Đăng ký Đăng nhập
Trang chủ Khung sinh bởi họ b spline...

Tài liệu Khung sinh bởi họ b spline

.PDF
50
139
55

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 NGUYỄN MẠNH HÙNG KHUNG SINH BỞI HỌ B-SPLINE LUẬN VĂN THẠC SĨ TOÁN HỌC Hà Nội, 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 NGUYỄN MẠNH HÙNG KHUNG SINH BỞI HỌ B-SPLINE LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành: Toán giải tích Mã số : 60 46 01 02 Người hướng dẫn khoa học TS.Bùi Kiên Cường HÀ NỘI , 2017 Mục lục Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chương 1. Khung trong không gian Hilbert . . . . . . . . . . . . . 4 1.1. Toán tử trong không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1. Toán tử tuyến tính bị chặn trên không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2. Phép chiếu trực giao và phần bù trực giao. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. Cơ sở trong không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1. Hệ trực chuẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2. Cơ sở trực chuẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3. Khung trong không gian Hilbert . . . . . . . . . . . . . . . . . . . . . 11 1.3.1. Dãy Bessel trong không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2. Cơ sở Riesz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.3. Khung và các tính chất của Khung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.4. Khung và cơ sở Riesz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chương 2. Khung sinh bởi họ hàm B-Spline . . . . . . . . . . . 26 2.1. Họ B-Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2. Khung Gabor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1. Lý thuyết cơ sở của khung Gabor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2. Khung Gabor chặt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3. Đối ngẫu của Khung Gabor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.4. Xây dựng dạng hiện của cặp khung Gabor đối ngẫu nhờ B-spline. . . . . . . . . . 38 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Lời cảm ơn Luận văn được hoàn thành tại trường Đại học sư phạm Hà Nội 2 dưới sự hướng dẫn của thầy giáo - Tiến sĩ Bùi Kiên Cường. Tác giả xin bày tỏ lòng biết ơn sâu sắc tới TS Bùi Kiên Cường. Thầy đã tận tình hướng dẫn và giải đáp những thắc mắc của tôi, giúp đỡ tác giả hoàn thành luận văn này. Tác giả xin chân thành cảm ơn tới các thầy cô giáo phòng Sau đại học, các thầy cô giáo khoa Toán cũng như các thầy cô giáo giảng dạy lớp thạc sĩ K19 chuyên ngành Toán giải tích trường Đại học Sư phạm Hà Nội 2 đã đem hết tâm huyết và sự nhiệt tình để giảng dạy, trang bị cho tác giả nhiều kiến thức cơ sở và giúp đỡ tác giả trong suốt quá trình học tập. Tác giả xin chân thành cảm ơn Ban Giám Hiệu và Tổ Toán -Tin trường THPT Ngô Quyền - Ba Vì đã giúp đỡ, tạo điều kiện thuận lợi cho tác giả trong suốt quá trình học tập và làm luận văn. Tác giả xin được gửi lời cảm ơn chân thành tới gia đình, bạn bè, đồng nghiệp đã luôn quan tâm, động viên và tạo mọi điều kiện thuận lợi cho tác giả trong quá trình học tập và hoàn thành luận văn. Hà Nội, tháng 6 năm 2017 Tác giả Nguyễn Mạnh Hùng Lời cam đoan Tôi xin cam đoan, dưới sự hướng dẫn của TS.Bùi Kiên Cường, luận văn thạc sĩ chuyên ngành Toán giải tích với đề tài "Khung sinh bởi họ BSpline" được hoàn thành bởi chính sự nhận thức của bản thân tác giả. Trong suốt quá trình nghiên cứu thực hiện luận văn, tác giả đã kế thừa những thành tựu của các nhà khoa học với sự trân trọng và biết ơn. Hà Nội, tháng 06 năm 2017 Tác giả Nguyễn Mạnh Hùng Mở đầu 1. Lý do chọn đề tài Lý thuyết Khung đã được Duffin và Schaeffer đưa ra từ năm 1952 trong những nỗ lực tìm kiếm sự thay thế của khái niệm cơ sở. Tuy nhiên, phải đến nhu cầu của việc ứng dụng công nghệ thông tin trong xử lý ảnh cần những công cụ toán học linh hoạt hơn cơ sở của không gian thì lý thuyết Khung mới được phát triển. Thời điểm đánh dấu sự trở lại của lý thuyết Khung là năm 1986 trong công trình của Mallat. Đến nay, lý thuyết Khung đã có sự phát triển rộng rãi, đáp ứng tốt yêu cầu của không chỉ khoa học công nghệ mà còn là một công cụ để nghiên cứu Toán lý thuyết trong giải tích điều hòa, lý thuyết giả vi phân.....Từ lý thuyết Khung tổng quát trong không gian Hilbert trừu tượng, người ta có thể tạo ra các Khung dựa vào các lớp hàm cụ thể để có những lớp Khung khác nhau, chẳng hạn Khung Gabor , Khung B-Spline. Với mong muốn hiểu biết sâu sắc hơn về lý thuyết Khung, được sự đồng ý hướng dẫn của thầy giáo -Tiến sĩ Bùi Kiên Cường, tôi đã lựa chọn đề tài " Khung sinh bởi họ B-Spline " để thực hiện luận văn tốt nghiệp của mình. 2. Mục đích nghiên cứu Hệ thống hóa được những kiến thức cơ bản của lý thuyết Khung tổng quát. Trình bày các kết quả nghiên cứu gần đây về Khung sinh bởi các 1 hàm B-Spline. 3. Nhiệm vụ nghiên cứu • Làm một báo cáo tổng quan thể hiện đầy đủ mục đích nghiên cứu, nội dung và phương pháp nghiên cứu • Báo cáo có thể là một tài liệu tham khảo tốt cho những người quan tâm về lý thuyết Khung, đặc biệt là Khung sinh bởi lớp hàm B-Spline. 4. Đối tượng và phạm vi nghiên cứu • Đối tượng nghiên cứu: Lý thuyết Khung, Khung Gabor, B-Spline và việc tạo ra Khung từ các họ hàm B-Spline. • Phạm vi nghiên cứu: Các bài báo, các tài liệu trong và ngoài nước liên quan đối tượng nghiên cứu. 5. Phương pháp nghiên cứu Sử dụng các kiến thức và phương pháp của giải tích hàm, phương pháp nghiên cứu lý thuyết để tiếp cận vấn đề. Thu thập và nghiên cứu các tài liệu có liên quan, đặc biệt là các bài báo mới trong và ngoài nước về vấn đề mà luận văn đề cập tới. 2 6. Đóng góp của luận văn Luận văn là một công trình nghiên cứu tổng quan về lý thuyết Khung và Khung sinh bởi họ hàm B-Spline. 3 Chương 1 Khung trong không gian Hilbert Trong chương này, chúng ta nhắc lại một số khái niệm cũng như các kết quả bổ trợ cần thiết được sử dụng ở chương sau. 1.1. Toán tử trong không gian Hilbert 1.1.1. Toán tử tuyến tính bị chặn trên không gian Hilbert Toán tử tuyến tính T từ không gian Hilbert H vào không gian Hilbert K là liên tục khi và chỉ khi nó bị chặn, nghĩa là tồn tại hằng số C > 0 sao cho T x ≤ C. x , x ∈ H (1.1) Ký hiệu B(H, K) là tập tất cả các toán tử tuyến tính bị chặn từ H vào K. Khi H = K thì B(H, K) ký hiệu đơn giản là B(H). Chuẩn của T được định nghĩa là hằng số C nhỏ nhất thỏa mãn (1.1). Nói một cách tương đương T = sup{ T x : x ∈ H, x ≤ 1} = sup{ T x : x ∈ H, x = 1}. Mệnh đề 1.1. Giả sử H, K, L là các không gian Hilbert. Khi đó, Nếu T ∈ B (H, K) thì tồn tại duy nhất một phần tử T ∗ ∈ B (K, H) sao cho T ∗ x, y = x, T y , ∀x ∈ K, ∀y ∈ H. Hơn nữa 4 i) (a S + bT )∗ = a.S ∗ + b.T ∗ ii) (RS)∗ = S ∗ R∗ iii) (T ∗ )∗ = T iv)I ∗ = I v) Nếu T khả nghịch thì T ∗ cũng khả nghịch và T −1 ∗ = (T ∗ )−1 , trong đó S, T ∈ B (H, K) , R ∈ B (K, L) , a, b ∈ C. Toán tử T ∗ ở Mệnh đề 1.1 được gọi là toán tử liên hợp của toán tử T. Mệnh đề 1.2. Giả sử T ∈ B(H, K) , S ∈ B(K, L). Khi đó ta có: i) T x ≤ T . x , ∀x ∈ H ii) ST ≤ S . T iii) T = T ∗ iv) T ∗ T = T 2 Nếu T ∈ B (H) , x, y ∈ H, ta có đồng nhất thức phân cực sau: 1 T x, y = { T (x + y) , x + y − T (x − y) , x − y 4 + i T (x + iy) , x + iy − i T (x − iy) , x − iy Cho T ∈ B (H). Khi đó: T được gọi là toán tử tự liên hợp nếu T ∗ = T . T được gọi là toán tử unita nếu T ∗ T = T T ∗ = I. T được gọi là toán tử trực giao hay toán tử chuẩn tắc nếu T ∗ T = T T ∗ . T được gọi là toán tử dương (ký hiệu T ≥ 0) nếu T x, x ≥ 0 , ∀x ∈ H. Nếu T, K ∈ B (H) ta nói T ≥ K nếu T − K là toán tử dương. 5 Chú ý rằng với mỗi T ∈ B (H) thì T ∗ T x, x = T x, T x ≥ 0 , ∀x ∈ H. Do đó T ∗ T là toán tử dương. Mệnh đề 1.3. Giả sử T ∈ B (H). Khi đó i) T là tự liên hợp khi và chỉ khi T x, x là số thực với mọi x ∈ H . Đặc biệt toán tử dương là tự liên hợp. ii) T là unita khi và chỉ khi T là ánh xạ bảo toàn chuẩn từ H lên H. iii) T là chuẩn tắc khi và chỉ khi T x = T ∗ x , ∀x ∈ H. Mệnh đề 1.4. Giả sử T ∈ B (H). Khi đó các điều kiện sau là tương đương i) T là dương. ii) T = S 2 trong đó S là toán tử dương. iii) T = V ∗ V trong đó V ∈ B (H). Toán tử S trong ii) là duy nhất và được gọi là căn bậc hai của toán 1 tử T, ký hiệu T 2 . Bổ đề 1.1. Giả sử T ∈ H và ei ,fi là cơ sở trực chuẩn của H. Khi đó T ei , ei = T fj , fj i (1.2) j T ei , ei độc lập với sự lựa chọn Từ Bổ đề 1.1 ta thấy đại lượng i cơ sở trực chuẩn của H. Ta gọi đại lượng này là vết của T và ký hiệu là Tr(T) . Vết của toán tử T có các tính chất tương tự như vết của ma trận. 6 Mệnh đề 1.5. Giả sử M là một không gian con đóng của không gian Hilbert H và P là phép chiếu trực giao từ H lên M . Khi đó tr(T ) = dim(M ). (1.3) Mệnh đề 1.6. Giả sử T, S ∈ B(H) , α, β∈ C. Khi đó i) tr (αS + βT ) = αtr (S) + βtr (T ) . ii) tr (ST ) = tr (T S) . iii) Nếu S và T là đồng dạng thì tr(S) = tr(T ). 1.1.2. Phép chiếu trực giao và phần bù trực giao Giả sử H là một không gian Hilbert, u, v ∈ H và X, Y là các tập con của H. Ta nói: u trực giao với v nếu u, v = 0, ký hiệu u⊥v. u trực giao với Y nếu u, y = 0 với mọi y ∈ Y , ký hiệu u⊥Y . X trực giao với Y nếu x, y = 0 với mọi x ∈ X, y ∈ Y , ký hiệu X⊥Y . Ký hiệu Y ⊥ là tập tất cả các véc tơ trong H và trực giao với Y và gọi là phần bù trực giao của Y trong H. Mệnh đề 1.7. Nếu Y là một không gian con đóng của không gian Hilbert H thì với mỗi phần tử x ∈ H có thế biểu diễn được dưới dạng x = y + z, với yinY và z ∈ Y ⊥ . Hơn nữa, y là phần tử duy nhất trong Y gần nhất với x. Ta viết H = Y ⊕ Y ⊥ . Ánh xạ P (y + z) = y, y ∈ Y, z ∈ Y ⊥ xác định một toán tử tuyến tính P : H → Y , P được gọi là phép chiếu trực giao từ H lên Y . Cho T ∈ B (H, K) trong đó H, K là các không gian Hilbert. Ta ký 7 hiệu Ker(T ) = {x ∈ H : T x = 0} và gọi là nhân của toán tử T và Ran(T ) = {y ∈ K : y = T x, x ∈ H} được gọi là miền của ánh xạ T . Mệnh đề 1.8. Giả sử T ∈ B (H). Khi đó H = Ker (T ) ⊕ Ran (T ∗ ) = Ker (T ∗ ) ⊕ Ran (T ). (1.4) 1.2. Cơ sở trong không gian Hilbert 1.2.1. Hệ trực chuẩn Trong phần này, chúng tôi hệ thống lại một số kiến thức cơ bản đã biết về cơ sở trong không gian Hilbert, để vận dụng vào chương 2 sau này Định nghĩa 1.1. Cho không gian Hilbert H. Một tập con gồm hữu hạn hay đếm được các phần tử (en )n≥1 ⊂ H gọi là một hệ trực chuẩn, nếu (ei , ej ) = δij với δij là ký hiệu Kroneckes,    0, i = j δij =   1, i = j, Định lý 1.1 (Bất đẳng thức Bessel). Nếu (en )n≥1 là một hệ trực chuẩn nào đó trong không gian Hilbert H thì với mọi x ∈ H ta đều có bất đẳng thức |(x, en )|2 ≤ x 2 . n≥1 Bất đẳng thức này gọi là bất đẳng thức Bessel. 1.2.2. Cơ sở trực chuẩn Định nghĩa 1.2. Xét một dãy {ek }∞ của véc tơ trong không gian k=1 Hilbert H. Khi đó 8 1. Dãy {ek }∞ là một cơ sở (Schauder) của H nếu với mỗi x ∈ H tồn k=1 tại hệ véc tơ vô hướng {ck (x)}∞ sao cho k=1 ∞ ck (x)ek . x= (1.5) k=1 2. Cơ sở {ek }∞ là một cơ sở vô điều kiện trong nếu (1.5) hội tụ vô k=1 điều kiện với mỗi f ∈ H . 3. Cơ sở {ek }∞ là cơ sở trực chuẩn nếu hệ {ek }∞ là trực chuẩn. k=1 k=1 Định lý 1.2 (Định lý về đẳng thức Parseval). Cho (en )n≥1 là một hệ trực chuẩn trong không gian Hilbert H. Khi đó năm mệnh đề sau tương đương: 1) Hệ (en )n≥1 là cơ sở trực chuẩn trong không gian H. 2) ∀x ∈ H, x = (x, en ) en . n≥1 3) ∀x, y ∈ H, (x, y) = (x, en ) (en , y) (Bất đẳng thức Parseval). n≥1 4) ∀x ∈ H, x 2 |(x, en )|2 (Phương trình đóng). = n≥1 5) Bao tuyến tính của hệ (en )n≥1 trù mật khắp nơi trong không gian Hilbert H (nghĩa là tập tất cả các tổ hợp tuyến tính của một số hữu hạn bất kỳ các phần tử thuộc hệ (en )n≥1 trù mật khắp nơi trong không gian H). 6) Nếu x, ek = 0 với mọi k ≥ 1 thì f = 0. Hệ quả 1.1. Nếu {ek }∞ là một cơ sở trực chuẩn, thì với mỗi x ∈ H k=1 có một khai triển hội tụ không điều kiện ∞ f= f, ek ek k=1 9 (1.6) Khai triển (1.6) là lý do chính để xem xét các cơ sở trực chuẩn. Thực tế, cơ sở trực chuẩn là cơ sở thuận tiện nhất để sử dụng. Sau này chúng ta sẽ thấy rằng, với nhiều loại khác của cơ sở, biểu diễn (1.6) phải được thay thế bởi một biểu thức phức tạp hơn. Thật không may, các điều kiện để {ek }∞ làm thành một cơ sở trực chuẩn lại quá mạnh, và thường khó k=1 để xây dựng một cơ sở trực chuẩn thỏa mãn thêm điều kiện khác. Định lý 1.3. Cho {ek }∞ là một cơ sở trực chuẩn trong H. Khi đó với k=1 bất kỳ toán tử unita U : H → H, dãy {U ek }∞ là một cơ sở trực giao. k=1 Chứng minh. Cho {ek }∞ là một cơ sở trực chuẩn trong H. Xác định k=1 ánh xạ U : H → H bởi U ck ek = ck ek , {ck }∞ ∈ k=1 2 (N) Nếu U là một song ánh bị chặn trong H và fk = U ek . Với f, g ∈ H ta viết f = f, ek ek vàg = g, ek ek . Nhờ định nghĩa của U và Định lý 1.2, ta có U ∗ Uf, g = U f, U g = = f, ek fk , f, ek g, ek fk g, ek = f, g Điều này có nghĩa là U ∗ U = I. Vì U là một ánh xạ toàn ánh, nên suy ra U là toán tử unita. Mặt khác nếu U là một toán tử unita thì U ek , U ej = U ∗ U ek , ej = ek , ej = δk,j , tức là {U ek }∞ là một hệ trực chuẩn. Từ đó nó là cơ sở nhờ Định lý 1.2 k=1 và sự kiện nó là đơn ánh. 10 Mệnh đề 1.9. Không gian Hilbert H có cơ sở trực chuẩn khi và chỉ khi không gian đó là không gian tách được. Mệnh đề 1.10. Hai không gian Hilbert tách được có cùng số chiều đẳng cấu và đẳng cự với nhau. 1.3. Khung trong không gian Hilbert Trong mục này trình bày một số khái niệm và kết quả cơ bản trong lý thuyết Khung cần đến cho chương 2. 1.3.1. Dãy Bessel trong không gian Hilbert Bổ đề 1.2. Cho {fk }∞ là một dãy trong H sao cho k=1 mọi {ck }∞ ∈ k=1 2 ∞ ck fk hội tụ với k=1 (N). Khi đó ∞ 2 T : (N) → H, T (ck )∞ k=1 := ck fk (1.7) k=1 xác định một toán tử tuyến tính bị chặn. Toán tử liên hợp xác định bởi T∗ : H → Hơn nữa 2 (N) ; T ∗ f = { f, fk }∞ . k=1 (1.8) ∞ |(f, fk )|2 ≤ T f 2 , ∀f ∈ H. (1.9) k=1 Chứng minh. Xét toán tử tuyến tính bị chặn: n Tn : 2 (N) → H; Tn {ck }k=∞ k=1 := ck fk . k=1 Rõ ràng Tn → T hội tụ điểm khi n → ∞, vì vậy theo nguyên tắc bị chặn đều, T xác định một toán tử tuyến tính bị chặn. Để tìm được biểu thức 11 T ∗ , lấy f ∈ H và {ck }k=∞ ∈ k=1 2 (N). Khi đó ∞ n f, T Khi T : 2 {ck }k=∞ k=1 = ck fk f, H k=1 f, fk ck = H (1.10) k=1 (N) → H là bị chặn thì T ∗ là toán tử bị chặn từ H vào 2 (N). Do đó toán tử tọa độ thứ k là bị chặn từ H vào C. Theo định lý biểu diễn Riesz, T ∗ có dạng T ∗ f = { f, gk }∞ k=1 với {gk }k=∞ trong H. k=1 Bằng định nghĩa của T ∗ , (1.10) chỉ ra ∞ ∞ f, fk ck , ∀ {ck }k=∞ ∈ k=1 f, gk ck = 2 (N) , f ∈ H. k=1 k=1 Từ đó ta có gk = fk . Liên hợp của một toán tử bị chặn T là toán tử bị chặn và T = T ∗ . Theo các giả định của Bổ đề 1.2 ta có T ∗f 2 ≤ T 2 f 2 , ∀f ∈ H dẫn đến (1.9). Các dãy {fk }k=∞ mà bất đẳng thức trong (1.9) đúng đóng vai trò k=1 quan trọng trong các phần tiếp theo. Định nghĩa 1.3. Dãy {fi }∞ trong không gian Hilbert H được gọi là i=1 dãy Bessel nếu tồn tại B > 0 sao cho ∞ (f, fj )2 ≤ B. f 2 , ∀f ∈ H i=1 12 (1.11) Mọi hằng số B trong (1.11) được gọi là cận Bessel của dãy {fi }∞ . Cận i=1 tối ưu đối với dãy Bessel {fi }∞ là giá trị nhỏ nhất của các số B > 0 i=1 thỏa mãn (1.11). Ngoại trừ fk = 0, ∀k ∈ N, cận tối ưu luôn tồn tại. Định lý 1.4. Giả sử dãy {fk }∞ là một dãy trong H và B > 0 là một k=1 hằng số đã cho. Khi đó {fk }∞ là một dãy Bessel với cận Bessel B nếu k=1 và chỉ nếu ∞ T : {ck }∞ k=1 → ck fk k=1 là toán tử tuyến tính, bị chặn từ 2 (N) vào H và T ≤ √ B. Chứng minh. Trước hết ta giả sử rằng {fk }∞ là dãy Bessel với cận B. k=1 Cho {ck }∞ ∈ k=1 ∞ 2 (N). Trước hết ta chỉ ra rằng T {ck }∞ là xác định và k=1 ck fk hội tụ. Xét n, m ∈ N∗ , n > m. Khi đó k=1 n m ck fk − n ck fk = k=1 k=1 ck fk . k=m+1 Suy ra n m ck fk − k=1 n ck fk = sup ck fk g =1 k=1 k=m+1 n ≤ sup |ck fk , g | g =1 k=m+1 1/2 n |ck |2 ≤ ≤ 2 1/2 | fk , g | sup g =1 k=1+m k=m+1 1/2 n √ n |ck |2 B k=1+m Vì {ck }∞ ∈ k=1 2 n (N) ta biết rằng k=1+m 13 |ck |2 là dãy Cauchy trong C. n ck fk Việc tính toán ở trên cho ta thấy và do đó nó hội tụ. Như vậy T k=1+m ∞ {ck }k=1 là là dãy Cauchy trong H xác định. Rõ ràng T là tuyến tính; vì T {ck }∞ = sup | T {ck }∞ , g | bằng tính toán như trên ta k=1 k=1 g =1 √ thấy T bị chặn và T ≤ B . √ Ngược lại , giả sử rằng T là một toán tử bị chặn với T ≤ B. Khi đó theo Bổ đề 1.2 ta có {fk }∞ la một dãy Bessel với cận là B. k=1 Hệ quả 1.2. Nếu {fk }∞ là một dãy Bessel trong H thì k=1 không điều kiện với mọi {ck }∞ ∈ l2 (N). Ở đây, chuỗi k=1 ∞ ck fk hội tụ k=1 n∈N∗ an được gọi là hội tụ không điều kiện, nếu với mỗi phép hoán vị σ : N∗ → N∗ , chuỗi n∈N∗ aσ(n) hội tụ. 1.3.2. Cơ sở Riesz Trong Định lý 1.3, chúng ta đã mô tả được rằng mọi cơ sở trực chuẩn đều được xác định bởi một toán tử unita tác động lên một cơ sở trực chuẩn cho trước nào đó. Về mặt hình thức, khái niệm cơ sở Riesz là một điều kiện yếu hơn về mặt toán tử: Định nghĩa 1.4. Một cơ sở Riesz trong H là một họ dãy {U ek }∞ , k=1 Khi {ek }∞ là một cơ sở trực chuẩn trong H và U : H → H là một song k=1 ánh bị chặn. Một cơ sở Riesz {fk }∞ là một cơ sở thực sự. Chú ý rằng khai triển k=1 (1.12) trong định lý dưới đây với mỗi phần tử f ∈ H nhờ cơ sở Riesz được quan tâm hơn khai triển (1.6) nhờ một cơ sở trực chuẩn. 14 Định lý 1.5. Nếu {fk }∞ là một cơ sở Riesz trong H, thì {fk }∞ là k=1 k=1 một dãy Bessel. Hơn nữa tồn tại duy nhất dãy {gk }∞ trong H sao cho k=1 ∞ f, gk fk , ∀f ∈ H. f= (1.12) k=1 Dãy {gk }∞ cũng là cơ sở Riesz và (1.12) hội tụ vô điều kiện với mọi k=1 f ∈ H. Chứng minh. Theo định nghĩa, chúng ta có thể viết {fk }∞ = {U ek }∞ k=1 k=1 trong đó U là một song ánh tuyến tính bị chặn và {ek }∞ là một cơ sở k=1 trực chuẩn. Cho f ∈ H, bằng sự khai triển U −1 f theo cơ sở trực chuẩn {ek }∞ ta có k=1 ∞ ∞ U −1 U f= −1 f, (U −1 ) ∗ ek ek . f, ek ek = k=1 k=1 Do đó với gk := (U −1 ) ∗ ek , ta có ∞ f = UU −1 f, (U −1 ) ∗ ek U ek f= k=1 ∞ = f, gk fk . k=1 Vì toán tử (U −1 )∗ là một song ánh tuyến tính và bị chặn, nên {gk }∞ k=1 là một cơ sở Riesz. Hơn nữa, cho f ∈ H, có ∞ ∞ 2 |f, U ek |2 = U ∗ f | f, fk | = k=1 2 (1.13) k=1 2 ≤ U∗ = U 2 f Điều này chứng tỏ cơ sở Riesz là một dãy Bessel. 15 2 f 2 (1.14)
- Xem thêm -

Tài liệu liên quan