Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Khoa học xã hội Phân tích và đánh giá chất lượng nước dựa vào chỉ số chất lượng nước (wqi) áp dụ...

Tài liệu Phân tích và đánh giá chất lượng nước dựa vào chỉ số chất lượng nước (wqi) áp dụng cho một số sông quan trọng trên địa bàn tỉnh thừa thiên huế và quảng trị

.PDF
78
1
125

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC HUẾ −−−YZ−−− THUỶ CHÂU TỜ PHÂN TÍCH VÀ ĐÁNH GIÁ CHẤT LƯỢNG NƯỚC DỰA VÀO CHỈ SỐ CHẤT LƯỢNG NƯỚC (WQI): ÁP DỤNG CHO MỘT SỐ SÔNG QUAN TRỌNG TRÊN ĐỊA BÀN TỈNH THỪA THIÊN HUẾ VÀ QUẢNG TRỊ LUẬN VĂN THẠC SĨ HOÁ HỌC HUẾ, NĂM 2004 bé gi¸o dôc vμ ®μo t¹o ®¹i häc huÕ # " thuû ch©u tê ph©n tÝch vμ ®¸nh gi¸ chÊt l−îng n−íc dùa vμo chØ sè chÊt l−îng n−íc (wqi): ¸p dông cho mét sè s«ng quan träng trªn ®Þa bμn tØnh thõa thiªn huÕ vμ qu¶ng trÞ luËn v¨n th¹c sÜ ho¸ häc HuÕ, n¨m 2004 MỤC LỤC Trang Trang phụ bìa..................................................................................................................................................................................... i Lời cam đoan ....................................................................................................................................................................................ii Lời cảm ơn ........................................................................................................................................................................................iii Mục lục................................................................................................................................................................................................... 1 Danh mục các hình vẽ, đồ thị ........................................................................................................................................... 3 MỞ ĐẦU ........................................................................................................................................................................................... 4 Chương 1. TỔNG QUAN 1.1. Chất lượng nước và nhu cầu đánh giá chất lượng nước ....................................................... 7 1.2. Giới thiệu về chỉ số chất lượng nước (WQI) .................................................................................. 8 1.2.1. Khái niệm ......................................................................................................................................................... 8 1.2.2. Ưu điểm và hạn chế của WQI........................................................................................................ 8 1.2.3. Phân loại WQI............................................................................................................................................... 9 1.2.4. Phương pháp chung để xây dựng một mô hình tính WQI.................................. 9 1.2.5. Chỉ số chất lượng nước tổng quát của NSF (NSF - WQI) ..............................11 1.2.6. Chỉ số chất lượng nước của Bhargava ................................................................................12 1.2.7. Đánh giá chất lượng nước theo WQI ...................................................................................14 1.2.8. Sơ lược về tình hình sử dụng WQI ........................................................................................15 1.3. Sơ lược về điều kiện tự nhiên các sông .............................................................................................15 Chương 2. NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1. Nội dung nghiên cứu ...........................................................................................................................................18 2.2. Phương pháp nghiên cứu ............................................................................................................................... 18 2.2.1. Phạm vi nghiên cứu ..............................................................................................................................18 2.2.2. Chuẩn bị mẫu ..............................................................................................................................................19 2.2.3. Phương pháp phân tích các thông số CLN .....................................................................20 2.2.4. Phương pháp tính toán WQI.........................................................................................................20 2.2.5. Phương pháp đánh giá, phân loại và phân vùng CLN .........................................21 2.2.6. Phương pháp xử lý số liệu thực nghiệm ...........................................................................21 1 Chương 3. KẾT QUẢ VÀ BÀN LUẬN 3.1. Đánh giá CLN sông Hương và sông Hiếu dựa vào các thông số CLN riêng biệt.......22 3.1.1. Sự ô nhiễm hữu cơ .................................................................................................................................22 3.1.2. Mật độ vi khuẩn phân cao...............................................................................................................24 3.1.3. Sự ô nhiễm amoni ...................................................................................................................................24 3.1.4. Nồng độ photpho trong nước ở mức tiềm tàng gây phú dưỡng ......................25 3.1.5. Sự nhiễm mặn .............................................................................................................................................26 3.1.6. Độ đục cao trong nước sông Hương khi có mưa to ở đầu nguồn.............27 3.2. Đánh giá CLN sông Hương và sông Hiếu dựa vào WQI ...............................................28 3.2.1. Xây dựng mô hình tính WQI .......................................................................................................28 3.2.2. Đánh giá biến động CLN tổng quát theo không gian và thời gian..........31 3.2.3. Đánh giá CLN cho các mục đích riêng ..............................................................................35 3.2.4. Phân loại và phân vùng CLN.......................................................................................................43 3.2.5. Đề xuất chương trình quan trắc CLN ..................................................................................46 KẾT LUẬN ......................................................................................................................................................................................48 TÀI LIỆU THAM KHẢO ..................................................................................................................................................50 PHỤ LỤC 2 DANH MỤC CÁC HÌNH, ĐỒ THỊ Hình 1.1. "Hàm nhạy" của các thông số chất lượng nước lựa chọn ......................................... 13 Hình 3.1. Biến động COD trong nước sông Hương và sông Hiếu theo tháng và mặt cắt . 23 Hình 3.2. Biến động DO trong nước sông Hương và sông Hiếu theo tháng và mặt cắt ...... 23 Hình 3.3. Biến động amoni trong nước sông Hương và sông Hiếu theo tháng và mặt cắt 25 Hình 3.4. Biến động độ mặn trong nước sông Hương và sông Hiếu theo tháng và mặt cắt . 26 Hình 3.5. Biến động độ đục trong nước sông Hương và sông Hiếu theo tháng và mặt cắt .. 27 Hình 3.6. "Hàm nhạy" của các thông số lựa chọn đối với các mục đích sử sụng nước . 29 Hình 3.7. Biến động WQIB của sông Hương theo tháng và mặt cắt ................................................... 31 Hình 3.8. Biến động WQIB của sông Hiếu theo tháng và mặt cắt ......................................................... 34 Hình 3.9. Biến động WQITT của sông Hương và sông Hiếu theo tháng và mặt cắt ................ 37 Hình 3.10. Biến động WQISH của sông Hương và sông Hiếu theo tháng và mặt cắt ............ 38 Hình 3.11. Biến động WQINN của sông Hương và sông Hiếu theo tháng và mặt cắt ........... 39 Hình 3.12. Biến động WQICN của sông Hương và sông Hiếu theo tháng và mặt cắt ............ 40 Hình 3.13. Biến động WQIBT của sông Hương và sông Hiếu theo tháng và mặt cắt ............ 41 Hình 3.14. Biến động WQINT của sông Hương và sông Hiếu theo tháng và mặt cắt SH4 ÷ SH6 .............................................................................................................................................................. 42 3 MỞ ĐẦU Các nguồn nước mặt nói chung (sông nói riêng) đóng vai trò quan trọng trong đời sống kinh tế - xã hội của địa phương hay quốc gia. Vai trò đó được thể hiện ở việc điều hoà khí hậu; cung cấp nước cho sinh hoạt, tưới tiêu trong nông nghiệp, cấp nước cho công nghiệp, giao thông thuỷ, du lịch, thể thao giải trí… Ngày nay, cùng với sự phát triển kinh tế, dân số gia tăng thì nhu cầu sử dụng nước ngày càng tăng cả về khối lượng lẫn chất lượng. Việc khai thác quá mức các nguồn nước phục vụ nhu cầu hàng ngày mà không có kế hoạch bảo vệ sẽ dễ dẫn đến nguy cơ cạn kiệt. Mặt khác, các nguồn nước mặt cũng là nơi tiếp nhận hầu hết các chất thải và do vậy, nguy cơ ô nhiễm nguồn nước là khó tránh khỏi. Các điều đó sẽ làm giảm chất lượng nước, ảnh hưởng bất lợi đến đời sống các sinh vật, tính đa dạng sinh học, cân bằng sinh thái của hệ sinh thái nước và quan trọng hơn là ảnh hưởng tới sức khoẻ con người. Để bảo vệ các nguồn nước, bảo vệ sinh vật và sức khoẻ con người, cần phải thiết lập chiến lược bảo vệ tài nguyên nước, quản lý và khai thác hợp lý các nguồn nước. Để thực hiện mục đích đó, một trong những nhiệm vụ quan trọng hàng đầu là điều tra, đánh giá hiện trạng chất lượng của các nguồn nước. Để đánh giá chất lượng nước (CLN), cách làm thông thường hiện nay ở Việt Nam và các quốc gia trên thế giới là dựa vào việc phân tích các thông số CLN riêng biệt, rồi so sánh từng thông số đó với giá trị giới hạn được quy định trong tiêu chuẩn của quốc gia hoặc/và quốc tế. Cách làm đó khó lý giải và thông tin về CLN cho cộng đồng và các nhà hoạch định chính sách về quản lý và sử dụng nguồn nước. Mặt khác, cách làm đó cũng không cho phép đánh giá một cách tổng quát, không phân loại, phân vùng được CLN… nên không hoặc khó so sánh CLN từng vùng của một con sông, giữa các sông, các khoảng thời gian khác nhau… và do vậy, khó khăn cho việc giám sát và quản lý CLN. Để khắc phục những điều đó và đồng thời tạo cơ sở thuận lợi cho việc phân loại, phân vùng và bản đồ hoá CLN, cần phải có một thông số mô tả tổng quát, cho phép lượng hoá được CLN. Một trong những thông số tổng quát đó là Chỉ số Chất lượng nước (Water Quality Index, viết tắt là WQI). 4 WQI là một thông số “tổ hợp” được tính toán từ nhiều thông số CLN riêng biệt theo một phương pháp xác định [23]. WQI được đề xuất và áp dụng đầu tiên ở Mỹ vào những năm 1965 ÷ 1970. Sau đó WQI nhanh chóng được chấp nhận và triển khai áp dụng ở nhiều quốc gia trên thế giới và nó được xem là một công cụ hữu hiệu đối với các nhà quản lý môi trường trong việc giám sát và đánh giá CLN, cung cấp những thông tin CLN cho cộng đồng và các nhà hoạch định chính sách. Ở Việt Nam, đã có một số tác giả xây dựng WQI áp dụng cho sông Đồng Nai (1995) và Chỉ số Sinh học ASPT (Average Score Per Taxon), theo hệ thống BMWP của Anh và của Việt Nam, cho sông Nhuệ ở khu vực phía Bắc (N. X. Quỳnh, 2001 ÷ 2003). Ở khu vực miền Trung, P. K. Liệu (1997) [20], N. V. Hợp và cộng sự (2001÷ 2003) [5], [17] là những người đầu tiên áp dụng WQI cho sông Hương ở tỉnh Thừa Thiên Huế và phân loại, lý giải CLN theo hệ thống WQI của Quỹ vệ sinh Mỹ (United States - National Sanitation Foundation - Water Quality Index, viết tắt là NSF-WQI). Năm 2003, N. V. Hợp, N. H. Nam và N. V. Tứ [6] đã nghiên cứu áp dụng NSF-WQI để đánh giá CLN vùng hạ lưu sông Hiếu, thuộc hệ thống sông Thạch Hãn ở tỉnh Quảng Trị. NSF-WQI là chỉ số CLN nổi tiếng, được áp dụng phổ biến để đánh giá CLN mặt (chủ yếu là sông). Nó là cơ sở cho sự ra đời của nhiều chỉ số CLN sau này. Tuy nhiên, khi đánh giá CLN dựa vào NSF-WQI, gặp phải một số khó khăn: − NSF-WQI thường chỉ đánh giá nhạy cho các sông không bị nhiễm mặn và do vậy, sẽ kém đại diện khi áp dụng đối với vùng cửa sông, vùng đầm phá - những vùng bị nhiễm mặn vào mùa khô. Sự nhiễm mặn tạo ra các vùng cửa sông là nét đặc trưng của các sông ở khu vực miền Trung Việt Nam. − NSF-WQI là chỉ số cho phép đánh giá tổng quát về CLN, tức là đánh giá CLN cho đa mục đích sử dụng (cấp nước sinh hoạt, công nghiệp, nông nghiệp…). Trong khi đó, có nhiều sông hoặc các đoạn sông của một con sông không phải lúc nào cũng sử dụng cho đa mục đích mà chỉ dùng cho một hoặc một vài mục đích riêng nào đó. Chẳng hạn, vùng hạ lưu thường chỉ phục vụ cho nuôi trồng thuỷ sản, vùng thượng lưu phục vụ cấp nước sinh hoạt, nông nghiệp, công nghiệp… Trong những trường hợp đó, NSF-WQI sẽ đánh giá phiến diện (hay thiên lệch) và không 5 hoặc khó thông tin cho cộng đồng và các nhà hoạch định chính sách khi phải quyết định về khả năng sử dụng sông cho một hoặc một vài mục đích riêng nào đó. − Mô hình NSF-WQI sử dụng nhiều thông số lựa chọn (n = 9) để tính WQI. Trong đó có một số thông số khó xác định chính xác vì quá nhỏ (như tổng chất rắn (TS) đối với nước sông trong và ngọt, PO43- đối với nước sông không bị phú dưỡng) và mất nhiều thời gian (như coliform phân, BOD5). Điều đó cũng hạn chế phần nào đến khả năng thông báo nhanh về xu thế diễn biến CLN của sông khảo sát (thông báo qua WQI). Vì những lý do trên, từ những năm 70 đến nay, trên thế giới đã có hàng trăm công trình nghiên cứu phát triển và ứng dụng WQI để dùng riêng cho quốc gia hay địa phương theo các hướng: cải tiến NSF-WQI [17], xây dựng các WQI cho các mục đích sử dụng riêng [10], [18], xây dựng các WQI với ít thông số lựa chọn và dễ đo đạc/phân tích: n = 3 [25], n = 3 ÷ 5 [10],… Trong số các WQI đó, mô hình WQI do Bhargava đề xuất năm 1983 [10] là một trong những mô hình đơn giản, dễ áp dụng với ít thông số lựa chọn (n = 3 ÷ 5). Mặt khác, mô hình này vừa cho phép đánh giá CLN cho đa mục đích sử dụng, vừa cho phép đánh giá CLN cho các mục đích sử dụng riêng và đã được áp dụng cho nhiều sông ở Ấn Độ [10], [11] - quốc gia có nhiều điểm tương đồng với Việt Nam. Xuất phát từ những lý do trên, trong đề tài này, chúng tôi áp dụng mô hình WQI của Bhargava và có điều chỉnh cho phù hợp với thực tế để đánh giá CLN của sông Hương (ở Thừa Thiên Huế) và sông Hiếu (ở Quảng Trị), nhằm mục đích: • Góp phần thiết lập cơ sở dữ liệu nền về các thông số chất lượng nước cơ bản của sông Hương và sông Hiếu. • Xây dựng mô hình WQI thích hợp cho hai sông đó sao cho tạo ra được một công cụ hữu hiệu để có thể nhân rộng cho các sông khác trong nước, phục vụ quản lý nguồn nước (theo dõi diễn biến, dự báo, thông tin cho cộng đồng…). 6 Chương 1 TỔNG QUAN 1.1. CHẤT LƯỢNG NƯỚC VÀ NHU CẦU ĐÁNH GIÁ CHẤT LƯỢNG NƯỚC Nước là tài nguyên đặc biệt quan trọng, là thành phần thiết yếu của sự sống và môi trường, quyết định đến sự tồn tại và phát triển của nhân loại trên trái đất [6]. Tuy nhiên, khoảng 97% lượng nước trên trái đất là nước mặn, nước ngọt ở sông hồ chỉ chiếm tỷ lệ khá nhỏ (khoảng 0,01 %). Song, với việc khai thác một cách dễ dàng các nguồn nước phục vụ đời sống con người, sử dụng nước một cách lãng phí, cùng với việc thải các chất độc hại bừa bãi đã làm cho nguồn nước (kể cả nguồn nước ngầm) đã bị suy giảm, cạn kiệt, thậm chí bị ô nhiễm nghiêm trọng, nhất là ở các thành phố lớn, khu công nghiệp và khu dân cư tập trung. Trước tình hình đó, việc đánh giá chất lượng nước để có kế hoạch quản lý, bảo vệ, kiểm soát ô nhiễm và khai thác nguồn nước đã trở thành một nhu cầu cấp thiết đối với bất kỳ một quốc gia nào. Khi đề cập đến CLN, có thể dùng hai thuật ngữ thay thế cho nhau - CLN & ô nhiễm nước (viết tắt là ONN), nghĩa là: CLN càng tốt ứng với mức ONN càng thấp và ngược lại, CLN càng kém ứng với mức ONN càng cao. Để đánh giá CLN, người ta phải phân tích các thông số CLN. Dựa vào bản chất của các thông số CLN, người ta chia các thông số CLN thành các thông số vật lý, hoá học, vi sinh như sau [6], [7]: − Các thông số vật lý: màu, mùi, nhiệt độ, tổng chất rắn, tổng chất rắn hoà tan, độ đục, độ dẫn điện... − Các thông số hoá học: oxy hoà tan (DO), nhu cầu oxy sinh hoá (BOD), nhu cầu oxy hoá học (COD), tổng cacbon hữu cơ (TOC), độ mặn, độ cứng, pH, NO3-, NO2-, NH4+/NH3, PO43-, F-, SO42-, hoá chất bảo vệ thực vật (nhóm DDT, nhóm HCH, lindan…), kim loại độc (HgII, CdII, PbII...) ... − Các thông số vi sinh: tổng coliform, coliform phân... Để đánh giá CLN, người ta có nhiều cách khác nhau: − Đánh giá thông qua việc so sánh các thông số CLN xác định được với các tiêu chuẩn quy định (tiêu chuẩn quốc gia hoặc khu vực hoặc quốc tế). 7 − Mô hình hoá chất lượng nước, tức là sử dụng các mô hình toán học để mô phỏng CLN hoặc ONN. − Đánh giá CLN thông qua chỉ số chất lượng nước (WQI). − Đánh giá CLN thông qua các chỉ thị sinh học... Việc đánh giá CLN dựa vào việc phân tích các thông số riêng biệt, rồi so sánh từng thông số đó với giá trị được quy định trong tiêu chuẩn quốc gia không cho phép đánh giá một cách tổng quát về CLN, không phân loại được CLN, nên không hoặc khó so sánh CLN từng vùng của một con sông, so sánh CLN sông này với sông khác, CLN thời gian này với thời gian khác... và do vậy, khó khăn cho việc giám sát và quản lý CLN. Việc đánh giá CLN dựa vào mô hình hoá đòi hỏi có một lượng lớn các dữ liệu đầu vào liên quan đến các yếu tố CLN, thuỷ động lực học, sinh thái học… Điều đó chỉ phù hợp với các nước có trình độ phát triển. Một công cụ đánh giá CLN vừa khắc phục được những nhược điểm của phương pháp đánh giá dựa vào những thông số riêng biệt, vừa không đòi hỏi quá nhiều yếu tố như phương pháp đánh giá bằng mô hình hoá là đánh giá CLN dựa vào chỉ số chất lượng nước (WQI). 1.2. GIỚI THIỆU VỀ CHỈ SỐ CHẤT LƯỢNG NƯỚC (WQI) 1.2.1. Khái niệm Chỉ số chất lượng nước (WQI) là một thông số "tổ hợp" được tính toán từ nhiều thông số chất lượng nước theo một phương pháp xác định (hay theo một công thức toán học xác định) [20], [23]. WQI được dùng để mô tả định lượng về CLN và được biểu diễn qua thang điểm: thông thường 0 ÷100, một số trường hợp 10 ÷ 100, 0 ÷ 1000... 1.2.2. Ưu điểm và hạn chế của WQI Việc sử dụng WQI có nhiều ưu điểm: − WQI cho phép giảm một lượng lớn các thông số vật lý, hóa học, vi sinh xuống còn một con số đơn giản theo một phương thức đơn giản. − WQI cho phép lượng hóa chất lượng nước (tốt, xấu, trung bình...) theo một thang điểm liên tục và nó thể hiện tổng hòa ảnh hưởng của các thông số. − WQI không những đóng vai trò là chỉ thị của sự thay đổi chất lượng nước, mà còn chỉ thị cho những thay đổi về tiềm năng sử dụng nước. 8 − WQI cho phép đánh giá khách quan về CLN, đồng thời cho phép so sánh CLN theo không gian, thời gian và do vậy, thuận lợi cho phân vùng và phân loại CLN. − WQI thích hợp với việc tin học hoá, nên thuận lợi cho quản lý và thông báo cho cộng đồng và các nhà hoạch định chính sách. − WQI sẽ tạo điều kiện thuận lợi cho bản đồ hóa CLN thông qua việc “màu hóa” các thang điểm WQI… Ngoài những ưu điểm trên, WQI cũng có một vài điểm hạn chế như: thiếu sự nhất trí về cách tiếp cận chung để xây dựng mô hình WQI, WQI không bao hàm thông tin về hiệu quả kinh tế có được từ những nỗ lực cải thiện CLN.... 1.2.3. Phân loại WQI Chỉ số CLN (WQI) có thể được chia thành hai loại chính [23]: • Chỉ số CLN tổng quát (General Water Quality Index): mô tả CLN một cách tổng quát cho đa mục đích sử dụng nước, chẳng hạn, NSF-WQI, WQI của Horton… • Chỉ số CLN cho các mục đích riêng (Specific Use Index): mô tả CLN cho các mục đích riêng, chẳng hạn, chỉ số CLN cấp cho cộng đồng (PWS - Public Water Supply), chỉ số CLN cho cá và động vật hoang dã (FAWL - Fish And Wild Life), chỉ số CLN cho nông nghiệp, công nghiệp, cấp nước sinh hoạt... 1.2.4. Phương pháp chung để xây dựng một mô hình tính WQI Việc xây dựng một mô hình tính WQI gồm 4 giai đoạn cơ bản: (1). Xác định các thông số CLN lựa chọn (Xi) Một số ít các thông số được lựa chọn từ nhiều thông số CLN để tính vào WQI. Số thông số được lựa chọn để tính vào WQI thường thay đổi, nó được hiệu chỉnh, thay đổi cho phù hợp với từng dòng sông, cho từng mục đích sử dụng nước, nhưng thường là 3 ÷13 thông số. (2). Xác định phần trọng lượng đóng góp của các thông số lựa chọn (wi) Phần trọng lượng đóng góp thể hiện tầm quan trọng của mỗi thông số lựa chọn trong mô hình tính WQI. Tuỳ theo dòng sông và mục đích sử dụng nước khác nhau mà tầm quan trọng của mỗi thông số trong mô hình tính cũng khác nhau. Song, cũng có một số loại WQI không tính đến phần trọng lượng đóng góp của thông số lựa chọn. 9 (3). Xác định chỉ số phụ (qi) qi thể hiện chất lượng của thông số lựa chọn và do vậy, nó phụ thuộc vào giá trị của thông số lựa chọn. Mặt khác, do các thông số lựa chọn thường có đơn vị đo khác nhau nên phải quy về qi không có đơn vị và qi thường nhận giá trị trong khoảng 0 ÷ 100 [23] hoặc 0 ÷ 1 [10]. Để xác định qi, người ta phải xây dựng sự phụ thuộc giữa qi và giá trị đo xi của thông số lựa chọn (Xi) dưới dạng phương trình toán, đồ thị hàm tuyến tính hoặc phi tuyến qi = f(xi) hoặc bảng tra cứu. (4). Tính các giá trị WQI theo công thức toán học xác định Theo Ott [23], các công thức tính WQI có nhiều dạng khác nhau, có thể tính và không tính đến phần trọng lượng đóng góp (wi), có thể là dạng tổng (Additive) hoặc dạng tích (Multiplicative) hoặc dạng Solway... Dưới đây liệt kê một số công thức dùng để tính WQI tổng quát (bảng 1.1). Các công thức này là cơ sở cho sự ra đời của nhiều công thức tính WQI của các tác giả sau này. Bảng 1.1. Các công thức tính WQI tổng quát Dạng tổng Không tính phần trọng lượng đóng góp Có tính phần trọng lượng đóng góp n 1 ∑ qi n i=1 i Dạng Solway 1/n 1 ⎛1 n ⎞ ∑ qi 100 ⎜⎝ n i=1 ⎟⎠ ⎛ n ⎞ ⎜ ∏ qi ⎟ ⎝ i=1 ⎠ n ∑q w Dạng tích n ∏q i i=1 i wi i=1 2 1 ⎛ n ⎞ qi w i ⎟ ∑ ⎜ 100 ⎝ i=1 ⎠ 2 Mỗi giai đoạn trong quá trình xây dựng mô hình tính WQI có thể được thực hiện theo nhiều cách khác nhau: − Có thể theo ý kiến chủ quan của tác giả, ví dụ như Horton, 1965 [23]; Dinius, 1972 [23]; Bhargava, 1983 [10]... để xác định xi, wi và qi. − Tập hợp ý kiến theo kỹ thuật Delphi, tức là sử dụng các bảng câu hỏi điều tra gửi đến các chuyên gia trong lĩnh vực nghiên cứu về CLN, rồi tập hợp kết quả điều tra để xác định xi, wi, qi, ví dụ như Brown và cộng sự, 1970 [23]; Dunnette, 1979 [20]... − Sử dụng các kỹ thuật thống kê, Shoji và cộng sự, 1996; Juong và cộng sự, 1979 [20]... 10 Hiện nay, có rất nhiều chỉ số chất lượng nước được phát triển ở nhiều quốc gia trên thế giới. Trong số đó, chỉ số CLN do Quỹ Vệ sinh Mỹ đề xuất (NSF-WQI) là một trong những chỉ số CLN ra đời đầu tiên và được sử dụng khá phổ biến. Chỉ số CLN do Bhargava đề nghị là một trong những WQI cho các mục đích riêng, có nhiều ưu điểm và được dùng nhiều ở Ấn Độ. Dưới đây sẽ giới thiệu về WQI của NSF và của Bhargava. 1.2.5. Chỉ số chất lượng nước tổng quát của NSF (NSF-WQI) NSF-WQI được Brown, Mc Clelland, Deininger và Tozer xây dựng vào đầu những năm 1970, dưới sự hỗ trợ của Quỹ Vệ sinh Quốc gia Mỹ (US-NSF). NSFWQI là kiểu chỉ số CLN tổng quát, tức là chung cho đa mục đích sử dụng nước. NSF-WQI được xây dựng bằng cách sử dụng kỹ thuật Delphi (của tập đoàn Rand) để xác định các thông số CLN lựa chọn (Xi), sau đó xác lập phần trọng lượng đóng góp của từng thông số (wi) và tiến hành xây dựng các đồ thị chuyển đổi từ các giá trị xi (giá trị đo được của thông số lựa chọn) sang chỉ số phụ (qi). Từ kết quả các phiếu câu hỏi điều tra gửi cho các chuyên gia, 9 thông số được lựa chọn từ 35 thông số CLN đưa ra, bao gồm: DO, coliform phân, pH, BOD5, NO3- (từ đây, để cho tiện, viết tắt là NO3), PO43- (từ đây, để cho tiện, viết tắt là PO4), nhiệt độ, độ đục và tổng chất rắn (TS). NSF-WQI được tính theo một trong 2 công thức: công thức có tính đến phần trọng lượng đóng góp, có dạng tổng (ký kiệu là WA-WQI), có dạng tích (ký kiệu là WM-WQI): 9 WA-WQI = ∑ w i q i i=1 9 (1.1) và WM-WQI = ∏ q i Wi (1.2) i=1 Phần trọng lượng đóng góp (wi) của 9 thông số lựa chọn như sau: DO: 0,17; coliorm phân: 0,15; pH: 0,12; BOD5: 0,10; NO3: 0,10; PO4: 0,10; biến thiên nhiệt độ (ΔT): 0,10; độ đục: 0,08; tổng chất rắn (TS): 0,08; 9 ∑w i = 1. i=1 Chỉ số phụ qi được xác định dựa vào các đồ thị qi = f(xi) (xem các đồ thị chỉ số phụ qi = f(xi) ở phụ lục 1). Trên mỗi đồ thị qi = f(xi), giá trị trung bình và khoảng tin cậy 80% được biểu diễn, qi nhận giá trị 0 ÷ 100. 11 Theo mô hình này, giá trị WQI xác định được nằm trong khoảng 0 đến 100, WQI = 0 ứng với mức CLN xấu nhất, WQI = 100 ứng với mức CLN tốt nhất. Theo mô hình NSF-WQI, điểm WQI sẽ bằng 0 nếu nồng độ của bất kỳ chất độc nào - kim loại nặng và dư lượng hoá chất bảo vệ thực vật - trong nước vượt quá mức cho phép trong tiêu chuẩn quốc gia. 1.2.6. Chỉ số chất lượng nước của Bhargava Chỉ số CLN do Bhargava xây dựng năm 1983 (từ đây, để tiện, viết tắt là Bhargava-WQI) đã được áp dụng để phân vùng và phân loại CLN sông Ganga, Ấn Độ. Bhargava quan tâm đến các mục đích sử dụng nước khi xây dựng chỉ số chất lượng nước. Các bước xây dựng Bhargava-WQI bao gồm: (1). Xác định các mục đích sử dụng nước Bước đầu tiên là xác định các mục đích sử dụng nước. Các nguồn nước khác nhau ở những vùng khác nhau thì mục đích sử dụng nước có thể khác nhau. Chẳng hạn, đối với sông Ganga, Bhargava phân thành 5 mục đích sử dụng: (1) Tắm và bơi lội; (2) Cấp nước sinh hoạt; (3) Nông nghiệp; (4) Công nghiệp; (5) Nuôi cá và tiếp xúc gián tiếp. (2). Xác định các thông số CLN lựa chọn cho mỗi mục đích sử dụng nước Các mục đích sử dụng nước khác nhau yêu cầu các thông số CLN khác nhau và tầm quan trọng của mỗi thông số cũng khác nhau. Chẳng hạn, đối với sông Ganga, các thông số CLN lựa chọn tương ứng với các mục đích sử dụng nước khác nhau được Bhargava đề nghị nêu ở bảng 1.2. Bảng 1.2. Các thông số CLN lựa chọn cho các mục đích sử dụng nước khác nhau STT 1 2 Mục đích sử dụng nước Tắm, bơi lội Cấp nước sinh hoạt Các thông số lựa chọn n Độ đục, BOD, DO, N-NH3, coliform 5 - Độ đục, BOD, DO, Cl , coliform - 5 3 Nông nghiệp TDS, Cl , Bo, tỷ số natri 4 4 Công nghiệp Độ đục, TDS, độ cứng 3 5 Nuôi cá và tiếp xúc gián tiếp - Nhiệt độ, BOD, DO, Cl 4 Các thông số CLN lựa chọn được xác định dựa trên các tiêu chuẩn quốc gia về chất lượng nước tương ứng với các mục đích sử dụng nước khác nhau (chẳng hạn, ở Việt Nam, tiêu chuẩn CLN sông cho mục đích cấp nước sinh hoạt, nên dựa 12 vào tiêu chuẩn TCVN 5942-1995 của Bộ KHCN&MT (trước đây), tiêu chuẩn CLN sông cấp cho nuôi trồng thuỷ sản thì nên dựa vào tiêu chuẩn 28 TCN 171-2001 của Bộ Thuỷ sản…). Nói chung, các mục đích sử dụng nước có thể thay đổi tuỳ thuộc vào nguồn nước và trình độ công nghệ, kinh tế - xã hội của quốc gia, địa phương và đi kèm, các thông số CLN lựa chọn để tính WQI cũng sẽ khác nhau. (3). Xây dựng "hàm nhạy" cho các thông số CLN lựa chọn “Hàm nhạy” ("sensitive function") là đại lượng trung tâm của mô hình Bhargava-WQI và nó được sử dụng thay thế cho qi trong mô hình NSF-WQI. “Hàm nhạy” mô tả chất lượng của thông số CLN lựa chọn và do vậy, mỗi xi sẽ nhận một giá trị hàm nhạy (Fi) nằm trong khoảng 0,01 ÷ 1. μ Khi Fi tăng, thì chất lượng của thông số tăng và ngược lại. Mặt khác, “hàm nhạy” không chỉ thay thế cho qi mà còn bao hàm cả trọng lượng đóng góp (wi) của xi và do vậy, không cần xác định wi Hình 1.1. "Hàm nhạy" của các khi tính toán WQI. thông số chất lượng nước lựa chọn Theo mô hình Bhargava-WQI, "hàm nhạy" là hàm tuyến tính biểu diễn mối quan hệ giữa Fi (tương tự như chỉ số phụ qi) với giá trị xi và được dùng để chuyển các giá trị đo (thường có đơn vị khác nhau) về cùng thang điểm chung 0,01 ÷ 1. "Hàm nhạy" được xây dựng dựa trên cơ sở các giá trị giới hạn quy định đối với các thông số CLN lựa chọn trong các tiêu chuẩn tương ứng cho các mục đích sử dụng nước khác nhau. Các hàm nhạy do Bhargava xây dựng cho sông Ganga được trình bày ở hình 1.1. Các số 1, 2, 3, 4, 5 trong hình là các "hàm nhạy" tương ứng với các mục đích sử dụng nước khác nhau nêu ở bảng 1.2. 13 (4). Tính toán chỉ số chất lượng nước Theo mô hình Bhargava-WQI, WQI cho mỗi mục đích sử dụng nước được tính toán theo công thức: 1/n ⎡ n ⎤ WQI = ⎢∏ Fi ⎥ x 100 ⎣ i=1 ⎦ Trong đó: Fi: giá trị hàm nhạy của thông số thứ i n: số thông số lựa chọn (n tuỳ thuộc vào mỗi mục đích sử dụng nước) WQI tổng quát (hay WQI cho đa mục đích sử dụng) cũng có thể tính được từ các mô hình Bhargava-WQI bằng cách lấy trung bình số học các giá trị WQI của các mục đích sử dụng nước khác nhau với giả thiết: tầm quan trọng của các mục đích sử dụng nước là như nhau. Nếu tầm quan trọng của các mục đích sử dụng nước khác nhau, có thể gán hệ số khác nhau cho mỗi mục đích sử dụng khi tính WQI tổng quát. 1.2.7. Đánh giá chất lượng nước theo WQI Trên cơ sở WQI tính được, người ta phân loại và đánh giá CLN theo các thang điểm WQI. Có nhiều cách phân loại CLN khác nhau, dưới đây trình bày một số cách phân loại đối với các WQI có thang điểm 0 ÷ 100. Bảng 1.3. Phân loại chất lượng nước theo Bhargava-WQI [10] Loại WQI (*) Giải thích I Rất tốt 90 ÷ 100 II Tốt 65 ÷ 89 III Trung bình 35 ÷ 64 IV Xấu 11 ÷ 34 V Rất xấu 0 ÷ 10 (*) WQI là chỉ số CLN tổng quát hoặc cho mục đích sử dụng riêng Bảng 1.4. Phân loại chất lượng nước theo NSF-WQI [23] WQI (*) Giải thích Rất tốt 91 ÷ 100 Tốt 71 ÷ 90 Trung bình 51 ÷ 70 Xấu 26 ÷ 50 Rất xấu 0 ÷ 25 (*) WQI tổng quát có thể tính theo cả hai công thức - dạng tổng và dạng tích, có tính đến phần trọng lượng đóng góp (xem công thức 1.1 và 1.2) Loại I II III IV V 14 Ngoài ra, còn có nhiều cách phân loại CLN khác nhau: chẳng hạn, phân loại CLN theo tiềm năng sử dụng nước (House và Newsome [18]), theo Dinius [23] ... 1.2.8. Sơ lược về tình hình sử dụng WQI Hiện nay có 3 xu hướng sử dụng WQI trong quản lý CLN và kiểm soát ONN: (1). Áp dụng hoàn toàn một mô hình WQI của một quốc gia hoặc một địa phương nào đó vào địa phương hoặc quốc gia mình. (2). Áp dụng có cải tiến (hay điều chỉnh) một mô hình WQI của một quốc gia hoặc địa phương khác vào quốc gia hoặc địa phương mình. (3). Xây dựng cho địa phương hay quốc gia mình một mô hình WQI riêng. Các nước phát triển thường theo xu hướng thứ ba - xu hướng đòi hỏi tốn kém nhiều công sức, thời gian và chi phí. Chẳng hạn, các chỉ số của House ở Anh [18], chỉ số SDD của cục phát triển Scotland [23], chỉ số của Uỷ ban nước Quốc gia Mexico [16], chỉ số CCME-WQI của Canada [13] ... Ở các nước đang phát triển thường theo xu hướng thứ nhất và thứ hai - xu hướng ít tốn kém về công sức, thời gian và chi phí. Chẳng hạn, chỉ số Bhargava ở Ấn Độ [11], ở Thái Lan dùng chỉ số SDD [12]… Do có nhiều ưu điểm, nên WQI ngày càng được nghiên cứu và ứng dụng rộng rãi trên thế giới trong lĩnh vực quản lý CLN và kiểm soát ô nhiễm nước. Trong những năm gần đây, có thêm nhiều quốc gia áp dụng WQI. Chẳng hạn, Mexico, 2002 [16]; Argentina, 1995 ÷ 1998 [25]; Zimbabwe, 2000 [19]; Thái Lan, 1998 ÷ 1999 [12]; Croatia, 1995 ÷ 1997 [22]; Canada, 2001 [13]… 1.3. SƠ LƯỢC VỀ ĐIỀU KIỆN TỰ NHIÊN CÁC SÔNG CHÍNH Ở THỪA THIÊN HUẾ VÀ QUẢNG TRỊ Nằm trong khu vực nhiệt đới gió mùa và chịu ảnh hưởng của hoàn lưu khí quyển, nên khí hậu của tỉnh Thừa Thiên Huế và Quảng Trị (TTH&QT) diễn biến phức tạp và khá khắc nghiệt. Địa hình có cả núi, đồi và đồng bằng; bị chia cắt bởi các hệ thống sông suối, vùng đầm phá ven biển đã tạo nên những tiểu vùng khí hậu. Chính những đặc trưng khí hậu này quyết định nên thời tiết và chế độ thủy văn của vùng. 15 TTH&QT nằm trong những tỉnh có lượng mưa lớn nhất nước, lượng mưa trung bình nhiều năm đo được tại nhiều trạm ở Thừa Thiên Huế (TTH) dao động từ 2773 đến 3646 mm, trung bình 2700 mm [7], ở Quảng Trị (QT) dao động từ 2066 đến 3002 mm, trung bình 2500 mm [9] và phân bố không đều theo không gian và thời gian. Mưa tập trung chủ yếu vào các tháng 9 ÷ 12, chiếm 68 ÷ 75% tổng lượng mưa năm (ở TTH) [7], 70 ÷ 80% tổng lượng mưa năm (ở QT) [9]. Các sông ở TTH&QT đều xuất phát từ dãy Trường Sơn, chảy theo hướng Bắc hoặc Đông - Bắc và đổ ra biển Đông. Các sông ở TTH đổ vào đầm phá Tam Giang - Cầu Hai trước khi ra biển qua cửa Thuận An và cửa Tư Hiền, các sông ở QT đổ trực tiếp ra biển thông qua cửa Tùng và cửa Việt. Một số đặc điểm hình thái các sông chính được nêu ở bảng 1.5. Bảng 1.5. Một số đặc trưng hình thái các sông chính [7], [9] Chiều dài sông (km) 104 Diện tích lưu vực (km2) 2830 Độ cao trung bình lưu vực (m) - 1 Hương Độ cao nguồn (m) 900 2 Ô Lâu 900 66 900 - 1,85 3 Thạch Hãn 700 156 2660 301 2,5 4 Hiếu 1425 70 539 - 2,5 5 Bến Hải 500 64,5 809 115 1,43 STT Tên sông Hệ số uốn khúc 1,65 Đặc điểm chung của các sông là ngắn, dốc và nhiều ghềnh thác. Chính đặc điểm này đã tạo ra một chế độ thủy văn phức tạp là lũ lụt trong mùa mưa và thiếu nước trong mùa khô. Lưu lượng dòng chảy của sông phụ thuộc chủ yếu vào lượng mưa. Lưu lượng dòng chảy đo được (hoặc tính toán) tại một số trạm ở TTH&QT được nêu ở bảng 1.6. Vào các tháng mùa khô (thường từ tháng 1 đến tháng 8), do lượng mưa thấp, nên lưu lượng dòng chảy nhỏ, cùng với hoạt động của gió Tây Nam (gió Phơn hay gió Lào) làm cho mực nước các sông giảm mạnh, sông chịu tác động mạnh của thủy triều từ biển và sự xâm nhập mặn vào sâu trong sông, đặc biệt là các sông Bến Hải, Hiếu. Sự xâm nhập mặn gây khó khăn cấp nước sinh hoạt, công nghiệp, nông nghiệp, nhưng lại thuận lợi cho các hoạt động nuôi trồng thủy sản nước lợ (nuôi 16 tôm sú). Thực tế, trong những năm gần đây, nuôi trồng thủy sản phát triển khá mạnh ở các vùng cửa sông, đặc biệt là cửa sông Hiếu và sông Bến Hải. Bảng 1.6. Lưu lượng dòng chảy (m3/s) trung bình tháng và năm trong nhiều năm [9], [18] Tên trạm(∗) Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Năm Thượng Nhật 10,0 6,1 4,3 4,1 9,1 10,0 6,5 7,2 16,1 48,9 45,4 26,3 16,2 Bình Điền 27,2 18,1 13,6 11,6 15,7 29,5 13,4 13,3 53,2 123 163 60,7 45,2 Cổ Bi 43,9 29,7 22,5 19,4 26,6 34,2 21,4 23,9 73,6 180 237 96,5 67,4 Gia Vòng 8,6 4,9 3,2 3,1 5,3 3,7 2,2 4,0 21,7 53,4 46,5 21,4 14,8 Cửa Sông 9,5 5,9 4,7 4,6 6,4 7,1 5,3 11,3 41,3 83,4 60,5 22,5 21,9 Quốc lộ 1A 30,2 20,7 16,8 27,1 51,6 52,3 46,8 74,6 134 191 137 72 71,2 (∗) Trạm Thượng Nhật trên sông Tả Trạch, trạm Bình Điền trên sông Hữu Trạch và trạm Cổ Bi trên sông Bồ thuộc tỉnh TTH. Trạm Gia Vòng trên sông Bến Hải, trạm Cửa Sông trên sông Hiếu và trạm Quốc lộ 1A trên sông Thạch Hãn thuộc tỉnh QT. Vào các tháng mùa mưa (thường từ tháng 9 đến tháng 12), do lượng mưa lớn, nên lưu lượng dòng chảy tăng mạnh, cùng với địa hình dốc, đồng bằng là một dải hẹp, thấp trũng nên tốc độ tập trung nước vào sông rất nhanh. Mạng lưới sông suối đều bắt nguồn từ núi cao, độ dốc lòng sông lớn, chiều dài sông ngắn, nên tốc độ truyền lũ về đồng bằng rất nhanh, kết hợp với sóng biển và triều cường đã gây ngập úng ở diện rộng và trong nhiều ngày, gây thiệt hại mùa màng, nhà cửa và cả tính mạng con người. Ngoài lũ chính mùa (10 ÷ 12), trong tháng 5 và 6, do có sự hoạt động của dải hội tụ nhiệt đới, nên thường có mưa lớn và sinh ra lũ gọi là lũ Tiểu Mãn. Theo thống kê, tần xuất xuất hiện của lũ Tiểu Mãn là 2,5 năm một lần [7]. Nhìn chung, lũ Tiểu Mãn thường ở mức độ nhỏ (mức báo động II) và do xuất hiện trong thời kỳ khô kiệt, nên lượng nước bị tổn thất khá lớn, mức độ thiệt hại không đáng kể. 17 Chương 2 NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 2.1. NỘI DUNG NGHIÊN CỨU (1). Đo đạc và phân tích các thông số CLN sông Hương và sông Hiếu từ 4 ÷ 10/2004, • Các thông số vật lý: nhiệt độ, độ đục hoặc chất rắn lơ lửng (SS), độ dẫn điện (EC) hoặc tổng chất rắn hoà tan (TDS), tổng chất rắn (TS). • Các thông số hóa học: pH, DO, BOD5, COD, độ mặn, amoni (NH4/NH3), NO3, PO4, tổng sắt tan, độ cứng. • Các thông số vi sinh: tổng coliform và coliform phân. (2). Xây dựng mô hình tính WQI phù hợp cho sông Hương và sông Hiếu dựa trên cơ sở Bhargava-WQI, (3). Tính toán WQI và đánh giá CLN sông Hương và sông Hiếu theo thời gian và không gian, (4). Phân loại và phân vùng CLN sông Hương và sông Hiếu. 2.2. PHƯƠNG PHÁP NGHIÊN CỨU 2.2.1. Phạm vi nghiên cứu Phạm vi nghiên cứu của đề tài là sông Hương (ở tỉnh Thừa Thiên Huế) và sông Hiếu (ở tỉnh Quảng Trị): • Sông Hương: phần chính của sông Hương - từ ngã ba Tuần - nơi gặp nhau của 2 nhánh sông Tả Trạch và Hữu Trạch - đến vùng cửa sông (gần đập Thảo Long), nơi tiếp giáp phá Tam Giang - với chiều dài 32 km, rộng trung bình 100 ÷ 300 m, sâu trung bình 2 ÷ 11 m. • Sông Hiếu: từ đập tràn (gần công ty khai thác đá Quảng Trị) đến ngã ba Gia Độ (nơi gặp nhau giữa sông Hiếu và sông Thạch Hãn) và kéo dài đến cảng Cửa Việt (thượng lưu cửa Việt khoảng 1500 m) - với chiều dài khoảng 35 km, rộng trung bình 100 ÷ 120 m, sâu trung bình 5 ÷ 10 m (đoạn từ ngã ba Gia Độ đến cảng Cửa Việt được địa phương gọi là sông Thạch Hãn). Để cho tiện, từ đây, trên toàn bộ chiều dài khảo sát (từ đập tràn đến cảng Cửa Việt) được gọi chung là sông Hiếu. 18
- Xem thêm -

Tài liệu liên quan