Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Khoa học xã hội Dùng các vi mạch tương tự tính toán, thiết kế mạch đo và cảnh báo nhiệt độ sử dụ...

Tài liệu Dùng các vi mạch tương tự tính toán, thiết kế mạch đo và cảnh báo nhiệt độ sử dụng cặp nhiệt ngẫu

.DOC
28
44
53

Mô tả:

Trường ĐHCN Hà Nội Bộ môn VMTT&VMS BỘ CÔNG THƯƠNG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM TRƯỜNG ĐH CÔNG NGHIỆP HÀ NỘI Độc lập – Tự do – Hạnh phúc BÀI TẬP: Vi mạch tương tự và vi mạch số Họ và tên HS-SV: Nguyễn Văn Nhường Nhóm: 2 Số: 2 Lớp: Điện2_K10 Khoa: Điện – Điện tử NỘI DUNG Đề tài: Dùng các vi mạch tương tự tính toán, thiết kế mạch đo và cảnh báo nhiệt độ sử dụng cặp nhiệt ngẫu. Yêu cầu: - Dải đo từ: t0C =00C ÷ tmax = 0-(100+10*n)0C. - - - Đầu ra: Chuẩn hóa đầu ra với các mức điện áp: 1. U=0 ÷ 10V 2. U= 0 ÷ -5V 3. I=0÷20mA. 4. I=4÷20mA Dùng cơ cấu đo để chỉ thị hoặc LED 7 thanh hiển thị nhiệt độ Khi nhiệt độ trong giới hạn bình thường : t0C=0÷tmax/2. Thiết kế mạch nhấp nháy cho LED với thời gian sáng và tối bằng nhau và bằng: T0=(1+0,5*a) giây. Đưa ra tín hiệu cảnh báo bằng còi khi nhiệt độ vượt giá trị : t0C= tmax/2 Trong đó: a: Chữ số hàng đơn vị của danh sách ( VD: STT = 3→a=3; STT = 10→a=0). n: Số thứ tự sinh viên trong danh sách. PHẦN THUYẾT MINH Yêu cầu về bố cục nội dung: Chương 1: Tổng quan về mạch đo Chương 2: Giới thiệu về các thiết bị chính Chương 3: Tính toán, thiết kế mạch đo - Tính toán, lựa chọn cảm biến - Tính toán, thiết kế mạch đo - Lựa chọn nguồn cung cấp. - Tính toán, thiết kế mạch khuếch đại, chuẩn hóa - Tính toán mạch nhấp nháy cho LED - Tính toán, thiết kế mạch cảnh báo. - ... Kết luận và hướng phát triển. Yêu cầu về thời gian : Nông Đức Nghĩa Trang_1 Trường ĐHCN Hà Nội Ngày giao đề 15 /12/2015 Bộ môn VMTT&VMS Ngày hoàn thành : 16/01/2016 Trước khi bảo vệ bài tập lớn sinh viên phải nộp: - File mềm gồm file trình bày bài tập lớn (nếu đánh máy) và file mô phỏng Quyển in khổ giấy A4. CHƯƠNG 1: TỔNG QUAN VỀ MẠCH ĐO 1. Khái niệm về nhiệt độ. Nhiệt độ là đại lý đặc trưng cho cường độ chuyển động của các nguyên tử, phân tử của một hệ vật chất. Tuỳ theo từng trạng thái của vật chất ( rắn, lỏng, khí) mà chuyển động này có khác nhau. ở trạng thái láng, các phân tử dao động quanh vi trí cân bằng nhưng vi trí cân bằng của nó luôn dịch chuyển làm cho chất lỏng không có hình dạng nhất định. Còn ở trạng thái rắn, các phần tử, nguyên tử chỉ dao động xung quanh vị trí cân bằng. Các dạng vận động này của các phân tử, nguyên tử được gọi chung là chuyển động nhiệt. Khi tương tác với bên ngoài có trao đổi năng lượng nhưng không sinh công, thì quá trình trao đổi năng lượng nói trên gọi là sự truyền nhiệt. Quá trình truyền nhiệt trên tuân theo 2 nguyên lý: Bảo toàn năng lượng. Nhiệt chỉ có thể tự truyền từ nơi có nhiệt độ cao đến nơi có nhiệt độ thất. Ở trạng thái rắn, sự truyền nhiệt xảy ra chủ yếu bằng dẫn nhiệt và bức xạ nhiệt. Đối với các chất lỏng và khí ngoài dẫn nhiệt và bức xạ nhiệt còn có truyền nhiệt bằng đối lưu. Đó là hiện tượng vận chuyển năng lượng nhiệt bằng cách vận chuyển các phần của khối vật chất giữa các vùng khác nhau của hệ do chênh lệch về tỉ trọng. 2. Các thang đo nhiệt độ Từ xa xưa con người đã nhận thức được hiện tượng nhiệt và đánh giá cường độ của nó bằng cách đo và đánh giá nhiệt độ theo mét đơn vị đo của mỗi thời kỳ. Có nhiều đơn vị đo nhiệt độ, chúng được định nghĩa theo từng vùng,từng thời kỳ phát triển của khoa học kỹ thuật và xã hội. Hiện nay chúng ta có 3 thang đo nhiệt độ chính là: Nông Đức Nghĩa Trang_2 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS  Thang nhiệt độ tuyệt đối ( K ).  Thang Celsius ( 0C ): T( 0C ) = T( K ) – 273,15.  Thang Farhrenheit: T( 0F ) = T( K ) – 459,67. Nhiệt độ được đo bằng nhiệt kế. Nhiệt độ được đo bằng các đơn vị khác nhau và có thể biến đổi bằng các công thức. Trong hệ đo lường quốc tế, nhiệt độ được đo bằng đơn vị Kelvin, kí hiệu là K. Trong đời sống ở Việt Nam và nhiều nước, nó được đo bằng độ C. Dựa trên 3 thang đo này chúng ta có thể đánh giá được nhiệt độ. 3. Sử dụng vi mạch tương tự để đo và cảnh báo nhiệt độ. Vi tương tự và vi mạch số là lĩnh vực không những mang tới thời sự nóng bỏng mà còn ẩn chứa vô số điều bí ẩn và có sức hấp dẫn lạ kỳ, đã và đang từng ngày thâm nhập vào đời sống của chúng ta. Trong thực tế các dạng năng lượng thường ở dạng tương tự. Do đó muốn xử lí chúng theo phương pháp kĩ thuật số ta phải biến đổi tín hiệu tương tự thành tín hiệu số . Xuất phát từ ý tưởng đó, em đã thưc hiện việc xây dựng một mạch điện đo nhiệt độ hiển thị ra đèn LED. Mạch này chỉ mang tính chất thử nghiệm, chưa có tính thực tế về vấn đề chuyển đổi ADC, vấn đề cảnh báo nhiệt độ ra đèn và vấn đề đo lường các đại lượng không điện bằng điện. 4. Biến nhiệt thành điện Có nhiều phương pháp đo nhiệt độ tuỳ theo yêu cầu về kỹ thuật và dải nhiệt độ. Phân ra làm 2 phương pháp chính: Đo trực tiếp và đo gián tiếp:  Đo trực tiếp là phương pháp đo trong đó các thiết bị đo được đặt trực tiếp trong môi trường cần đo.  Đo gián tiếp là phương pháp đo trong đó dụng cụ đo đặt ngoài môi trường cần đo (áp dụng với trường hợp đo ở nhiệt độ cao ). Ta chỉ khảo sát phương pháp đo trực tiếp với giải nhiệt độ cần đo không phải ở quá cao. Dải đo từ: t0C =00C ÷ tmax = 00C ÷ (100+10*n)0C (n: số thứ tự sinh viên trong danh sách): n=34 => t0C = 00C ÷ 4400C. Do em được giao đề tài Nông Đức Nghĩa Trang_3 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS số 2 là dùng cặp nhiệt ngẫu nên em sử dụng cặp nhiệt ngẫu loại J có dải đo từ: -400C ÷ 7500C CHƯƠNG 2: GIỚI THIỆU VỀ CÁC THIẾT BỊ CHÍNH * Các thiết bị chính gồm: Cặp nhiệt ngẫu loại J. Mạch tích hợp KĐTT µA741. - ADC0804. LM7805 , LM7812, LM7912. IC 7843,IC 7447. Còi, Led, Led 7 thanh, trở, tụ, đi ốt. 1. Cặp nhiệt điện (Thermocouple) a) Cấu tạo điển hình của một cặp nhiệt công nghiệp. Hình 1.1: Cấu tạo cặp nhiệt 1) Vỏ bảo vệ 5) Bộ phận lắp đặt 2) Mối hàn 6) Vít nối dây 3) Dây điện cực 7) Dây nối 4) Sứ cách điện 8) Đầu nối dây – Đầu làm việc của các điện cực (3) được hàn nối với nhau bằng hàn vảy, hàn khí hoặc hàn bằng tia điện tử. Đầu tự do nối với dây nối (7) tới dụng cụ đo nhờ các vít nối (6) dây đặt trong đầu nối dây (8). Để cách ly các điện cực người ta dùng các ống sứ cách điện (4), sứ cách điện phải trơ về hoá học và đủ độ bền cơ và nhiệt ở nhiệt độ làm việc. Để bảo vệ các điện cực, các cặp nhiệt có vỏ bảo vệ (1) làm bằng sứ chịu nhiệt hoặc thép chịu nhiệt. Hệ thống vỏ bảo vệ phải có nhiệt dung đủ nhỏ để giảm bớt quán tính nhiệt và vật liệu chế tạo vỏ phải có độ dẫn nhiệt không quá nhỏ nhưng cũng không được quá Nông Đức Nghĩa Trang_4 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS lớn. Trường hợp vỏ bằng thép mối hàn ở đầu làm việc có thể tiếp xúc với vỏ để giảm thời gian hồi đáp. – Trên thị trường hiện nay có nhiều loại Cặp nhiệt điện khác nhau (E, J, K, R, S, T…) đó là vì mỗi loại Cặp nhiệt điện đó được cấu tạo bởi 1 chất liệu khác nhau, từ đó sức điện động tạo ra cũng khác nhau dẫn đến dải đo cũng khác nhau. Người sử dụng cần chú ý điều này để có thể lựa chọn loại Cặp nhiệt điện phù hợp với yêu cầu của mình. – Đồng thời khi lắp đặt sử dụng loại Cặp nhiệt điện thì cần chú ý tới những điểm sau đây:  Dây nối từ đầu đo đến bộ điều khiển càng ngắn càng tốt (vì tín hiệu truyền đi dưới dạng điện áp mV nên nếu dây dài sẽ dẫn đến sai số nhiều).  Thực hiện việc cài đặt giá trị bù nhiệt (Offset) để bù lại tổn thất mất mát trên đường dây. Giá trị Offset lớn hay nhỏ tùy thuộc vào độ dài, chất liệu dây và môi trường lắp đặt.  Không để các đầu dây nối của Cặp nhiệt điện tiếp xúc với môi trường cần đo.  Đấu nối đúng chiều âm, dương cho Cặp nhiệt điện. b) Cấu tạo của cặp nhiệt ngẫu loại J. Hình 1.2: Hình ảnh thức tế của cặp nhiệt ngẫu – Cấu tạo: Gồm 2 chất liệu kim loại Sắt và Constantan, hàn dính một đầu, đầu T1 gọi là đầu nóng, hai đầu còn lại không hàn T2 gọi là đầu lạnh hoặc đầu chuẩn. Nông Đức Nghĩa Trang_5 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS Hình 1.3: Hình mô phỏng nguyên lý hoạt động của cặp nhiệt ngẫu – Nguyên lý: Khi có chênh lệch nhiệt độ giữa hai đầu nóng và lạnh (T1 và T2) thì ở đầu ra của cặp nhiệt ngẫu xuất hiện một suất điện động e phụ thuộc vào chênh lệch nhiệt độ và bản chất hai kim loại A và B. Hình 1.4: Đường đặc tính của cặp nhiệt ngẫu * Công thức tính suất điện động e: e=K(T1-T2) (cặp nhiệt ngẫu J có K=0,055mV) – Ưu điểm: Bền, đo nhiệt độ cao, dải đo rộng, rẻ. – Khuyết điểm: Nhiều yếu tố ảnh hưởng làm sai số. Độ nhạy không cao,cần điểm tham chiếu, ít ổn định. – Thường dùng: Lò nhiệt, môi trường khắc nghiệt, đo nhiệt nhớt máy nén,… – Dải đo: -40 ~ 750oC – Ứng dụng: sản xuất công nghiệp, luyện kim, gia công vật liệu… 2. Mạch tích hợp KĐTT µA741 - Hình ảnh thực tế của µA741: Nông Đức Nghĩa Trang_6 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS - Sơ đồ chân của µA741: Chức năng các chân: Chân 1 _ bù tần số Chân 2 _ cửa vào đảo Chân 3 _ cửa vào không đảo Chân 4 _ nguồn cấp âm Chân 5 _ bù tần số Chân 6 _ cửa ra Chân 7 _ nguồn cấp dương Chân 8 _ không sử dụng - Op Amp là một công cụ có nhiều chức năng: + Khuếch đại hiệu hai điện thế:  Uo= K( UI+ − UI− ) + Khuếch đại tín hiệu điện:  Uo= −K. UI− (UI+ = 0 )  Uo= K. UI+ (UI− = 0 ) + So sánh điện áp vào UI với điện áp chuẩn UCH:  Nếu UI < UCH thì Uo = L ( có mức 0, tương đương điện áp thấp, cỡ 0V).  Nếu UI > UCH thì Uo = H ( có mức 1, tương đương điện áp cao, cỡ 3,5V). 3. IC 555 Nông Đức Nghĩa Trang_7 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS Hình 3.1: Sơ đồ chân IC 555  Bên trong vi mạch 555 có hơn 20 transistor và nhiều điện trở thực hiện các chức năng như hình : Hình 3.2: Cấu trúc bên trong của LM 555  Chức năng các chân: – Chân số 1: (GND) Cho nối mass để lấy dòng cấp cho IC , dòng điện từ mas chảy vào IC. – Chân sô 2: (Trigger Input ) Ngõ vào của một tầng, ở đây mức áp chuẩn bằng 1/3 Vcc, lấy cầu phân áp tạo bởi ba điện trở 5K.Khi mức áp chân 2 xuống đến mức (1/3)Vcc thì chân 3 sẽ chuyển lên mức cao, lúc này khóa điện tử trên chân số 7sẽ hở. – Chân số 3: (Output) Ngõ ra tín hiệu ở dạng xung (mức áp không thấp thì cao). – Chân số 4: (Reset) Xác lập trạng thái ngõ ra .Khi chân số 4 cho nối mass thì chân số 3 chốt ở mức áp thấp , chỉ khi chân số 4 đặt ở mức áp cao thì ngõ ra chân 3 mới được tự do và mới có thể lúc cao lúc thấp. Nông Đức Nghĩa Trang_8 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS – Chân số 5: (Control Voltage) Chân điều khiển ,chân này làm thay đổi các mức điện áp chuẩn trên trên cầu chia volt. – Chân số 6: (Threshold) Ngõ vào của một tầng so với áp 1.Có mức áp chuẩn bằng 2/3 Vcc. – Chân số 7: (Dirchange) Chân xả điện, chân này là ngõ ra của một khóa điên (tranistor) khóa điện này đóng mở theo mức áp chân số 3. Khi chân 3 ở mức áp cao thì khóa điện đóng lại và cho dòng chay qua, ngược lại thì khóa điện hở và cắt dòng. – Chân số 8: (+Vcc) Chân nguồn nối vào nguồn nuôi Vcc để cấp điện cho IC 555. 4. ADC 0804. Hình 4.1: Sơ đồ chân ADC0804 – Các chân khác của ADC0804 có chức năng như sau: CS (Chip select): Chân số 1, là chân chọn chip, đầu vào tích cực mức thấp  được sử dụng để kích hoạt Chip ADC0804. Để truy cập tới ADC0804 thì chân này phải được đặt ở mức thấp. RD (Read): Chân số 2, là chân nhận tín hiệu vào tích cực ở mức thấp. Các  bộ chuyển đổi của 0804 sẽ chuyển đổi đầu vào tương tự thành số nhị phân và giữ nó ở một thanh ghi trong. Chân RD được sử dụng để cho phép đưa dữ liệu đã được chyển đổi tới đầu ra của ADC0804. Khi CS = 0 nếu có một xung cao xuống thấp áp đến chân RD thì dữ liệu ra dạng số 8 bit được đưa tới các chân dữ liệu (DB0 – DB7). WR (Write): Chân số 3, đây là chân vào tích cực mức thấp được dùng báo  cho ADC biết để bắt đầu quá trình chuyển đổi. Nếu CS = 0 khi WR tạo ra xung cao xuống thấp thì bộ ADC0804 bắt đầu quá trình chuyển đổi giá trị đầu vào tương tự Vin thành số nhị phân 8 bit. Khi việc chuyển đổi hoàn tất thì chân INTR được ADC hạ xuống thấp. CLK IN và CLK R: CLK IN (chân số 4), là chân vào nối tới đồng hồ ngoài  được sử dụng để tạo thời gian. Tuy nhiên ADC0804 c ũng có một bộ tạo xung đồng hồ riêng. Để dùng đồng hồ riêng thì các chân CLK IN và CLK R (chân số 19) được nối với một tụ điện và một điện trở. Nông Đức Nghĩa Trang_9 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS Tần số đồng hồ được xác định bằng biểu thức: f =      Chọn R = 10 kΩ, C = 150 pF và tần số nhận được f = 606 kHz thì thời gian chuyển đổi là 110 µs. Ngắt INTR (Interupt): Chân số 5, là chân ra tích cực mức thấp. Bình thường chân này ở trạng thái cao và khi việc chuyển đổi tương tự số hoàn tất thì nó chuyển xuống mức thấp để báo cho CPU biết là dữ liệu chuyển đổi sẵn sàng để lấy đi. Sau khi INTR xuống thấp, cần đặt CS = 0 và gửi một xung cao xuống thấp tới chân RD để đưa dữ liệu ra. Vin (+) và Vin (-): Chân số 6 và chân số 7, đây là 2 đầu vào tương tự vi sai, trong đó Vin = Vin(+) – Vin(-). Thông thường Vin(-) được nối tới đất và Vin(+) được dùng làm đầu vào tương tự và sẽ được chuyển đổi về dạng số. Vcc: Chân số 20, là chân nguồn nuôi +5V. Chân này còn được dùng làm điện áp tham chiếu khi đầu vào Vref/2 để hở. Vref/2: Chân số 9, là chân điện áp đầu vào được dùng làm điện áp tham chiếu. Nếu chân này hở thì điện áp đầu vào tương tự cho ADC0804 nằm trong dải 0 đến +5V. Tuy nhiên, có nhiều ứng dụng mà đầu vào tương tự áp đến Vin khác với dải 0 đến +5V. Chân Vref/2 được dùng để thực hiện các điện áp đầu ra khác 0 đến +5V. D0 – D7, chân số 18 – 11, là các chân ra dữ liệu số (D7 là bit cao nhất MSB và D0 là bit thấp nhất LSB). Các chân này được đệm ba trạng thái và dữ liệu đã được chuyển đổi chỉ được truy cập khi chân CS = 0 và chân RD đưa xuống mức thấp. Để tính điện áp đầu ra ta tính theo công thức sau: Dout = Vin / Kích thước bước. 5. IC 7843. –   Trong đó 2 số 4 bit vào là A4A3A2A1 và B4B3B2B1. Số nhớ ban đầu là C0. Vậy tổng ra sẽ là C4S4S3S2S1, với C4 là số nhớ của phép cộng Hình 5.1: Hình ảnh của IC7483  Bảng sự thật: Nông Đức Nghĩa Trang_10 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS  Thông số:  Nhận xét: IC7843 là IC cộng 2 số 4 bit. 6. IC 7447 giải mã led 7 đoạn.  Sơ đồ chân :  Ứng dụng: Đây là IC giải mã kí giành riêng cho LED 7 thanh Anot chung. Ứng dụng – khi ta cần hiện thị số trên led 7 thanh trong mạch số mà không cần dùng vi xử lý hoặc muốn tiết kiệm chân.”  Cấu tạo: Nông Đức Nghĩa Trang_11 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS  Cách thức hoạt động: Sơ đồ nguyên lý: Như sơ đồ trên, trong đó: – + A,B,C,D ( Nối với Vi xử lý, mạch số counter,…) + BI/RBO,RBI,LT ( chân điều khiển của 7447, tùy thuộc vào nhu cầu sẽ nối khác nhau), Chân QA,QB,QC,QD,QE,QF,QG nối lần lượt với chân a,b,c,d,e,f,g của led 7 thanh anot chung. Mô tả cách thức hoạt động như sau: – PORT A,B,C,D : đầu vào của 7447, nhận các giá trị theo nhị phân (BCD)  từ 0 tới 15, tương ứng với mối giá trị nhận được sẽ giải mã ra đầu ra Q tương ứng. PORT QA-QG : Nối trực tiếp LED 7 thanh với  QA=a,QB=b,QC=c,QD=d,QE=e,QF=f,QG=g, giá trị hiển thị trên LED 7 thanh phụ thuộc vào giá trị đầu vào PORTA,B,C,D theo bảng sau:  BI/RBO,RBI,LT : Chân điều khiển của 7447, để hiểu rõ bạn cần đọc và tìm hiểu mức bảng logic sau (Để kích hoạt IC 7447 hoạt động chỉ cần nối BI/RBO=LT=1 ): Nông Đức Nghĩa Trang_12 Trường ĐHCN Hà Nội Nông Đức Nghĩa Bộ môn VMTT&VMS Trang_13 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS 7. IC ổn áp 78xx và 79xx – Họ 78xx là họ ổn định điện áp đầu ra là dương. Còn xx là giá trị điện áp đầu ra như 5V, 9V,12V... – Họ 79xx là họ ổn định điện áp đầu ra là âm. Còn xx là giá trị điện áp đầu ra như : -5V,-9V,-12V… – Sự kết hợp của hai con này sẽ tạo ra được bộ nguồn đối xứng. – Về mặt nguyên lý nó hoạt động tương đối giống nhau – 78xx là loại dòng IC dùng để ổn định điện áp dương đầu ra với điều kiện đầu vào luôn luôn lớn hơn đầu ra 3V. – Tùy loại IC mà nó ổn áp đầu ra là bao nhiêu. Ví dụ : 7805 có điện áp ra là +5V, 7812 có điện áp ra là +12V... 7905 có điện áp ra là -5V, 7912 có điện áp ra là -12V... + 78xx gồm có 3 chân : 1 : Vin - Chân nguồn đầu vào 2 : GND - Chân nối đất 3 : Vo - chân nguồn đầu ra. + 79xx gồm có 3 chân : 1 : GND - Chân nối đất 2 : Vin - Chân nguồn đầu vào 3 : Vo - chân nguồn đầu ra. 8. Led 7 thanh.  Cấu tạo: – Trong LED 7 thanh bao gồm ít nhất là 7 con LED mắc lại với nhau , vì vậy mà có tên là LED 7 đoạn là vậy ,7 LED đơn được mắc sao cho nó có thể hiển thị được các số từ 0 - 9 , và 1 vài chữ cái thông dụng, để phân cách thì người ta còn dùng thêm 1 led đơn để hiển thị dấu chấm (dot) . – Các led đơn lần lượt được gọi tên theo chữ cái A- B -C-D-E-F-G, và dấu chấm. – Như vậy nếu như muốn hiển thị ký tự nào thì ta chỉ cần cấp nguồn vào chân đó là led sẽ sáng như mong muốn . Nông Đức Nghĩa Trang_14 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS  Thông số : LED 7 thanh dù có nhiều biến thể nhưng tựu chung thì cũng chỉ vẫn có 2 loại đó là : + Chân Anode chung (chân + các led mắc chung lại với nhau .) + Chân Catode chung (Chân - các led được mắc chung với nhau .) Điện áp giữa Vcc và mass phải lớn hơn 1,3 V mới cung cấp đủ led sáng, tuy nhiên không được cao quá 3V . CHƯƠNG 3: TÍNH TOÁN THIẾT KẾ MẠCH ĐO. 3.1) Ý tưởng thiết kế – Theo yêu cầu của đề tài và số thứ tự trong danh sách của em là 46 nên có: + Dải đo từ: t0C = 00C ÷ 4400C. + Đầu ra: Chuẩn hóa đầu ra với các mức điện áp: 5. U=0 ÷ 10V 6. U= 0 ÷ -5V 7. I=0÷20mA. 8. I=4÷20mA  Dùng cơ cấu đo chỉ thị. o o  Khi gặp nhiệt độ trong giới hạn bình thường: t C = 0 ÷ 220 C. Thiết kế mạch nhấp nháy cho LED với thời gian sáng tối bằng nhau và bằng: = 4 giây. o  Đưa ra tín hiệu cảnh báo bằng còi khi nhiệt độ vượt quá: t0C = 220 C.  Dùng ADC0804 chuyển điện áp sang mã nhị phân. Xây dựng bộ hiện thị số BCD. – Sơ đồ khối hệ thống: Nông Đức Nghĩa Trang_15 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS Cơ cấu chỉ thị – Nhiệm vụ của từng khối:  Khối nguồn: Cung cấp nguồn cho toàn hệ thống hoạt động , tất cả thiết bị chỉ ở một trong ba nguồn +12v hoặc - 12v hoặc +5v.  Khối cảm biến: Cảm biến nhiệt độ biến nhiệt thành điện áp ở mức vài mV.  Khối khuếch đại đo lường và chuẩn hóa U-I: Khuyếch đại điện áp từ cảm biến ra điện áp chuẩn, rồi chuyển đổi từ điện áp sang dòng điện với mục đích truyền tải đi xa.  Khối ADC và hiển thị : Chuyển đổi từ tín hiệu tương tự sang tín hiệu số và đưa ra kết quả ra LED 7 thanh để hiển thị kết quả đo.  Khối so sánh: So sánh với một điện áp đặt trước và đưa ra tín hiệu dùng để báo động khi quá nhiệt độ cho phép.  Khối nhấp nháy : thực hiện nhiệm vụ nhấp nháy với thời gian đặt trước khi nhiệt độ trong mức cho phép.  Cảnh báo : thực hiện chức năng báo động khi nhiệt độ vượt quá ngưỡng cho.  Cơ cấu đo chỉ thị: Là thiết bị hiển thị điện áp (Voltmeter), dòng điện (Ammeter) tương ứng với nhiệt độ đo. Có nhiều loại cơ cấu đo chỉ thị khác nhau như: cơ điện, điện từ, cảm ứng…. Vì dòng điện ra là dòng 1 chiều và điện áp ra cũng là 1 chiều với giá trị bé nên ta dùng cơ cấu chỉ thị từ điện để hiển thị giá trị dòng điện và điện áp tại thời điểm xác định. Nông Đức Nghĩa Trang_16 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS 3.2) Tính toán, lựa chọn cảm biến. – Có dải cần đo là: t0C = 00C ÷ 2200C. Vì vậy em chọn cặp nhiệt ngẫu loại J có dải đo : -40 ~ 750oC, có hệ số K=0,055mV/oC. – Coi điểm tham chiếu luôn có nhiệt độ T2 = 0 oC và phương trình sức điện động là tuyến tính. Công thức tính điện áp ra của cảm biến là : Ucb = K*(T1-T2) tương ứng là: e= 0,055*T1 mV .  Với : T1 = 00C => Ucb = 0 mV.  Với : T1 = 2200C => Ucb = 12,1 mV.  Với : T1 = 4400C => Ucb = 24,2 mV. 3.3) Tính toán, thiết kế khối khuếch đại và khối chuẩn hóa. a) Khối khuếch đại – Điện áp chuẩn hóa đầu ra là : 0 ~ -5V mà điện áp ra của cảm biến là : 0 → 24,2mV. Vậy chọn mạch khuếch đại đảo có hệ số khuếch đại : -5V ÷24,2mV≈ -206,6 – Điện áp chuẩn hóa đầu ra là : 0 ~ 10V mà điện áp ra của cảm biến là : 0 → 24,2mV. Vậy chọn mạch khuếch đại đảo có hệ số khuếch đại : 10v ÷24,2mV≈ 413,2 – Sơ đồ mạch: Hình 3.31: Mạch khuếch đại đảo với KĐTT Với : Uo1= Nông Đức Nghĩa Ucb => = -206,6. Trang_17 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS Chọn R1 = 1kΩ thì R2=206,6kΩ, R3 = 10kΩ. Với : Uo2= R2 R2 U = cb => R1 R1 413,2. Chọn R1 = 1kΩ thì R2=413,2kΩ, R3 = 10kΩ. b) Khối chuẩn hóa U-I. – Để chuẩn hóa I thì cần khối khuếch đại đảo với hệ số khuếch đại là -1, để chuyển điện áp -5V thành 5V để sử dụng điện áp 5V cho các mạch sau. – Sơ đồ mạch: Hình 3.32: Mạch khuếch đại đảo với hệ số khuếch đại -1 Với: R1=R2= 1kΩ, R3= 10kΩ – Sơ đồ mạch chuẩn hóa: Hình 3.33: Mạch chuẩn hóa U-I  Khi điện áp vào thay đổi từ: 0 ÷ 5V thì Uin+ thay đổi từ 1 ÷ 5V.  Yêu cầu chuẩn hóa I=4÷ 20 mA. Vậy hệ số chuyển đổi : KUI = = = = → R3 = 250 Ω.  Yêu cầu chuẩn hóa I=0÷ 20 mA. Vậy hệ số chuyển đổi : Nông Đức Nghĩa Trang_18 Trường ĐHCN Hà Nội  KUI = Bộ môn VMTT&VMS = = 0 1v = → R3 = 250 Ω.  Khi điện áp vào thay đổi từ: 0 ÷ 10V thì Uin+ thay đổi từ 1 ÷ 10V.  Yêu cầu chuẩn hóa I=4÷ 20 mA. Vậy hệ số chuyển đổi : KUI = = = = 20mV 10v → R3 = 500 Ω.  Yêu cầu chuẩn hóa I=0÷ 20 mA. Vậy hệ số chuyển đổi :  KUI = = = 0 1v = → R3 = 250 Ω.  3.4) Tính toán, thiết kế mạch so sánh o – Nhiệt độ giới hạn là: tgh=tmax/2 = 440/2 = 220 C → Uss = 5/2 = 2,5V. – Khi điện áp vào Uin < Uss thì điện áp ra Uo ở mức thấp, nếu điện áp vào U in > Uss thì điện áp ra Uo ở mức cao. – Sơ đồ mạch: Hình 3.4: Mạch so sánh. 3.5) Mạch cảnh báo. o – Khi nhiệt độ vượt quá: t max/2 = 440/2 = 220 C  Uin>2,5 V thì đưa tín hiệu ra còi cảnh báo. Nông Đức Nghĩa Trang_19 Trường ĐHCN Hà Nội Bộ môn VMTT&VMS – Khi Uin > 2,5 V thì tín hiệu ra của mạch so sánh ở mức cao làm mạch cảnh báo hoạt động, khi Uin < 2,5 V thì mạch cảnh báo không hoạt động. Vì vậy sử dụng 1 con AND là IC 7408 với 1 chân nối +5V.  Bảng chân lý của IC 7408: A A B Z=A*B Z 0 0 0 B 0 1 0 1 0 0 1 1 1 – Sơ đồ mạch: Hình 3.5: Mạch cảnh báo.  Khi tín hiệu vào chân 1 của 7840 ở mức thấp ( tương ứng U in<2,5V) thì tín hiệu ra ở chân 3 ở mức thấp nên tranzitor loại NPN không dẫn nên còi cảnh báo không hoạt động.  Khi tín hiệu vào chân 1 của 7840 ở mức cao ( tương ứng U in>2,5V) thì tín hiệu ra ở chân 3 ở mức cao nên tranzitor loại NPN dẫn nên còi cảnh báo hoạt động. 3.6) Mạch nhấp nháy. – Ngược với mạch cảnh báo, mạch nhấp nháy hoạt động khi nhiệt độ dưới: o tmax/2 = 440/2 = 220 C  Uin<2,5 V thì đưa tín hiệu ra mạch nhấp nháy. – Khi Uin > 2,5 V thì tín hiệu ra của mạch so sánh ở mức cao nên mạch nhấp nháy không hoạt động, khi Uin < 2,5 V thì mạch nhấp nháy hoạt động. Vì vậy sử dụng 1 con NORvới 1 chân nối đất.  Bảng chân lý của IC 7408: Nông Đức Nghĩa Trang_20
- Xem thêm -

Tài liệu liên quan