho điều này, năm 1820 Ampere đã khẳng định rằng tất cả hiện tượng từ là các dòng điện gây ra. Ông kết luận tương tác giữa các nam châm chính là tương tác giữa các dòng điện phân tử ở bên trong. Theo mô hình mẫu nguyên tử Borh, các electron quay xung quanh hạt nhân nguyên tử, chính chuyển động này đã tạo nên từ trường của nguyên tử. Trong nam châm vĩnh cữu các nguyên tử, phân tử sắp xếp sao cho các từ trường riêng lẻ thẳng hàng tạo thành một từ trường lớn. Do đó khi cắt thanh nam châm làm hai không làm ảnh hưởng đến sự sắp xếp của các phân tử bên trong. Dẫn đến kết quả là sự định hướng của các nguyên tử ở hai phần nam châm bị cắt ra giống như trước. Do đó sinh ra một từ trường có định hướng giống như từ trường của nam châm gốc. Ampere còn đưa ra định đề các thanh nam châm tương đương với các cuộn dây solenoid. Trường do cuộn solenoid sinh ra giống hệt một thanh nam châm gây ra. Hình 1.3: Từ trường do cuộn dây solenoid sinh ra Như vậy bằng cách quy các hiện tượng từ về các hiện tượng điện, từ trường là do điện tích chuyển động sinh ra. Ampere đã loại bỏ thuyết chất từ ra khỏi ngôn ngữ khoa học. Vào năm 1873 Mawell đã tìm ra hệ phương trình nối liền các hiện tượng điện và các hiện tượng từ dạng chuẩn không chứa một từ tích nào. Đến đây thì mối liên hệ giữa điện và từ đã trở nên rõ ràng nhưng nếu nhìn theo góc độ đối xứng điện từ thì liệu có tồn tại vật mang từ tính tương ứng với các vật mang điện tích đơn, tứt có tồn tại đơn cực từ không? Hơn nữa với sự xuất hiện của đơn cực từ không hề vi phạm bất kỳ định luật vật lý nào mà còn làm cho hệ phương trình Maxwell đối xứng điều này mang một ý nghĩa quan trọng trong vật lý. Người khởi xướng đầu tiên về sự tồn tại của đơn cực từ là Pierre Curie vào năm 1894, cuối thế kỷ XIX. Ông nhận thấy rằng hai cực khác tên của nam châm hút nhau và hai cực cùng tên đẩy nhau hoàn toàn tương tự như hai điện tích khác dấu và đồng dấu. Nhưng lý thuyết lượng tử về từ tích bắt đầu bằng một bài báo của nhà vật lý Paul A.M. Dirac vào năm 1931. Với giả thiết về sự tồn tại của đơn Dirac đã giải quyết được vấn đề lượng tử hóa của điện tích, một vấn đề tồn tại từ lâu mà vẫn chưa có câu trả lời. Sau này, đơn cực từ còn xuất hiện trong các lý thuyết thống nhất lớn GUT và nhiều lý thuyết khác như lý thuyết dây, thuyết M… Với những động lực vật lý mạnh mẽ như vậy, ngay sau khi Dirac công bố bài báo về đơn cực từ thì việc tìm kiếm đơn cực từ trở nên sôi động trong các phòng thí nghiệm cho đến tận ngày nay. Người ta tìm đơn cực từ trong các tia vũ trụ, trong lớp đất đá mặt trăng và trong các tất cả các máy gia tốc đặc biệt trong máy gia tốc LHC vừa đưa vào hoạt động năm 2009 với mức năng lượng chưa từng có. Hiện tại vẫn chưa có một bằng chứng thực nghiệm nào chứng tỏ sự tồn tại của đơn cực từ. Nhưng mới gần đây vào năm 2011 các nhà khoa học đã công bố là tìm thấy một giả đơn cực từ trong mội trường vật chất đông đặc. Mở ra một hy vọng mới trong việc tìm kiếm các đơn cực từ thật sự. 1.2 Đơn cực từ Dirac Luận điểm của Dirac về sự tồn tại của đơn cực từ đã bắt đầu với một hướng phát triển mới trong lý thuyết [1]. Luận cứ của Dirac như sau: Giả sử có một hạt chuyển động được môt tả bởi hàm sóng ψ . Chúng ta viết hàm sóng dưới dạng: (1) Trong đó A và là các hàm theo (x,y,z,t) biểu thị biên độ và pha của hàm sóng. Khi chuẩn hóa hàm sóng ta luôn luôn có thể cộng vào pha của hàm sóng một hằng số bất kỳ. Vì thuần túy, giá trị pha không có ý nghĩa vật lý tại một điểm, mà quan trọng là độ khác pha giữa hai điểm. Như vậy ta có thể thừa nhận rằng: - Độ khác pha không phải là giá trị duy nhất mà phụ thuộc vào đường cong nối hai điểm, ngoại trừ hai điểm quá gần hoặc lân cận nhau. - Tổng pha thay đổi theo một đường cong kín không cần phải triệt tiêu. Bây giờ, chúng ta khảo sát điều kiện để sự không khả tích này của pha hàm sóng không làm xuất hiện sự mơ hồ trong các áp dụng lý thuyết. Đối với một hàm sóng đơn, nếu chúng ta nhân ψ với hàm phức kết hợp chúng ta có hàm mật độ. Mật độ này không phụ thuộc vào pha của hàm sóng, vì thế không gặp rắc rối nào gây ra bởi pha không xác định. Nếu chúng ta có hai hàm sóng khác nhau và tích phân có thành phần không xác định nằm ở độ khác pha, cho các giá trị mà bình phương các giá trị này có ý nghĩa vật lý là xác suất thỏa thuận của hai trạng thái. Để tích phân có một mô đun hàm xác định mà không cần phải có một pha xác định tại mỗi điểm, đòi hỏi phải có một độ khác pha xác định giữa hai điểm bất kỳ, dù chúng có lân cận nhau hay không. Dẫn đến sự thay đổi trong pha của hàm sóng trên đường cong kín phải giống nhau đối với tất cả các hàm sóng và sự thay đổi này là thuộc tính của hệ động học. Vì yêu cầu toán học chúng ta thừa nhận rằng phương trình sóng có dạng: (2) Với là hàm sóng có pha xác định tại mỗi điểm, có mô đun bằng mô đun hàm ψ và phần pha không xác định rõ nằm trong xuất phát từ luận điểm hàm sóng không có pha xác định tại mỗi điểm nhưng độ khác pha giữa hai điểm phải xác định đòi hỏi điểm, nhưng sẽ không phải là một hàm theo có giá trị xác định tại mỗi phải có đạo hàm xác định. Chúng ta quy ước đạo hàm của , , như sau: , Đạo hàm này không thỏa mãn điều kiện khả tích Bây giờ nếu ta lấy đạo hàm ψ : (3) Và các phương trình tương tự cho các biến y,z,t. vì nếu ψ thỏa mãn phương trình sóng với xung lượng và năng lượng P và W, thì thỏa mãn phương trình sóng với xung lượng và năng lượng P+hk và W tương ứng . Vì thế nếu ψ mô tả một hạt tự do, so sánh phương trình trên với sự thay đổi xung lượng và năng lượng trong điện từ trường, ta có thể nói rằng điện tích –e chuyển động trong điện từ trường cho bởi: sẽ mô tả một hạt Vậy, sự không khả tích trong pha của hàm sóng cho thấy sự hiện diện của điện từ trường. Bây giờ, sự biến đổi pha theo một đường cong kín theo định lý Stokes: (4) Với S là mặt phẳng giới hạn bởi đường cong kín. Từ mô tả trên, so sánh với với xung lượng và năng lượng trao đổi trong điện từ trường. Ta có kết quả sau: Như vậy phần không khả tích của pha suất phát từ được thể hiện qua các thế của trường điện từ và kết quả của lý thuyết trở thành một mô hình toán học được dùng cho electron chuyển động trong điện từ trường. Chú ý rằng một pha luôn luôn không xác định khi là bội số của 2 . Điều này yêu cầu phải xem xét lại mối quan hệ giữa với các thế của điện từ trường. Theo lý thyết để ý nghĩa vật lý sáng rõ trong các áp dụng chúng ta có điều kiện sự thay đổi của pha theo một đường cong kín phải giống nhau đối với tất cả các hàm sóng, sự thay đổi này bằng thông lượng điện từ trường gửi qua mặt phẳng giới hạn bởi đường cong kín. Điều kiện bây giờ có thể được nới lỏng thành sự thay đổi pha đối với các hàm sóng khác nhau là khác nhau bởi một bội số nào đó của 2 . Vì thế không thể giải thích trong giới hạn trường điện từ. Giả sử chúng ta có một đường cong kín rất nhỏ, sự thay đổi pha của hàm sóng liên tục là rất nhỏ và phải bằng 2 đối với tất cả các hàm sóng khác nhau. Điều này được giải thích mà không cần dùng đến bất kỳ điều gì liên quan đến thông lượng điện từ trường gửi qua mặt phẳng giới hạn bời đường cong kín và thông lượng này cũng phải rất nhỏ. Trường hợp ngoại lệ khi hàm sóng triệt tiêu tại một điểm thì pha của nó không có ý nghĩa. Với một hàm phức tạp thì hàm sóng triệt tiêu dọc theo một đường thẳng, được gọi là đường nút. Vì thế nếu ta có một đường cong kín nhỏ và một đường nút thông qua nó , điều kiện liên tục ở trên là không đúng , pha của hàm sóng có thể thay đổi bằng một bội số nguyên lần nào đó của 2 cộng với một hệ số bé. Hệ số này được mô tả như đại lượng liên quan đến trường điện từ, vì thế một đường cong kín rất nhỏ trong không gian 3 chiều, sự thay đổi của pha theo đường cong sẽ là: (5) Với một đường cong kín lớn, chúng ta có thể làm như trên bằng chia thành những đường cong kín nhỏ thì tổng pha thay đổi theo đường cong kín bằng tổng pha thay đổi theo tất cả các đường cong nhỏ: (6) Với một mặt kín bất kỳ, sự thay đổi pha theo đường giới hạn mặt phẳng cho bởi biểu thức trên phải triệt tiêu vì mặt kín không có đường cong giới hạn. Nên hàm sóng phải giống nhau và tiến tới 0. Rõ ràng cho tất cả các không cần phải triệt tiêu và vì thế mặt kín phải có một điểm kết thúc của đường nút bên trong mặt kín. Điểm nút này là một điểm đơn trong trường điện từ. Nếu phân tích cho một điểm nút đơn, tổng thông lượng điện từ trường gửi qua mặt kín nhỏ bao quanh điểm nút là: (7) Tính chất của điểm này như đơn cực từ và giá trị của nó là: (8) 1.3 Những động lực vật lý để tìm kiếm đơn cực từ 1.3.1 Sự tồn tại của đơn cực từ giải thích sự lượng tử hóa của điện tích Sự tồn tại của đơn cực từ đã giải thích sự lượng tử hóa của điện tích. Ngay sau khi bài báo của Dirac về sự tồn tại của đơn cực từ được công bố Meghnath saha và H. A. Wilson đã giải thích sự lượng tử hóa của điện tích bằng các luận cứ bán cổ điển, sau đó Dirac đã xây dựng thuyết động học đơn cực để chỉ ra sự lượng tử hóa của điện tích một cách tinh vi hơn [2]. Xét hệ gồm một hạt điện tích e, khối lượng m chuyển động trong trường gây ra bởi một đơn cực từ đứng yên có từ tích g. Hình 1.4: Hạt điện tích trong từ trường của một đơn cực từ Từ trường do từ tích gây ra là: (9) Lúc này lực tác dụng lên điện tích theo phương y là: (10) Động lượng của hạt do trường của từ tích gây ra: (11) Moment động lượng theo trục z (12) Theo cơ học lượng tử thì moment động lượng này phải bị lượng tử hóa với đơn vị ħ, vì thế tích TR 8 2 cũng bị lượng tử hóa. R (13) Với là số nguyên, là hằng số planck và là vận tốc ánh sáng. Đây là điều kiện lượng tử hóa của Dirac. Như vậy chỉ cần trong vũ trụ có một từ tích có giá trị bằng , thì tất cả các điện tích phải là bội của . Điều này giải thích tại sao các điện tích phải là bội của một điện tích cơ bản. Ngược lại, nếu trong thiên nhiên, thì tất cả các từ tích phải là bội của là điện tích nhỏ nhất . Giả thuyết về sự tồn tại của đơn cực từ hàm ý rằng điện tích phải được lượng tử hóa trong các đơn vị nhất định; cũng vậy sự tồn tại của điện tích hàm ý rằng từ tích nếu tồn tại cũng phải được lượng tử hóa trong hệ đơn vị nghịch đảo với điện tích nguyên tố. Từ phương trình ta có từ tích với , Chúng ta chú ý giá trị độ lớn của từ tích lớn hơn rất nhiều so với điện tích. 1.3.2 Hệ phương trình Maxwell mở rộng đối xứng với đơn cực từ Trước Dirac, vào năm 1873 J. Maxwell đã đưa ra hệ phương trình mô tả trường điện từ cổ điển. Cùng với định luật lực Lorentz và các phương trình chuyển động Newton, chúng mô tả tất cả các động thái cổ điển của tương tác giữa hạt điện tích với điện từ trường. Tương tự với điện tích chúng ta có thể cộng thêm một từ tích vào hệ phương trình Maxwell bằng cách đưa ra các khái niệm mật độ từ tích và dòng từ tích hoàn toàn tương tự như mật độ điện tích và dòng điện tích [2][3]. Lúc này từ trường không chỉ do điện tích chuyển động sinh ra mà còn do từ tích gây ra. Hệ phương trình Maxwell mở rộng đối xứng sẽ có dạng như sau: ur ur ∇ ⋅ D = ρe ur(14) ur ∇ ⋅ B = ρm (16) ur ur −∇ × = E ∂ ur r B + jm ∂t ur uur −∇ ×= H ∂ ur r D + je ∂t (15) (17) Hệ phương trìnhMaxwell đối xứng là bất biến đối với phép biến đổi nhị nguyên (ξ ∈ T 1 2 R): T2 6 1 T2 6 1 uur uur ur uur' ur uur = E E cos ξ + H ' sin= ξ D D ' cos ξ + B ' sin ξ uur uur uur uur uur ur − E ' sin ξ + H ' cos ξ B = H= − D ' sin ξ + B ' cos ξ r r' r' = ρe ρe' cos ξ + ρ m' sin ξ= j e j e cos ξ + j m sin ξ r r' r' − ρe' sin ξ + ρ m' cos ξ ρm = jm = − j e sin ξ + j m cos ξ (18) Một trường hợp thông dụng của phép biến đổi nhị nguyên là khi ξ= /2. Hệ phương T 1 2 T 1 2 T 1 2 trình Maxwell mở rộng là bất biến với phép biến đổi: r r ur uur ur ur ρe → ρm j e → j m E → H D → B r r ur ur uur ur ρm → − ρe j m → − j e B → − D H → − E Ta có thể thu lại hệ phương trình Maxwell thông thường trong trường hợp từ tích không tồn tại hoặc tồn tại nhưng không nằm trong vùng không gian đang xét. Đối xứng này cho ta một lực Lorentz tổng quát đối với hạt có điện tích ur ur r ur F= e E + v × B + ( Đối xứng của ) ur và từ tích : r ur (B − v× E) (19) trong không gian nghịch đảo và thời gian nghịch đảo là phản của . Và như một hệ quả nếu tồn tại hạt dyon vừa mang điện tích vừa mang từ tích thì không gian nghịch đảo và thời gian nghịch đảo sẽ không còn đối xứng nữa và đó là một động lực để sáng chế ra từ tích. 1.3.3 Đơn cực từ trong lý thuyết thống nhất lớn Từ năm 1974 đơn cực từ được xem như có thể tổng quát hóa hệ phương trình Maxwell và giải quyết được vấn đề lượng tử hóa của điện tích. Trong năm 1974 t’Hooft và Polyakov đã độc lập cho thấy sự tồn tại của đơn cực từ như giải pháp tự nhiên trong lớp chung của các lý thuyết thống nhất lớn (GUTs). Thống nhất thành công tương tác yếu với tương tác điện từ là rất quan trọng để có thể thống nhất tương tác điện yếu và tương tác mạnh với một tương tác GUT. Các suy luận cho thấy ba hằng số kết nối nối liên quan đến các tương tác trên gần như giao nhau tại một điểm ở thang năng lượng dự đoán là GeV. Vì vậy công trình của t’Hooft và Polyakov đã phục hưng lại ý tưởng về đơn cực. Tham số dẫn đến sự tồn tại của đơn cực từ xuất từ một mô hình đặc biệt của lý thuyết thống nhất, gọi đơn giản là SU(2) mô hình Georgi-Glashow với sự tự phá vỡ tính đối xứng [4] [5]. Hình 1.5: Chỉ số chạy của các hằng số nối trong lý thuyết thống nhất, hình (a) tương , tương tác yếu nối với tác điện từ U(1) nối với , tương tác mạnh nối với ; hình (b) chỉ số chạy của các hằng số nối với giả định siêu đối xứng. Như đã nêu, các lý thuyết thống nhất lớn của tương tác điện yếu va tương tác mạnh dự đoán sự tồn tại của các đơn cực từ siêu nặng được sinh ra trong vũ trụ ban đầu như các lỗi topo khi một nhóm gauge thống nhất tự phá hủy thành các nhóm tách biệt . Giả định nhóm thống nhất GUT là SU(5) ta có mô hình chuyển đổi trong vũ trụ ban đầu như sau: 10 GeV 10 GeV SU (5)   → SU (3)C × [SU (2) L × U (1)Y ] → SU (3)C × U (1) EM 10−35 s 10−9 s 15 2
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất