Đăng ký Đăng nhập

Tài liệu Chuyen de on thi tnpt rat cong phu

.DOC
39
291
117

Mô tả:

TÀI LIỆU THPT HAY HÀM SỐ  1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Dạng 1: Tính đơn điệu của hàm số I. Kiến thức cơ bản 1. Định nghĩa Giả sử hàm số y = f(x) xác định trên K: + Hàm số y = f(x) được gọi đồng biến trên khoảng K nếu: x1 , x2 �K , x1  x2 � f ( x1 )  f ( x2 ) + Hàm số y = f(x) được gọi là nghịch biến trên khoảng K nếu: x1 , x2 �K , x1  x2 � f ( x1 )  f ( x2 ) 2. Qui tắc xét tính đơn điệu a. Định lí Cho hàm số y = f(x) có đạo hàm trên K: + Nếu f’(x) > 0 với mọi x thuộc K thì hàm số đồng biến + Nếu f’(x) < 0 với mọi x thuộc K thì hàm số nghịch biến b. Qui tắc B1: Tìm tập xác định của hàm số B2: Tính đạo hàm của hàm số. Tìm các điểm xi (i = 1, 2,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định. B3: Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên. B4: Nêu kết luận về các khoảng đồng biến, nghịch biến. II. Các ví dụ Loại 1: Xét sự biến thiên của hàm số Ví dụ 1. Xét sự đồng biến và nghịc biến của hàm số: 1 1 a. y = x3  x 2  2 x  2 b. y = -x 2  3x  4 e. y = x ( x  3), (x > 0) 3 2 x-1 c. y = x 4  2 x 2  3 d. y = x +1 Ví dụ 2. Xét sự biến thiên của các hàm số sau: a. y = 3x 2  8 x3 b. y = x 4  8 x 2  5 c. y = x 3  6 x 2  9 x 3- 2x x2  2x  3 d. y = e. y = f. y = 25-x 2 x+7 x 1 Loại 2: Chứng minh hàm số đồng biến hoặc nghịch biến trên khoảng xác định. Phương pháp + Dựa vào định lí. Ví dụ 3. Chứng minh hàm số y  2 x  x 2 nghịch biến trên đoạn [1; 2] Ví dụ 4 a. Chứng minh hàm số y  x 2  9 đồng biến trên nửa khoảng [3; + �). 4 b. Hàm số y  x  nghịc biến trên mỗi nửa khoảng [-2; 0) và (0;2] x Ví dụ 5. Chứng minh rằng 3 x a. Hàm số y  nghịch biến trên mỗi khoảng xác định của nó. 2x 1 2 x 2  3x b. Hàm số y  đồng biến trên mỗi khoảng xác định của nó. 2x 1 c. Hàm số y   x  x 2  8 nghịch biến trên R. Dạng 2. Tìm giá trị của tham số để một hàm số cho trước đồng biến, nghịch biến trên khoảng xác định cho trước Phương pháp: ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY + Sử dụng qui tắc xét tính đơn điêu của hàm số. + Sử dụng định lí dấu của tam thức bậc hai Ví dụ 6. 1 3 2 Tìm giá trị của tham số a để hàm số f ( x)  x  ax  4 x  3 đồng biến trên R. 3 Ví dụ 7. x2  5 x  m2  6 Tìm m để hàm số f ( x)  đồng biến trên khoảng (1; �) x3 m Ví dụ 8. Với giá trị nào của m, hàm số: y  x  2  đồng biến trên mỗi khoảng xác định của nó. x 1 Ví dụ 9 x3 Xác định m để hàm số y    (m  1) x 2  (m  3) x đồng biến trên khoảng (0; 3) 3 Ví dụ 10 mx  4 Cho hàm số y  xm a. Tìm m để hàm số tăng trên từng khoảng xác định b. Tìm m để hàm số tăng trên (2; �) c. Tìm m để hàm số giảm trên (�;1) Ví dụ 11 Cho hàm số y  x 3  3(2m  1) x 2  (12m  5) x  2 . Tìm m để hàm số: a. Liên tục trên R b. Tăng trên khoảng (2; �) Ví dụ 12 (ĐH KTQD 1997) Cho hàm số y  x 3  ax 2  (2a 2  7a  7) x  2(a  1)(2a  3) đồng biến trên [2:+�) Dạng 3. Sử dụng chiều biến thiên để chứng minh BĐT Phương pháp Sử dụng các kiến thức sau: + Dấu hiệu để hàm số đơn điệu trên một đoạn. + f ( x) đồng biến trên [a; b] thì f (a) �f ( x) �f () + f(x) nghịch biến trên [a; b] thì f (a) �f ( x) �f (b) Ví dụ 1. Chứng minh các bất đẳng thức sau:  1 x2 1 a. tanx > sinx, 0< x < b. 1 + x   1  x  1  x, 0 < x < +� 2 2 8 2 2 3 x x c. cosx > 1 , x �0 d. sinx > x , x>0 2 6 Ví dụ 2. Chohàm số f(x) = 2sinx + tanx – 3x �� 0; � a. Chứng minh rằng hàm số đồng biến trên nửa khoảng � � 2�  b. Chứng minh rằng 2sin x  tan x  3 x, x �(0; ) 2 Ví dụ 3 Cho hàm số f ( x)  t anx - x �� 0; � a.Chứng minh hàm số đồng biến trên nửa khoảng � � 2� x3  b. Chứng minh tan x  x  , x �(0; ) 3 2 Ví dụ 3 ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY Cho hàm số f ( x)  4  x  t anx, x �[0; ]  4 a. Xét chiều biến thiên của hàm số trên [0; 4  b. Chứng minh rằng tan x � x, x �[0; ]  4  ] 4  CỰC TRỊ CỦA HÀM SỐ Dạng 1. Tìm cực trị của hàm số Phương pháp: Dựa vào 2 qui tắc để tìm cực trị của hàm số y = f(x) Qui tắc I. B1: Tìm tập xác định. B2: Tính f’(x). Tìm các điểm tại đó f’(x) = 0 hoặc f’(x) không xác định. B3. Lập bảng biến thiên. B4: Từ bảng biến thiên suy ra các cực trị Qui tắc II. B1: Tìm tập xác định. B2: Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu là xi là các nghiệm của nó. B3: Tính f ”(xi) B4: Dựa vào dấu của f ” (xi) suy ra cực trị ( f ”(xi) > 0 thì hàm số có cực tiểu tại xi; ( f ”(xi) < 0 thì hàm số có cực đại tại xi) * Chú ý: Qui tắc 2 thường dùng với hàm số lượng giác hoặc việc giải phương trình f’(x) = 0 phức tạp. Ví dụ 1. Tìm cực trị của hàm số y  2 x 3  3 x 2  36 x  10 Qui tắc I. Qui tắc II TXĐ: R TXĐ: R 2 y '  6 x  6 x  36 y '  6 x 2  6 x  36 y '  0 � 6 x 2  6 x  36  0 y '  0 � 6 x 2  6 x  36  0 x2 � �� x  3 � x -3 - + y' 0 2 - 0 + + + 71 y - x2 � �� x  3 � y”= 12x + 6 y’’(2) = 30 > 0 nên hàm số đạt cực tiểu tại x = 2 và yct = - 54 y’’(-3) = -30 < 0 nên hàm số đạt cực đại tại x = -3 và ycđ =71 - 54 Vậy x = -3 là điểm cực đại và ycđ =71 x= 2 là điểm cực tiểu và yct = - 54 Bài1. Tìm cực trị của các hàm số sau: a. y = 10 + 15x + 6x 2  x 3 b. y = x 4  8 x 3  432 c. y = x 3  3 x 2  24 x  7 d. y = x 4 - 5x 2 + 4 e. y = -5x 3 + 3x 2 - 4x + 5 f. y = - x 3 - 5x Bài 2. Tìm cực trị của các hàm số sau: x+1 x2  x  5 (x - 4) 2 a. y = 2 b. y = c. y = 2 x 8 x 1 x  2x  5 2 9 x  3x  3 x d. y = x - 3 + e. y = f. y = 2 x-2 x 1 x 4 Bài 3. Tìm cực trị các hàm số ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY a. y = x 4 - x 2 d. y = b. y = x x+1 x 1 x3 2 c. y = 5 - 3x 1 - x2 e. y = f. y = x 3 - x 10 - x 2 x2  6 Bài 4. Tìm cực trị các hàm số: a. y = x - sin2x + 2 b. y = 3 - 2cosx - cos2x c. y = sinx + cosx 1 d. y = sin2x e. y = cosx + cos2x f. y = 2sinx + cos2x v� i x �[0;  ] 2 Dạng 2. Xác lập hàm số khi biết cực trị Để tìm điều kiện sao cho hàm số y = f(x) đạt cực trị tại x = a B1: Tính y’ = f’(x) B2: Giải phương trình f’(a) = 0 tìm được m B3: Thử lại giá trị a có thoả mãn điều kiện đã nêu không ( vì hàm số đạt cực trị tại a thì f’(a) = 0 không kể CĐ hay CT) Ví dụ 1. Tìm m để hàm số y = x3 – 3mx2 + ( m - 1)x + 2 đạt cực tiểu tại x = 2 LG y '  3 x 2  6 mx  m  1 . Hàm số đạt cực trị tại x = 2 thì y’(2) = 0 � 3.(2)2  6 m.2  m  1  0 � m  1 x 0 � 2 Với m = 1 ta được hàm số: y = x3 – 3x2 + 2 có : y '  3x  6 x � y '  0 � � tại x = 2 hàm số đạt giá trị x2 � cực tiểu Vậy m = 1 là giá trị cần tìm � t c� c� � i t� ix=2 Bài 1. Xác định m để hàm số y  mx 3  3 x 2  5 x  2 � 2 3 2 c tr� t� i x = 1. Khi � �h� m s�c�C�hay CT Bài 2. Tìm m để hàm số y  x  mx  (m  ) x  5 c�c� 3 x 2  mx  1 Bài 3. Tìm m để hàm số y  � � t c� c� � i t� ix=2 xm � t c� c ti� u t� ix=1 Bài 4. Tìm m để hàm số y  x 3  2 mx 2  m 2 x  2 � Bài 5. Tìm các hệ số a, b, c sao cho hàm số: f ( x )  x 3  ax 2  bx  c đạt cực tiểu tại điểm x = 1, f(1) = -3 và đồ thị cắt trục tung tại điểm có tung độ bằng 2 q Bài 6. Tìm các số thực q, p sao cho hàm số f ( x )  xp  đạt cực đại tại điểm x = -2 và f(-2) = -2 x 1 q , x �-1 Hướng dẫn: f '( x )  1  ( x  1)2 f'(x) > 0 v� i x �-1. Do � �h� m s�lu� n� � ng bi� n . H� m s�kh� ng c�c� c tr� . + Nếu q �0 th� + Nếu q > 0 thì: � x  1  q x2  2x  1 q f '( x )  0� � 2 ( x  1) � x  1  q � Lập bảng biến thiên để xem hàm đạt cực tại tại giá trị x nào. Dạng 3. Tìm điều kiện để hàm số có cực trị Bài toán: ‘Tìm m để hàm số có cực trị và cực trị thoả mãn một tính chất nào đó.’ Phương pháp B1: Tìm m để hàm số có cực trị. B2: Vận dụng các kiến thức khác Chú ý:  Hàm số y  ax3  bx 2  cx  d (a �0) có cực trị khi và chỉ khi phương trình y’ = 0 có hai nghiệm phân biệt. ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY p( x ) . Giả sử x0 là điểm cực trị của y, thì giá trị của y(x0) có thể được Q( x ) P( x0 ) P '( x0 ) ho� c y(x 0 )  tính bằng hai cách: hoặc y( x0 )  Q( x0 ) Q '( x0 ) Ví dụ . Xác định m để các hàm số sau có cực đại và cực tiểu 1 x 2  mx  2 m  4 a. y = x 3  mx 2  (m  6) x  1 b. y = 3 x 2 Hướng dẫn. a. TXĐ: R y '  x 2  2 mx  m  6 . m ph� n bi� t Để hàm số có cực trị thì phương trình: x 2  2mx  m  6  0 c�2 nghi� m3 �  '  m2  m  6  0 � � m  2 �  Cực trị của hàm phân thức y  b. TXĐ: �\  2 (2 x  m)( x  2)  ( x 2  mx  2 m  4) x 2  4 x  4m  4 y'   ( x  2)2 ( x  2)2 H� m s�c�c� c� � i, c� c ti� u khi y '  0 c�hai nghi� m ph� n bi� t kh� c -2 � x 2  4 x  4 m  4  0 '  0 4  4m  4  0 � � �� �� � m0 4  8  4m  4 �0 � �m �0 i gi�tr�� n o c� a m th�� h m s�c�C�, CT? Bài 1. Tìm m để hàm số y  x 3  3mx 2  2. V� x 2  m( m  1) x  m 3  1 luôn có cực đại và cực tiểu. xm 2  12 x  13 . Tìm a để hàm số có cực đại, cực tiểu và các điểm cực tiểu của đồ Bài 3. Cho hàm số y  2 x 3  � thị cách đều trục tung. m 3 2 Bài 4. Hàm số y  x  2(m  1) x  4mx  1 . Tìm m để hàm số có cực đại cực tiểu. 3 x 2  mx Bài 5. Cho hàm y  . Tìm m để hàm số có cực trị 1 x x 2  mx  2 m  4 Bài 6. Cho hàm số y  . Xác định m để hàm số có cực đại và cực tiểu. x2 Bài 2. Tìm m để hàm sô y  Dạng 4. Tìm tham số để các cực trị thoả mãn tính chất cho trước. Phương pháp + Tìm điều kiện để hàm số có cực trị + Vận dụng các kiến thức về tam thức, hệ thức Viet để thoả mãn tính chất. Ví dụ . ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY Bài1. Tìm cực trị của các hàm số sau: a. y = 10 + 15x + 6x 2  x 3 c. y = x 3  3 x 2  24 x  7 b. y = x 4  8 x 3  432 d. y = x 4 - 5x 2 + 4 e. y = -5x 3 + 3x 2 - 4x + 5 f. y = - x 3 - 5x Bài 2. Tìm cực trị của các hàm số sau: x+1 x2  x  5 (x - 4) 2 a. y = 2 b. y = c. y = 2 x 8 x 1 x  2x  5 2 9 x  3x  3 x d. y = x - 3 + e. y = f. y = 2 x-2 x 1 x 4 Bài 3. Tìm cực trị các hàm số x+1 5 - 3x a. y = x 4 - x 2 b. y = c. y = x2 1 1 - x2 x x3 d. y = e. y = f. y = x 3 - x 10 - x 2 x2  6 Bài 4. Tìm cực trị các hàm số: a. y = x - sin2x + 2 b. y = 3 - 2cosx - cos2x c. y = sinx + cosx 1 d. y = sin2x e. y = cosx + cos2x f. y = 2sinx + cos2x v� i x �[0;  ] 2 � t c� c� � i t� ix=2 Bài 5. Xác định m để hàm số y  mx 3  3 x 2  5 x  2 � 2 3 2 c tr� t� i x = 1. Khi � �h� m s�c�C�hay CT Bài 6. Tìm m để hàm số y  x  mx  (m  ) x  5 c�c� 3 x 2  mx  1 Bài 7. Tìm m để hàm số y  � � t c� c� � i t� ix=2 xm � t c� c ti� u t� ix=1 Bài 8. Tìm m để hàm số y  x 3  2 mx 2  m 2 x  2 � 3 2 Bài 9. Tìm các hệ số a, b, c sao cho hàm số: f ( x )  x  ax  bx  c đạt cực tiểu tại điểm x = 1, f(1) = -3 và đồ thị cắt trục tung tại điểm có tung độ bằng 2 q Bài 10. Tìm các số thực q, p sao cho hàm số f ( x )  xp  đạt cực đại tại điểm x = -2 và f(-2) = -2 x 1 i gi�tr�� n o c� a m th�� h m s�c�C�, CT? Bài 11. Tìm m để hàm số y  x 3  3mx 2  2. V� x 2  m( m  1) x  m 3  1 luôn có cực đại và cực tiểu. xm 2  12 x  13 . Tìm a để hàm số có cực đại, cực tiểu và các điểm cực tiểu của Bài 13. Cho hàm số y  2 x 3  � đồ thị cách đều trục tung. m 3 2 Bài 14. Hàm số y  x  2(m  1) x  4 mx  1 . Tìm m để hàm số có cực đại cực tiểu. 3 x 2  mx Bài 15. Cho hàm y  . Tìm m để hàm số có cực trị 1 x x 2  mx  2 m  4 Bài 16. Cho hàm số y  . Xác định m để hàm số có cực đại và cực tiểu. x2 Bài 12. Tìm m để hàm sô y   GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ DẠNG 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số  Để tìm GTLN, GTNN của hàm số y = f(x) trên  a; b  : ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY +B1: Tính đạo hàm của hàm số y’ = f’(x) + B2: Xét dấu đạo hàm f’(x), lập bảng biến thiên x b x0 a - y' + x y b x0 a + y' GTLN y GTNN Trong đó tại x0 thì f’(x0) bằng 0 hoặc không xác định  Để tìm GTLN, GTNN của hàm số y = f(x) trên [a; b]: B1: Tìm caùc giaù trò xi � a; b  (i = 1, 2, ..., n) laøm cho ñaïo haøm baèng 0 hoaëc khoâng xaùc ñònh . B2: Tính f (a), f ( x1 ), f ( x 2 ),..., f ( x n ), f ( b) B3: GTLN = max{ f (a), f ( x1 ), f ( x2 ),..., f ( x n ), f ( b) } GTNN = Min{ f (a), f ( x1 ), f ( x2 ),..., f ( x n ), f ( b) } Ví dụ 1. Tìm giá trị lớn nhất và nhỏ nhất của hàm số y  x  1 trên khoảng (0; �) x Hướng dẫn: Dễ thầy h àm số liên tục trên (0; �) x y' 1 x2 1 y '  1  2  2 � y '  0 � x 2  1  0 � x  �1 . y x x Dễ thấy x  1 �(0; �) Vậy Minf(x) = 2 khi x = 1 và hàm số không có giá trị lớn nhất. Ví dụ 2. x3 Tính GTLN, GTNN của hàm số y   2 x 2  3x  4 trên đoạn [-4; 0] 3 Hướng dẫn Hàm số liên tục trên [-4; 0], x  1 � f '( x )  x 2  4 x  3 � f '( x )  0 � x 2  4 x  3  0 � � x  3 � + 1 0 - 0 + + + 2 16 16 , f (3)  4, f (1)  , f (0)  4 3 3 V� y Max y  4 khi x = -3 ho� cx=0 f (4)  x�[-4;0] 16 khi x = -4 ho� c x = -1 3 Bài 1. Tìm GTLN, GTNN của hàm số (nếu có): a. f(x) = x3  3 x 2  9 x  1 tr� n [-4; 4] Min y  x�[-4;0] c. f(x) = x 4  8 x 2  16 tr� n �� o n [-1; 3] Bài 2. Tìm GTLN, GTNN của hàm số (nếu có): x a. f(x) = tr� n n� a kho� ng (-2; 4] x+2 b. f(x) = x3  5x  4 tr� n �� o n [-3; 1] d. f(x) = x3  3 x 2  9 x  7 tr� n �� o n [-4; 3] 1 tr� n kho� ng (1; +�) x- 1 1  3 d. f(x) = tr� n kho� ng ( ; ) cosx 2 2  TIỆM CẬN CỦA HÀM SỐ c. f(x) = x 1 - x 2 b. f(x) = x +2 + I. Kiến thức cần nắm Cho hàm số y = f(x) có đồ thị là (C)  y = y0 là tiệm cận ngang của nếu một trong hai điệu kiên sau được thoả mãn: lim f ( x )  y0 , ho� c lim f ( x )  y0 x �� x � �  x = x0 là tiệm cận đứng của (C) nếu một trong các điều kiện sau đựơc thoả mãn: lim  �, lim  �, lim  �, lim  � x � x0 x � x0 x � x0 ÔN TẬP TỐT NGHIỆP QUỐC GIA x � x0 Page TÀI LIỆU THPT HAY  Đường thẳng y = ax + b ( a �0 ) được gọi là tiệm cận xiên nếu một trong hai điều kiện sau thoả mãn: lim [f ( x )  (ax + b)] = 0 ho� c lim [f ( x )  (ax+b)]=0 x �� x �� II. Các dạng toán Dạng 1: Tiệm cận hàm số hữu tỉ y  P( x ) Q( x ) Phương pháp  Tiệm cận đứng: Nghiệm của mẫu không phải là nghiệm của tử cho phép xác định tiệm cận đứng.  Tiệm cận ngang, xiên: + Det(P(x)) < Det (Q(x)): Tiệm cận ngang y = 0 + Det(P(x)) = Det(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu. + Det (P(x)) = Det(Q(x)) + 1: Không có tiệm cận ngang; Tiệm cận xiên được xác định bằng  ( x )  0 thì y = ax + b là tiệm cận xiên. cách phân tích hàm số thành dạng: f(x) = ax + b +  ( x ) với lim x �� Ví dụ 1. Tìm các tiệm cận của các hàm số: 2x- 1 x2  x  7 x+2 a. y = b. y = c. y = 2 x+2 x 3 x 1 Hướng dẫn 2x 1 2x 1  �; lim  � nên đường thẳng x= 2 là tiệm cận đứng. a. Ta thấy lim x �2 x  2 x � 2 x  2 1 2 2x 1 x  2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.  lim Vì xlim ��� x  2 x ��� 2 1 x b. x2  x  7 + lim  �. Nên x = 3 là tiệm cận đứng của đồ thị hàm số. x �3 x 3 1 1  0 Vậy y = x+ 2 là tiệm cân xiên của đồ thị hàm số. + y  x 2 . Ta thấy lim[y - (x + 2)]= lim x �� x �� x  3 x 3 x2  �. Nên x = 1 là đường tiệm cận đứng. c. Ta thấy lim  2 x �1 x 1 x2  �. Nên x = -1 là tiệm cận đứng. + lim 2 x � 1 x  1 1 2  x  2 x x2   0 . Nên y = 0 là tiệm cận ngang của đồ thị hàm số. + xlim � � x 2  1 1 1 2 x Dạng 2. Tiệm cận của hàm vô tỉ y  ax 2  bx  c ( a  0) Phương pháp b 2   ( x) Ta phân tích ax  bx  c � a x  2a  ( x )  0 khi đó y  a ( x  b ) có tiệm cận xiên bên phải Với xlim � � 2a  ( x )  0 khi đó y   a ( x  b ) có tiệm cận xiên bên tr ái Với xlim � � 2a VÝ dô T×m tiÖm cËn cña hµm sè: y  9 x 2  18 x  20 Híng dÉn ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY y  9( x  2)2  6 ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY C¸c tÝnh giíi h¹n v« cùc cña hµm sè y  lim f ( x) x �x 0 L L>0 lim g( x ) x �x 0 L<0 0 f ( x) g( x ) Tuú ý + + �� 0 Bµi 1. T×m tiÖm cËn c¸c hµm sè sau: 2x - 1 3 - 2x a. y = b. y = x+2 3x + 1 x+ 1 1 e. y = f. y = 4 + 2x + 1 x- 2 Bµi 2. T×m tiÖm cËn cña c¸c hµm sè sau: x 2  12 x  27 x2  x  2 a. y = b. y = x2  4x  5 ( x  1)2 a. y = b. y = c. y  x+ 3 x+ 1 x 1 5 2 - 3x -x + 3 g. y = x c. y = 2 -5 x 4 d. y = 5 -2 -4 -5 2- x x  4x  2 2x3  x h. y = x2  1 1 g. y = x- 3 + 2(x- 1)2 2 2 -4 x+1 4-x h. y = 3x + 1 d. y = x2  3x c. y = 2 x 4 x2  2 x f. y = x 3 1 e. y = 2x -1 + x Bµi 3. T×m tiÖm cËn c¸c hµm sè x2  x x 1 f ( x) lim x �x g( x ) 0 0 +� -� +� -� DÊu cña g(x) 2 5 -5 5 -2 -2 -4 -4 x 3 cã ®óng 2 tiÖm cËn ®øng. x  2(m  2) x  m 2  1 Bµi 5. TÝnh diÖn tÝch cña tam gi¸c t¹o bëi tiÖm cËn xiªn cña ®å thÞ t¹o víi hai trôc to¹ ®é cña c¸c hµm sè: 3x 2  x  1 -3x 2  x  4 a. y = b. y = x 1 x2 2 Bµi 6.(§HSP 2000). T×m m ®Ó tiÖm cËn xiªn cña ®å thÞ hµm sè y  x  2(m  1) x  4 m  3 t¹o víi hai trôc x 2 to¹ ®é mét tam gi¸c cã diÖn tÝch b»ng 8 (®vdt) 2 Bµi 7. Cho hµm sè: y  x  x (3m  2)  3  3m (1) x 1 a. T×m m ®Ó tiÖm cËn xiªn cña ®å thÞ ®i qua ®iÓm A(4;  3) b. T×m m ®Ó ®êng tiÖm cËn xiªn cña (1) c¾t Parabol y  x 2 t¹i hai ®iÓm ph©n biÖt. Bµi 4. X¸c ®Þnh m ®Ó ®å thÞ hµm sè: y  ÔN TẬP TỐT NGHIỆP QUỐC GIA 2 Page TÀI LIỆU THPT HAY  4. kh¶o s¸t vµ vÏ hµm bËc ba D¹ng 1: Kh¶o s¸t vµ vÏ hµm sè y  ax 3  bx 2  cx  d (a �0) Ph¬ng ph¸p 1. T×m tËp x¸c ®Þnh. 2. XÐt sù biÕn thiªn cña hµm sè a. T×m c¸c giíi h¹n t¹i v« cùc vµ c¸c giíi h¹n t¹i v« cùc (nÕu cã). T×m c¸c ®êng tiÖm cËn. b. LËp b¶ng biÕn thiªn cña hµm sè, bao gåm: + T×m ®¹o hµm, xÐt dÊu ®¹o hµm, xÐt chiÒu biÕn thiªn vµ t×m cùc trÞ. + §iÒn c¸c kÕt qu¶ vµo b¶ng. 3. VÏ ®å thÞ cña hµm sè. + VÏ ®êng tiÖm cËn nÕu cã. + X¸c ®Þnh mét sè ®iÓm ®Æc biÖt: Giao víi Ox, Oy, ®iÓm uèn. + NhËn xÐt ®å thÞ: ChØ ra t©m ®èi xøng, trôc ®èi xøng (kh«ng cÇn chøng minh) VÝ dô 1. Cho hµm sè: y   x 3  3x 2  1 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. b. Tuú theo gi¸ trÞ cña m, biÖn luËn sè nghiÖm cña ph¬ng tr×nh:  x 3  3x 2  1  m Híng dÉn a. 1. TX§: D  � 2. Sù biÕn thiªn cña hµm sè a. Giíi h¹n t¹i v« cùc 3 1 lim (  x 3  3 x  1)  lim x 3 (1  2  3 )  � x �� x �� x x - 0 x 2 3 1 3 3 lim (  x  3 x  1)  lim x (1  2  3 )  � + 0 y' 0 x �� x �� x x + 3 c. B¶ng biÕn thiªn y x 0 � y '  3 x 2  6 x � y '  0 � 3 x 2  6 x  0 � � x2 � -1 Hµm sè ®ång biÕn trªn c¸c kho¶ng (�;0) v�(2; +�) Vµ nghÞch biÕn trªn kho¶ng (0; 2). Hµm sè ®¹t cùc ®¹i t¹i ®iÓm x= 2 ; vµ yC§=y(2)= 3 Hµm sè ®¹t cùc tiÓu t¹i ®iÓm x =0 vµ yCT = y(1) = -1 3. §å thÞ + Giao víi Oy: cho x = 0 � y  0 . Vëy giao víi Oy t¹i ®iÓm O(0; -1) + y ''  0 � 6 x  6  0 � x  1 . §iÓm A (1; 1) + NhËn ®iÓm A lµm t©m ®èi xøng. b. Sè nghiÖm cña ph¬ng tr×nh lµ sè giao ®iÓm cña 2 ®å thÞ y   x 3  3x 2  1 vµ y =m Dùa vµo ®å thÞ ta cã kÕt qu¶ biÖn luËn: m > 3: Ph¬ng tr×nh cã 1 nghiÖm. m  3 ph� � ng tr� nh c�2 nghi� m -1< m < 3: Ph� � ng tr� nh c�3 nghi� m. m = -1: Ph� � ng tr� nh c�2 nghi� m m < -1: Ph� � ng tr� nh c�1nghi� m + - - 2 -5 5 -2 C¸c bµi to¸n vÒ hµm bËc ba Bµi 1(TNTHPT – 2008) Cho hµm sè y  2 x 3  3 x 2  1 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. b. BiÖm luËn theo m sè nghiÖm cña ph¬ng tr×nh 2 x 3  3 x 2  1  m Bµi 2 (TN THPT- lÇn 2 – 2008) Cho hµm sè y = x3 - 3x2 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè ®· cho. b. T×m c¸c gi¸ trÞ cña m ®Ó ph¬ng tr×nh x 3  3x 2  m  0 cã 3 nghiÖm ph©n biÖt. ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY Bài 3 (TNTHPT - 2007) Cho hàm số y= x 3  3 x  2 có đồ thị là (C) . a/ Khảo sát và vẽ đồ thị hàm số . b/ Viết phương trình tiếp tuyến tại điểm A(2 ;4) . Bài 4 (TNTHPT - 2006) Cho hàm số y=  x 3  3 x 2 có đồ thị (C) . a/ Khảo sát và vẽ đồ thị hàm số . b/ Dựa vào đồ thị biện luận số nghiệm phương trình :  x 3  3 x 2 -m=0 . Bài 5 (TNTHPT – 2004- PB) Cho hàm số y= x 3  6 x 2  9 x có đồ thị là (C) . a/ Khảo sát và vẽ đồ thị hàm số . b/ Viết phương trình tiếp tuyến tại điểm cã hoµnh ®é lµ nghiÖm cña ph¬ng tr×nh y’’=0 . c/ Với giá trị nào của m thì đường thẳng y=x+m2-m đi qua trung điểm của đoạn thẳng nối cực đại vào cực tiểu . Bài 6 (TNTHPT – 2004 - KPB) Cho hàm số y= x 3  3mx 2  4m3 . a/ Khảo sát và vẽ đồ thị hàm số khi m=1 . b/ Viết phương trình tiếp tuyến tại điểm có hoành độ x=1 . Bµi 7 (§H- A- 2002) Cho hµm sè y   x 3  3mx 2  3(1  m 2 ) x  m 3  m 2 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m= 1 b. T×m k ®Ó ph¬ng tr×nh:  x 3  3x 2  k 3  3k 2  0 cã 3 nghiÖm ph©n biÖt. c. ViÕt ph¬ng tr×nh ®êng th¼ng qua 2 ®iÓm cùc trÞ cña ®å thÞ hµm sè (1). Bµi 8 (C§ SP MGTW- 2004) Cho hµm sè y = x3 - 3x2 + 4m a. Chøng minh ®å thÞ hµm sè lu«n cã 2 cùc trÞ. b. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè khi m = 1 Bµi 9 (§H-B- 2007) Cho hµm sè y   x 3  3x 2  3( m 2  1) x  3m 2  1 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m =1 b. T×m m ®Ó hµm sè cã cùc ®¹i cùc tiÓu vµ c¸c ®iÓm cùc trÞ c¸ch ®Òu ®iÓm O. Bµi 10 (§H - D - 2004) Cho hµm sè y = x3 – 3mx2 + 9x + 1 a. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m = 2 b. T×m m ®Ó nghiÖm cña ph¬ng tr×nh y’’= 0 thuéc ®êng th¼ng y = x+ 1 Bµi 8 Cho hµm sè y = (x -1)(x2 + mx + m) a. T×m m ®Ó ®å thÞ hµm sè c¾t trôc hoµnh t¹i 3 ®iÓm ph©n biÖt b. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè víi m= 4 Bµi 3 Cho hµm sè y  2 x 3  3(m  1) x 2  6(m  2) x  1 a. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m =2 b. Víi gi¸ trÞ nµo cña m hµm sè cã cùc ®¹i, cùc tiÓu. Bµi 5 (§H 2006- D) Cho hµm sè y  x 3  3 x  2 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè. b. Gäi d lµ ®êng th¼ng qua ®iÓm A(3; 20) vµ cã hÖ sè gãc m. T×m m ®Ó ®êng th¼ng d c¾t (C ) t¹i 3 ®iÓm phÇn biÖt. (Gîi ý ®êng th¼ng d qua M(x0;y0) cã hÖ sè gãc m cã d¹ng: y = m(x - x0) + y 0) Bµi 7 Cho hµm sè y = (x - m)3 - 3x a. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m = 1 b. T×m m ®Ó hµm sè ®· cho ®¹t cùc tiÓu t¹i ®iÓm cã hoµnh ®é x = 0 ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY Bµi 8 Cho hµm sè y = (x -1)(x2 + mx + m) c. T×m m ®Ó ®å thÞ hµm sè c¾t trôc hoµnh t¹i 3 ®iÓm ph©n biÖt d. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè víi m= 4 Bµi 11 Cho hµm sè y = x 3  2mx 2  m2 x  2 a. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè khi m =1 b. T×m m ®Ó hµm sè ®¹t cùc tiÓu t¹i x = 1 ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY  Hµm bËc bèn trïng ph¬ng vµ mét sè bµi tËp cã liªn quan I. Mét sè tÝnh chÊt cña hµm trïng ph¬ng  Hµm sè lu«n cã cùc trÞ víi mäi gi¸ trÞ cña tham sè sao cho a �0  Hµm sè ®¹t gi¸ trÞ cùc ®¹i, cùc tiÓu � y '  0 � 2 x (2ax 2  b )  0 cã ba nghiÖm ph©n biÖt �  §å thÞ hµm sè lu«n nhËn Oy lµ trôc ®èi xøng.  NÕu hµm sè cã ba cùc trÞ trÞ chóng t¹o thµnh mét tam gi¸c c©n. D¹ng to¸n: Kh¶o s¸t vµ vÏ ®å thÞ cña hµm sè VÝ dô 1 (TNTHPT-2008) Cho hµm sè y  x 4  2 x 2 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. b. ViÕt ph¬ng tr×nh tiÕp tuyÕn cña ®å thÞ hµm sè t¹i ®iÓm cã hoµnh ®é x = -2 VÝ dô 2. Cho hµm sè y  x 4  4mx 3  3(m  1) x 2  1 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m =0 b. Víi gi¸ trÞ nµo cña m hµm sè cã 3 cùc trÞ ÔN TẬP TỐT NGHIỆP QUỐC GIA b 0 2a Page TÀI LIỆU THPT HAY Bµi tËp hµm sè trïng ph¬ng Bµi 1. Kh¶o s¸t vµ vÏ ®å thÞ c¸c hµm sè sau: a. y= -x 4  2 x 2 b. y = x 4  x 2  2 c. y = x 4  6 x 2  1 1 5 d. y = x 4  3 x 2  e.y = -x 4 +2x 2 +3 f. y = x 4 +2x 2 +1 2 2 Bµi 2. Cho hµm sè y  x 4  2m 2 x 2  1 a. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m =1 b. T×m m ®Ó ®å thÞ hµm sè cã ba cùc trÞ lµ ba ®Ønh cña tam gi¸c vu«ng c©n. Bµi 3 (§H §µ L¹t - 2002) a. Gi¶i ph¬ng tr×nh x 4  2 x 2  1  0 b. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè y = x 4  2 x 2  1 c. BiÖn luËn theo m sè nghiÖm cña ph¬ng tr×nh x 4  2 x 2  1  m  0 Bµi 4 (§H Th¸i Nguyªn - 2002) Cho hµm sè y   x 4  2 mx 2 (C m ) a. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m = 1 b. H·y x¸c ®Þnh m ®Ó hµm sè ®å thÞ hµm sè cã 3 cùc trÞ Bµi 5. (§H Vinh - 2002) 1. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè y   x 4  5 x 2  4 2. X¸c ®Þnh m ®Ó ph¬ng tr×nh x 4  5 x 2  m 2  3  0 cã 4 nghiÖm ph©n biÖt. Bµi 6 4 Cho hµm sè y  x  2 x 2  9 4 4 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè b. BiÖn luËn theo k sè giao ®iÓm cña (C) víi ®å thÞ (P) cña hµm sè y  k  2 x 2 Bµi 7 Cho hµm sè y  x 4  2 mx 2  m 3  m 2 a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè khi m = 1 b. X¸c ®Þnh m ®Ó ®å thÞ (Cm ) cña hµm sè ®· cho tiÕp xóc víi trôc hoµnh t¹i 2 ®iÓm Bµi 8. (§H CÇn th¬ - 2002) Cho hµm sè y  x 4  2 x 2  2  m (Cm) a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m = 0 b. T×m c¸c gi¸ trÞ cña m ®Ó ®å thÞ (Cm) cña hµm sè chØ cã hai ®iÓm chung víi Ox c. Chøng minh víi mäi m tam gi¸c cã 3 ®Ønh lµ ba cùc trÞ lµ mét tam gi¸c vu«ng c©n. ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY HOÏ ÑÖÔØNG CONG BAØI TOAÙN TOÅNG QUAÙT: Cho hoï ñöôøng cong (C m ) : y  f ( x, m) ( m laø tham soá ) Bieän luaän theo m soá ñöôøng cong cuûa hoï (C m ) ñi qua ñieåm M 0 ( x 0 ; y 0 ) cho tröôùc. PHÖÔNG PHAÙP GIAÛI: Ta coù : Hoï ñöôøng cong (C m ) ñi qua ñieåm M 0 ( x 0 ; y 0 )  y 0  f ( x0 , m) (1) Xem (1) laø phöông trình theo aån m. Tuøy theo soá nghieäm cuûa phöông trình (1) ta suy ra soá ñöôøng cong cuûa hoï (Cm) ñi qua M 0 Cuï theå: Neáu phöông trình (1) coù n nghieäm phaân bieät thì coù n ñöôøng cong cuûa hoï (Cm) ñi qua M 0  Neáu phöông trình (1) voâ nghieäm thì moïi ñöôøng cong cuûa hoï (Cm) ñeàu khoâng ñi qua M 0  Neáu phöông trình (1) nghieäm ñuùng vôùi moïi m thì moïi ñöôøng cong cuûa hoï (Cm) ñeàu ñi qua M 0  Trong tröôøng hôïp naøy ta noùi raèng M0 laø ñieåm coá ñònh cuûa hoï ñöôøng cong (C m ) D¹ng 1: TÌM ÑIEÅM COÁ ÑÒNH CUÛA HOÏ ÑÖÔØNG CONG BAØI TOAÙN TOÅNG QUAÙT: Cho hoï ñöôøng cong (C m ) : y  f ( x, m) ( m laø tham soá ) Tìm ñieåm coá ñònh cuûa hoï ñöôøng cong (Cm) PHÖÔNG PHAÙP GIAÛI Böôùc 1: Goïi M 0 ( x 0 ; y 0 ) laø ñieåm coá ñònh (neáu coù) maø hoï (Cm) ñi qua. Khi ñoù phöông trình: y 0  f ( x0 , m) nghieäm ñuùng  m (1) Böôùc 2: Bieán ñoåi phöông trình (1) veà moät trong caùc daïng sau: Am  B 0 m Daïng 1: Am 2  Bm  C 0 m Daïng 2: AÙp duïng ñònh lyù: Am  B 0  A 0 m    B 0  A 0  Am 2  Bm  C 0 m   B 0  C 0  (2) (3) Böôùc 3: Giaûi heä (2) hoaëc (3) ta seõ tìm ñöôïc ( x 0 ; y 0 ) Bµi tËp Bµi 1. Cho hä (Cm) y  x 3  3(m  1) x 2  2(m 2  4 m  1) x  4 m(m  1) . CMR: Khi m thay ®æi th× hä ®êng cong lu«n qua mét ®iÓm cè ®Þnh. mx  1 Bµi 2. Cho hä ®å thÞ (Cm):  . T×m c¸c ®iÓm cè ®Þnh mµ ®å thÞ cña hµm sè lu«n ®i qua víi mäi m ��1 xm ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY 2 Bµi 3. Cho hä (Cm) cã ph¬ng tr×nh: y  x  mx  m  1 . Chøng minh r»ng (Cm) lu«n ®i qua mét ®iÓm cè x 1 ®Þnh. Bµi 4. Cho hµm sè (Cm): y  x 3  3mx  2 m a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m = 1. b. Chøng minh r»ng hä ®êng cong lu«n ®i qua mét ®iÓm cè ®Þnh. mx  1 Bµi 5. Cho hµm sè: y  , m ��1 . Gäi (Hm) lµ ®å thÞ cña hµm sè ®· cho. xm a. Chøng minh r»ng víi mäi m ��1 , hä ®êng cong lu«n qua 2 ®iÓm cè ®Þnh. b. Gäi M lµ giao ®iÓm cña 2 tiÖm cËn. T×m tËp hîp c¸c ®iÓm M khi m thay ®æi. Bµi 6. Cho hµm sè: y  (m  2) x 3  2(m  2) x 2  (m  3) x  2m  1 (C m ) . Chøng minh r»ng hä ®å thÞ lu«n qua ba ®iÓm cè ®Þnh vµ 3 ®iÓm cè ®Þnh ®ã cïng n»m trªn mét ®êng th¼ng. D¹ng 2: T×m ®iÓm hä ®å thÞ hµm sè kh«ng ®i qua Ph¬ng ph¸p: B1: Gi¶ sö M(x0; y0) lµ ®iÓm mµ hä ®êng cong kh«ng thÓ ®i qua. B2: Khi cã ph¬ng tr×nh: y 0  f ( x0 , m) v« nghiÖm víi m tõ ®ã t×m ®îc (x0; y0) B3: KÕt luËn vÒ ®iÓm mµ hä ®êng cong kh«ng thÓ ®i qua. Bµi 1. Cho hµm sè y  ( x  2)( x 2  2mx  m 2  1) (C m ) . T×m c¸c ®iÓm mµ (Cm) kh«ng thÓ ®i qua. Bµi 2. Cho hµm sè y  (3m  1) x  m  m xm a. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m = 1. b. T×m c¸c ®iÓm trªn ®êng th¼ng x = 1, sao cho kh«ng thÓ cã gi¸ trÞ nµo cña m ®Ó ®å thÞ hµm sè ®i qua. Bµi 3. Cho ®å thÞ hµm sè y  2 x 3  3(m  3) x 2  18mx  8 (C m ) . Chøng minh r»ng trªn ®êng cong y = x2 cã hai ®iÓm mµ (Cm) kh«ng ®i qua víi mä m. 2 ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY CHUYÊN ĐỀ : PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phương trình a) Phương pháp  Thông thường nếu ta gặp phương trình dạng : A  B  C  D , ta thường bình phương 2 vế , điều đó đôi khi lại gặp khó khăn hãy giải ví dụ sau 3  A  3 B  3 C � A  B  3 3 A.B  3  A 3 B C và ta sử dụng phép thế : 3 A  3 B  C ta được phương trình : A  B  3 3 A.B.C  C b) Ví dụ Bài 1. x  3  3x  1  2 x  2 x  2 Giải phương trình sau : Giải: Đk x �0 Bình phương 2 vế không âm của phương trình ta được: 1   x  3  3x  1  x  2 x  2 x  1 , để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : 3x  1  2 x  2  4 x  x  3 Bình phương hai vế ta có : Thử lại x=1 thỏa 6 x 2  8 x  2  4 x 2  12 x � x  1  Nhận xét : Nếu phương trình : f  x  g  x  h  x  k  x Mà có : f  x   h  x   g  x   k  x  , thì ta biến đổi phương trình về dạng : f  x   h  x   k  x   g  x  sau đó bình phương ,giải phương trình hệ quả Bài 2. Giải phương trình sau : x3  1  x  1  x2  x  1  x  3 x3 Giải: Điều kiện : x �1 Bình phương 2 vế phương trình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : (2) � x3  1 . x  3  x 2  x  1. x  1 , từ nhận xét này ta có lời giải như sau : x3 x3  1  x  3  x2  x  1  x  1 x3 x3  1  x2  x  1 � x2  2x  2  0 � Bình phương 2 vế ta được: x3 Thử lại : x  1  3, x  1  3 � x  1 3 � x  1 3 � l nghiệm Qua lời giải trên ta có nhận xét : Nếu phương trình : f  x  g  x  h  x  k  x Mà có : f  x  .h  x   k  x  .g  x  thì ta biến đổi f  x  h  x  k  x  g  x 2. Trục căn thức 2.1. Trục căn thức để xuất hiện nhân tử chung a) Phương pháp Một số phương trình vô tỉ ta có thể nhẩm được nghiệm x0 như vậy phương trình luôn đưa về được dạng tích  x  x0  A  x   0 ta có thể giải phương trình A  x   0 hoặc chứng minh A  x   0 vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh gía A  x   0 vô nghiệm ÔN TẬP TỐT NGHIỆP QUỐC GIA Page TÀI LIỆU THPT HAY b) Ví dụ 3 x 2  5 x  1  x 2  2  3  x 2  x  1  x 2  3 x  4 Bài 1 . Giải phương trình sau : Giải:         2 2 2 2 Ta nhận thấy : 3 x  5 x  1  3x  3x  3  2  x  2  v x  2  x  3x  4  3  x  2  2 x  4 3 x 2  5 x  1  3  x 2  x  1 Ta có thể trục căn thức 2 vế : 3x  6  x 2  2  x 2  3x  4 Dể dàng nhận thấy x=2 là nghiệm duy nhất của phương trình . Bài 2. Giải phương trình sau (OLYMPIC 30/4 đề nghị) : x 2  12  5  3 x  x 2  5 Giải: Để phương trình có nghiệm thì : x 2 �۳ 12 x2 5 3x 5 0 x 5 3 Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng  x  2  A  x   0 , để thực hiện được điều đó ta phải nhóm , tách như sau : x2  4 x  12  4  3x  6  x  5  3 � 2 2 x 2  12  4  3 x  2  x2  4 x2  5  3 � x2 � x 1 �  x  2 �   3 � 0 � x  2 2 x2  5  3 � � x  12  4 x2 x2 5   3  0, x  Dễ dàng chứng minh được : 3 x 2  12  4 x2  5  3 Bài 3. Giải phương trình : 3 x 2  1  x  x 3  1 Giải :Đk x �3 2 Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình 3 � � x  1  2  x  3  x  2  5 �  x  3 � 1 � � 2 3 Ta chứng minh : x3 1 3 x 2  1  2 3 x 2  1  4 2 � 2 �  x  3  x  3 x  9  � 2 3 2 3 x2  1 x3  2  5    2 x 1  4 � � x3  1  x3 3 2  2  x  3x  9 x2 1  1  3 x3  2  5  2 Vậy pt có nghiệm duy nhất x=3 2.2. Đưa về “hệ tạm “ a) Phương pháp  Nếu phương trình vô tỉ có dạng A  B  C , mà : A  B   C ở dây C có thể là hàng số ,có thể là biểu thức của x . Ta có thể giải như sau : � A B �A B C  C � A  B   , khi đĩ ta có hệ: � � 2 A  C  A B � A  B  b) Ví dụ Bài 4. Giải phương trình sau : 2 x 2  x  9  2 x 2  x  1  x  4 Giải:     2 2 Ta thấy : 2 x  x  9  2 x  x  1  2  x  4  x  4 không phải là nghiệm Xét x �4 Trục căn thức ta có : 2x  8 2x  x  9  2x  x  1 2 ÔN TẬP TỐT NGHIỆP QUỐC GIA 2  x  4 � 2x2  x  9  2x2  x  1  2 Page TÀI LIỆU THPT HAY x0 � 2 2 � � 2x  x  9  2x  x  1  2 2 � 2 2x  x  9  x  6 � � 8 Vậy ta có hệ: � 2 2 � x � � 2x  x  9  2x  x  1  x  4 � 7 8 Thử lại thỏa; vậy phương trình có 2 nghiệm : x=0 v x= 7 2 x 2  x  1  x 2  x  1  3x 2 2 2 Ta thấy :  2 x  x  1   x  x  1  x  2 x , như vậy không thỏa mãn điều kiện trên. Bài 5. Giải phương trình : Ta có thể chia cả hai vế cho x và đặt t  1 thì bài toán trở nên đơn giản hơn x Bài tập đề nghị Giải các phương trình sau : x 2  3 x  1   x  3 x 2  1 4  3 10  3 x  x  2 (HSG Toàn Quốc 2002) 2 3  2  x  5  x x 2  1  3 x3  2  3 x  2 2 x 2  11x  21  3 3 4 x  4  0 (OLYMPIC 30/4-2007) 3  2  x   10  x   x 2 x 2  1  x 2  3x  2  2 x 2  2 x  3  x 2  x  2 2 x 2  16 x  18  x 2  1  2 x  4 x 2  15  3 x  2  x 2  8 x2  4  x  1  2x  3 3. Phương trình biến đổi về tích  Sử dụng đẳng thức u  v  1  uv �  u  1  v  1  0 au  bv  ab  vu �  u  b   v  a   0 A2  B 2 Bài 1. Giải phương trình : Giải: pt �  3  x 1 1 x  1  3 x  2  1  3 x2  3x  2 x0 � x  2 1  0 � � x  1 � 3 3  Bi 2. Giải phương trình : 3 x  1  3 x 2  Giải: + x  0 , không phải là nghiệm + x �0 , ta chia hai vế cho x: Bài 3. Giải phương trình: Giải: dk : x �1 3 3 x  3 x2  x � x  1 �3 x 1 3  x  1  3 x  1 � �3  1� x  1  0 � x  1 x x � �   x  3  2x x  1  2x  x2  4 x  3 x 1 � x  1 1  0 � � x0 � 4x 4 x Bài 4. Giải phương trình : x  3  x3 pt �  x  3  2x   Giải: Đk: x �0 2 Chia cả hai vế cho � 4x 4x 4x � 2 �� 1 x  3 : 1 � 0 � x  1 x3 x3 x3� �  Dùng hằng đẳng thức ÔN TẬP TỐT NGHIỆP QUỐC GIA Page
- Xem thêm -

Tài liệu liên quan