Đăng ký Đăng nhập

Tài liệu Bài tập laser

.PDF
60
507
116

Mô tả:

H QUANG QUÝ - CHU V N BIÊN - CHU V N LANH BÀI TẬP LASER NHÀ XUẤT BẢN ĐẠI HỌC QUỐC GIA HÀ NỘI 2 MỤC LỤC PHẦN CÂU HỎI VÀ BÀI TẬP .................................................................. 5 1. GIƠI THIẸ U CAC KHAI NIẸ M ....................................................................... 5 2. TƯƠNG TAC CUA BƯC XẠ VƠI NGUYEN TƯ VA ION .......................... 8 3. CÁC MỨC NĂNG LƯỢNG, CHUYỂN DỊCH BỨC XẠ VÀ KHÔNG BỨC XẠ TRONG PHÂN TỬ VÀ BÁN DẪN ....................................................... 13 4. QUÁ TRÌNH TRUYỀN TIA VÀ SÓNG ÁNH SÁNG QUA MÔI TRƯỜNG QUANG HỌC ................................................................................ 17 5. BỘ CỘNG HƯỞNG QUANG HỌC THỤ ĐỘNG ....................................... 21 6. QUÁ TRÌNH BƠM .......................................................................................... 28 7. TÍNH CHẤT CỦA LASER LIÊN TỤC......................................................... 33 8. TÍNH CHẤT CỦA LASER ............................................................................. 40 9. LASER RẮN, MÀU VÀ BÁN DẪN .............................................................. 45 10. LASER KHÍ, LASER HÓA HỌC, LASER ĐIỆN TỬ TỰ DO VÀ LASER TIA X .................................................................................................................. 51 11. NHỮNG TÍNH CHẤT CỦA CHÙM LASER .............................................. 54 PHẦN TRẢ LỜI ...................................................................................................... 61 1. GIỚI THIỆU CÁC KHÁI NIỆM .................................................................... 61 2. TƯƠNG TAC CUA BƯC XẠ VƠI NGHUYEN TƯ VA ION .................... 73 3. CÁC MỨC NĂNG LƯỢNG, CHUYỂN DỊCH BỨC XẠ VÀ KHÔNG BỨC XẠ TRONG PHÂN TỬ VÀ BÁN DẪN ............................................. 97 4. QUÁ TRÌNH TRUYỀN TIA VÀ SÓNG ÁNH SÁNG QUA MÔI TRƯỜNG QUANG HỌC .............................................................................. 114 3 5. BỘ CỘNG HƯỞNG QUANG HỌC THỤ ĐỘNG ..................................... 138 6. QUÁ TRÌNH BƠM ........................................................................................ 162 7. TÍNH CHẤT CỦA LASER LIÊN TỤC....................................................... 176 8. TÍNH CHẤT CỦA LASER ........................................................................... 204 9. LASER RẮN, MÀU VÀ BÁN DẪN ............................................................ 228 10. LASER KHÍ, LASER HÓA HỌC, LASER ĐIỆN TỬ TỰ DO VÀ LASER TIA X ................................................................................................................ 247 11. NHỮNG TÍNH CHẤT CỦA CHÙM LASER ............................................ 259 TÀI LIỆU THAM KHẢO ...................................................................................... 275 4 PHẦN CÂU HỎI HỎI VÀ BÀI TẬP 1. GIỚI THIỆU CÁC KHÁI NIỆM 1.1. Phổ phát xạ laser Các phổ của sóng điện từ được quan tâm trong lĩnh vực laser nằm trong vùng bước sóng từ tia X đến dưới milimet, bao gồm các miền kế tiếp sau đây: hồng ngoại xa, hồng ngoại gần, nhìn thấy, tử ngoại, tử ngoại chân không, tia X mềm, tia X. Từ các giáo trình chuẩn, hãy cho biết bước sóng của các miền này. 1.2. Phổ của ánh sáng nhìn thấy Từ các giáo trình chuẩn, hãy cho biết khoảng bước sóng tương ứng với các màu khác nhau trong miền quang phổ của ánh sáng nhìn thấy và cho biết các khoảng tần số tương ứng trong các miền đó? 1.3. Năng lượng của một photon Tính tần số trong đơn vị Hz, số sóng (cm-1) và năng lượng trong đơn vị eV của một photon có bước sóng λ = 1 µm trong chân không. 1.4. Nhiệt năng Tính số sóng tương ứng với một khoảng cách của năng lượng kBT, với kB là hằng số Boltzmann và T là nhiệt độ tuyệt đối. Giả sử T = 300 K. 1.5. Mật độ cư trú của hai mức trong điều kiện cân bằng nhiệt Xác định tỷ số giữa mật độ cư trú của hai mức trong điều kiện cân bằng nhiệt được tách ra bởi hiệu năng lượng ∆E bằng: (a) 10-4eV, có trị 5 giá tương đương với khoảng cách của các mức quay cho nhiều phân tử, (b) 5x 10-2eV, tương ứng mức dao động phân tử; (c) 3eV, là độ lớn của kích thích điện tử trong các nguyên tử và phân tử. Giả sử rằng hai mức có cùng một suy biến và nhiệt độ là 100 K, 300 K (nhiệt độ phòng) và 1000 K. 1.6. Tín hiệu nhỏ thu được của một thanh khuếch đại ruby Giả thiết hệ số khuếch đại tín hiệu nhỏ của một thanh ruby dài 15 cm là 12. Bỏ qua độ bão hòa, hãy tính hệ số khuếch đại tín hiệu nhỏ của một thanh dài 20 cm, với cùng nghịch đảo mật độ cư trú. 1.7. Ngưỡng phát của buồng cộng hưởng laser Một buồng cộng hưởng laser bao gồm hai gương phản xạ với R1 = 1 và R2 = 0,5, với mất mát nội sau một lần qua lại là Li = 1%. Hãy tính tổng mất mát logarit sau một lần truyền qua. Nếu chiều dài của hoạt chất là l = 7,5 cm và tiết diện dịch chuyển là σ = 2.8x10-19 cm2, hãy tính nghịch đảo cư trú ngưỡng. 1.8. Tiến triển theo thời gian của mật độ cư trú trong hệ bơm ba mức Xem xét hệ các mức năng lượng tương ứng trong hình 1.1. Nguyên tử được kích lên từ mức 0 đến mức 2 với tốc độ bơm Rp. Thời gian sống của mức 1 và 2 tương ứng là τ1 và τ2. Giả sử trạng thái cơ bản 0 là không suy giảm với bất kỳ tác động nào do phát xạ kích thích: i) viết các phương trình tốc độ cho các mật độ cư trú của mức 1(N1) và mức 2 (N2); ii) tìm hàm phụ thuộc thời gian của N1 và N2 ; iii) Vẽ đồ thị mật độ cư trú trong hai trường hợp sau đây: (a) τ1 = 2 µs,τ2= 1 µs ; (b) τ1 = 1µs, τ2 = 2µs. Giả định rằng mức 1 và 2 có cùng suy biến. [Gợi ý: phương trình vi phân cho mật độ cư trú mức 1(dN1 / dt) + (N1 / τ1) = f(t), có thể giải bằng cách nhân hai vế với exp (t / τ1). Bằng cách này phía trái của phương trình vi phân trên đây trở thành một vi phân toàn phần]. 1.9. Độ sáng của một chùm tia nhiễu xạ giới hạn Hãy chứng tỏ rằng độ sáng của một chùm tia nhiễu xạ giới hạn được cho bởi B = (2/βπλ)2P, trong đó, P là công suất; λ là bước sóng; β là hệ 6 số có giá trị bậc đơn vị, đặc trưng cho một chùm tia nhiễu xạ giới hạn, mà giá trị của nó phụ thuộc vào hình dạng phân bố của biên độ chùm tia. 1.10. So sánh giữa độ sáng của đèn và của laser argon Độ sáng nhất cho đến nay của đèn có thể đạt được (PEK Labs loại 107/109 ™, kích thích bởi 100 W của năng lượng điện) là khoảng 95 W/cm2sr trong vạch màu xanh lá cây mạnh nhất (λ= 546 nm). So sánh độ sáng này độ sáng của của một laser Argon có công suất 1W (λ = 514,5 nm) và được giả định là nhiễu xạ giới hạn. 1.11. Cường độ trên võng mạc của ánh sáng mặt trời và các tia laser He-Ne Trên bề mặt của trái đất cường độ của mặt trời vào khoảng 1 kWm-2. Tính toán cường độ trên võng mạc khi nhìn thẳng vào mặt trời. Giả sử rằng: (i) con ngươi của mắt mở thích hợp với ánh sáng với đường kính 2mm, (ii) độ dài tiêu cự của mắt là 22,5 mm, (iii) Mặt trời tạo góc là 0,5°. Hãy so sánh cường độ của ánh sáng mặt trời trên võng mạc với cường độ khi nhìn vào laser He-Ne có công suất 1 mW (λ = 632,8 nm) đường kính 2mm [đường kính của chùm tia tại tiêu điểm thấu kính có tiêu cự f có thể được tính như sau DF = 4fλ / (λ D0 ) mà D0 là đường kính chùm tia chiếu vào thấu kính và λ là bước sóng laser]. 1.12. Phổ cường độ của xung ánh sáng có độ rộng hữu hạn Tính phổ cường độ của một chuỗi sóng đơn, f(t), có độ rộng xung hữu hạn τ0 [f(t) = exp (i2πν0 t) với - τ0/ 2 < t <τ0 /2 , f(t) = 0 với t = 0] và cho thấy độ rộng tại 1/2 cực đại (FWHM) của phổ công suất được cho bởi ∆ν = 1/τ0. 1.13. Thời gian kết hợp và độ dài kết hợp của ánh sáng lọc Một kính lọc giao thoa có tâm truyền qua tại bước sóng 500 nm và băng thông 10 nm được sử dụng để tạo ra chùm ánh sáng gần đơn sắc. Hãy tính thời gian kết hợp và chiều dài kết hợp của ánh sáng đi qua kính lọc. 7 [Gợi ý: chiều dài kết hợp lc, được định nghĩa là lc = cτ0, trong đó τ0 là thời gian kết hợp]. 1.14. Áp lực bức xạ trong một chùm tia laser Một chùm tia laser 10 W được hội tụ vào một điểm có đường kính 1mm trên tấm hấp thụ hoàn toàn. Hãy tính áp lực bức xạ trên tấm hấp thụ bằng cách sử dụng hệ thức giữa áp lực p và cường độ I: p = I/c. 1.15. Áp lực bức xạ Xuất phát từ hệ thức xung lượng của photon có tần số ν, q = ћk, với k = 2πν/c, hãy chỉ ra rằng áp lực tác dụng bởi một chùm ánh sáng cường độ I chiếu vuông góc với bề mặt chất hấp thụ hoàn toàn là I/c. 2. TƯƠNG TÁC CỦA BỨC XẠ VỚI NGUYÊN TỬ VÀ ION 2.1. Mật độ cường độ và mật độ năng lượng của sóng điện từ phẳng Hãy tính biên độ điện trường và mật độ năng lượng của sóng phẳng có cường độ 100W/cm2. 2.2. Dòng photon của sóng phẳng đơn sắc Hãy tính dòng photon (số photon/m2s) của một sóng phẳng đơn sắc có cường độ I= 200W/m2 có bước sóng 500nm hoặc 100µm. 2.3. Số mode của hốc cộng hưởng vật đen tuyệt đối Cho một hốc cộng hưởng thể tích V = 1m3, hãy tính số mode nằm trong băng thông ∆λ = 10nm có tâm tại λ = 600nm . 2.4. Định luật Wien Hãy chứng minh định luật về bức xạ vật đen tuyệt đối λmT = 2898µ mK , trong đó λm là bước sóng ứng với mật độ năng lượng cực đại ρλ của vật đen tuyệt đối ở nhiệt độ T. ρλ được chọn sao cho ρλ d λ là mật độ năng lượng của sóng điện từ của tất cả các sóng nằm trong vùng từ λ đến λ + d λ . 8 2.5. Hốc đen tuyệt đối chứa môi trường tán sắc Hãy chứng tỏ rằng khi một hốc đen tuyệt đối chứa môi trường tán sắc thì mật độ mode pv = 8πν 2 n2 ng / c3 , trong đó, ng là chiết suất nhóm được cho bởi ng = n + ν dn / dν . Chứng tỏ rằng ng cũng có thể biến đổi thành ng = n − λ dn / d λ . 2.6. Công suất chiếu sáng của nguồn phát đen tuyệt đối Hãy tính công suất chiếu sáng phát ra từ nguồn đen tuyệt đối qua diện tích 1mm2 trong vùng bước sóng 0,1 µm xung quanh bước sóng 1µm. Lưu ý: Cần lưu ý tới hệ thức giữa mật độ năng lượng trong hốc đen tuyệt đối ρν và cường độ trên một đơn vị tần số phát ra từ tường I B (ν ) = c ρν / 4 . 2.7. Năng lượng trung bình của mode Hãy chứng minh rằng năng lượng trung bình chứa trong mỗi mode của hộp cộng hưởng sẽ là E = hν / exp ( hν /k BT ) − 1 Lưu ý: ∞  nhν   nhν  d nh ν exp = − exp  −   . ∑ ∑ d (1/ k BT ) n=0 n =0  k BT   k BT  ∞ 2.8. Tốc độ phát xạ tự nhiên và phát xạ cưỡng bức Cho một hệ cân bằng nhiệt, hãy tính nhiệt độ, tại đó, tốc độ phát xạ tự nhiên và phát xạ cưỡng bức tại bước sóng 500 nm bằng nhau và tính tính bước sóng ở nhiệt độ T = 4000K khi hai tốc độ đó bằng nhau. 2.9. Mở rộng tự nhiên Hãy tính hàm mở rộng với giả thiết điện trường của nguyên tử tích thoát là E (t ) = E0 exp(−t / 2τ sp ) cos(ω0t ) . 9 2.10. Mở rộng Doppler Hãy tính độ mở rộng cho chuyển dịch 488 nm của laser Argon với giả thiết nhiệt độ phóng điện 6000K và nguyên tử lượng của Argon là 39,95. Cũng tính như vậy đối với vạch 632,8nm của laser He-Ne với giả thiết nhiệt độ phóng điện khoảng 400 K và nguyên tử lượng của Ne là 20,18. 2.11. Nhiệt độ của vật đen tuyệt đối có cùng mật độ năng lượng như laser He-Ne Độ rộng vạch của laser He-Ne bằng 1/5 độ rộng Doppler. Nhiệt độ phóng điện của laser He-Ne khoảng 400K. Giả thiết rằng công suất trong hộp cộng hưởng là 200mW và mode cộng hưởng có đường kính 1mm và cường độ phân bố đều. Hãy tính nhiệt độ của vật đen có mật độ năng lượng tại bước sóng 632,8nm bằng mật độ năng lượng của sóng điện từ trong buồng cộng hưởng laser. Nguyên tử lượng của Ne là 20,18. 2.12. Thời gian sống tự nhiên và tiết diện chuyển dịch Hãy tìm hệ thức giữa thời gian sống tự nhiên và tiết diện chuyển dịch của một chuyển dịch đơn của nguyên tử. 2.13. Thời gian phát xạ và hiệu suất lượng tử của dịch chuyển laser Ruby Chuyển dịch laser (R1) của Ruby có dạng gần Loren với độ rộng FWHM là 330 GHz ở nhiệt độ phòng. Tiết diện chuyển dịch đỉnh σ = 2,5 ×10−20 cm2 . Hãy tính thời gian sống (chiết suất n=1,76). Nếu thời gian sống đo ở nhiệt độ phòng là 3ms thì hiệu suất lượng tử huỳnh quang là bao nhiêu? 2.14. Thời gian sống của chuyển dịch mạnh nhất trong laser Nd:YAG Trong hoạt chất laser Nd:YAG, chuyển dịch 4 F3/ 2 → 4 I11/ 2 là mạnh nhất. Chuyển dịch ở bước sóng 1,064 µm xảy ra giữa siêu mức m = 2 của mức 4 F3/ 2 và siêu mức l = 3 của mức 4 I11/ 2 (hay gọi là chuyển dịch 10 R2→Y3). Hai siêu mức này đều suy biến bậc hai. Chênh lệch năng lượng giữa hai siêu mức của mức laser trên là ∆E = 84cm−1 , thời gian huỳnh quang của mức trên τ 2 = 230µ s , hiệu suất huỳnh quang lượng tử là φ = 0,56 , tỉ số giữa số photon tham gia bức xạ tự nhiên trong chuyển dịch 1,064µm và số photon chuyển dịch từ hai mức 4 F3/ 2 là 0,135. Hãy tính thời gian sống của dịch chuyển bức xạ R2→Y3. 2.15. Đáp ứng trong suốt của hệ hai mức khi có tín hiệu Giả thiết hệ hai mức năng lượng có hiệu mật độ cư trú ban đầu ∆N (0) tại thời điểm t = 0, hiệu mật độ cư trú trong điều kiện cân bằng nhiệt là ∆N e . Giả thiết rằng một sóng điện từ đơn sắc có cường độ không đổi I và tần số ν = ( E2 − E1 ) / h chiếu vào hệ từ thời điểm t = 0. Hãy xác định tiến triển của hiệu mật độ cư trú ∆N (t ) . 2.16. Cường độ khuếch đại bão hoà Hãy chứng minh cường độ khuếch đại bão hoà trong chuyển dịch mở rộng đồng nhất là hν  τ 1  τ 2  g 2  Is = 1 + 1 −   στ 2  τ 2  τ 21  g1  −1 trong đó, τ1 và τ2 tương ứng là thời gian sống của các trạng thái trên và dưới, 1/τ21 là tốc độ phân rã từ trạng thái trên đến các trạng thái thấp hơn; g1 và g2 là trọng số thống kê của các trạng thái trên và dưới. 2.17. Nghịch đảo mật độ cư trú của chuyển dịch laser mở rộng đồng nhất Tốc độ phát xạ tự phát A21 của chuyển dịch laser mở rộng đồng nhất tại bước sóng λ = 10,6 µ m là A21 = 0.34 s-1, trong khi độ rộng vạch của nó là ∆ν0 = 1GHz. Các trọng số thống kê của mức dưới và mức trên tương ứng là g1 = 41 và g2 = 43. Hãy tính tiết diện phát xạ cưỡng bức tại vạch trung tâm. Hãy tính nghịch đảo mật độ cư trú sao cho hệ số khuếch đại đạt được là 5 m-1. Ngoài ra, hãy tính cường độ bão hòa với giả thiết rằng thời gian sống của trạng thái laser trên là 10 µs và của trạng thái laser dưới là 0.1 µs. 11 2.18. Các mức liên kết mạnh Chứng minh các hệ thức sau: f2 j = N2j N2 = g 2 j exp (- E 2j / kT ) g2 ∑g 2m exp (- E 2m / kT ) m =1 f 1i = N 1i = N1 g 1i exp (- E 1i / kT g1 ∑g 1l ) exp (- E 1l / kT ) m =1 trong đó: f2j(f1i) là một phần của tổng mật độ cư trú của mức 2 (mức 1) được tìm thấy trong các siêu mức j(i) ở trạng thái cân bằng nhiệt; E2m và E1l là năng lượng của các siêu mức ở mức trên và dưới tương ứng g2m và g1l là trọng số thống kê tương ứng của chúng. Mức trên 2, và mức dưới 1, bao gồm g2 và g1 siêu mức, tương ứng. 2.19. Khuếch đại sóng điện từ đơn sắc Chuyển dịch mở rộng đồng nhất của một môi trường dài 5cm, có hệ số khuếch đại chưa bão hòa ở vạch trung tâm g0 = 5 m-1 và cường độ bão hòa 5Wm-2. Một sóng điện từ đơn sắc cộng hưởng với chuyển dịch khuếch đại với cường độ 10 Wm-2 khi đi vào môi trường khuếch đại. Hãy tính cường độ đầu ra. 2.20. Khuếch đại tự phát trong thanh Nd: YAG Một thanh Nd: YAG hình trụ với đường kính 6.3 mm và chiều dài là 7.5 cm được bơm liên tục bằng một đèn phù hợp. Tiết diện chuyển dịch ứng với bước sóng laser 1.064 µm là σ = 2.8x10-19 cm2, và chiêt suất của YAG là n = 1.82. Hãy tính nghịch đảo cư trú tới hạn của quá trình khuếch đại tự phát ASE (hai mặt cuối của thanh khử phản xạ hoàn toàn). Ngoài ra, hãy tính năng lượng lớn nhất có thể lưu trữ trong thanh khi bỏ qua quá trình ASE. 12 3. CÁC MỨC NĂNG LƯỢNG, CHUYỂN DỊCH BỨC XẠ VÀ KHÔNG BỨC XẠ TRONG PHÂN TỬ VÀ BÁN DẪN 3.1. Tần số dao động của phân tử hai nguyên tử Hãy chỉ ra rằng tần số dao động của một phân tử gồm hai nguyên tử 1/ 2 có khối lượng M1 và M2 là v = 1 / 2 (k 0 / M r ) , trong đó k0 là hằng số ( ) đàn hồi và Mr là khối lượng rút gọn: 1/Mr = 1/M1 + 1/M2 3.2. Tính hằng số đàn hồi của một phân tử Tần số dao động của phân tử iốt (I2) quan sát được là v~ = 213cm −1 . Biết khối lượng của mỗi nguyên tử iốt (M = 21,08 10-6 kg), hãy tính hằng số đàn hồi của phân tử. 3.3. Từ thế năng đến tần số dao động Giả sử rằng, năng lượng điện tử của một phân tử hai nguyên tử đồng chất đã được biết đến như là một hàm của khoảng cách giữa hai hạt nhân R: U = U(R). Sử dụng biểu thức này để tính tần số dao động của phân tử. 3.4. Thế năng Morse Thông thường, người ta sử dụng các biểu thức bán thực nghiệm để mô tả đường cong năng lượng điện tử của phân tử hai nguyên tử. Các đường cong này gọi là thế năng Morse và được biểu diễn qua biểu thức sau: { 2 } U ( R ) = De 1 − exp  − β ( R − R0 )  Hãy sử dụng biểu thức này để tìm năng lượng phân ly và tính tần số dao động của một phân tử đối xứng của hai nguyên tử có khối lượng M. 3.5. Tính hệ số Franck-Condon Xem xét một quá trình chuyển dịch dao động và giả sử rằng đường cong năng lượng của trạng thái cơ bản và trạng thái kích thích có cùng độ cong (tương ứng với cùng một hệ số lực k0 không đổi) và cực tiểu tương 13 ứng với khoảng cách giữa hai hạt nhân ROG và ROE. Hãy tính hệ số Franck-Condon cho sự chuyển dịch từ mức dao động đầu tiên (v "= 0) của các trạng thái cơ bản đến mức dao động đầu tiên (v’=0) của các trạng thái kích thích. [Gợi ý: nhắc lại rằng các hàm sóng của các mức năng lượng thấp nhất của một dao động tử điều hòa có thể được viết là:  1  ψ 0 =  1/ 2   απ  1/ 2  y2   exp −  2  1/ 4 trong đó y = R / α , đại lượng α được cho bởi α = ℏ 1 / 2 / (mk ) với m là khối lượng của dao động tử và k là hằng số của lực hồi phục đàn hồi. Sử dụng thêm các kết quả toán học: −∞ ( ) ∫ +∞ exp − x2 d x = π 1/ 2 3.6. Hằng số quay của một phân tử hai nguyên tử Hãy xem xét sự quay bền của một phân tử hai nguyên tử có khối lượng M1 và M2 tại một khoảng cách giữa hai hạt nhân R0. (a) Tính mômen quán tính I quanh trục đi qua trung tâm của khối lượng và vuông góc với trục hạt nhân; (b) Nhớ lại những quy luật lượng tử hóa của mômen động lượng L = ℏ 2 J ( J + 1) , với số nguyên dương J, hãy biểu diễn hệ số quay B của 2 phân tử. 3.7. Phổ hấp thụ hồng ngoại xa của một phân tử HCl Các phép đo của dải hấp thụ tia hồng ngoại xa của phân tử HCl cho phép truy cập trực tiếp vào quá trình chuyển dịch quay tinh khiết. Một số kết quả thu được là như sau: ∆E = 83.32cm −1 từ chuyển dịch J=3 → J=4 ∆E = 104,13cm−1 chuyển dịch J = 4 → J = 5 ∆E = 124.73cm −1 chuyển tiếp J = 5 → J = 6 14 (a) Hãy khẳng định độ chính xác của phép đo và hãy tìm hệ số B của phân tử HC1, (b) Hãy tính toán khoảng cách giữa hai hạt nhân của phân tử (khối lượng của nguyên tử hydro mH = 1 mu, khối lượng của nguyên tử ClO ma = 35,5 mu, ở đây mu = 1.67xl027kg). 3.8. Năng lượng của các mức tựa Fermi trong giếng lượng tử bán dẫn Xem xét một giếng lượng tử bán dẫn trong điều kiện không cân bằng với mật độ hạt tải Ne = Nh = N. Hãy trình bày một cách chi tiết làm thế nào để tính năng lượng của cácmức tựa Fermi trong vùng dẫn và vùng hóa trị. 3.9. Vạch phát xạ của phân tử CO2 Bước sóng của ánh sáng phát ra do chuyển dịch dao động - quay (001) → (100) trong phân tử CO2 là λ = 10,5135 µm , trong khi đó, bước sóng phát ra từ chuyển dịch (001) → (100) P(38) là λ = 10,742µm. (a) Hãy tính hệ số B của phân tử CO2, (b) Hãy tính toán chênh lệch năng lượng giữa các mức (001) và (100). 3.10. Định luật tác dụng khối lượng Hãy xem xét một chất bán dẫn ở trạng thái cân bằng nhiệt, với mức Fermi của nó trong băng cấm, nhưng cách xa biên một năng lượng bằng ít nhất một vài lần kT. Hãy chứng minh rằng tích của nồng độ điện tử và lỗ là không đổi và không phụ thuộc vào vị trí của mức Fermi (tức là không phụ thuộc vào mức pha tạp). [Gợi ý: sử dụng kết quả toán học: ∞ ∫ exp ( − x ) x 1/2 dx = π 1/2 / 2 ] 0 3.11. Năng lượng của các cấp tựa (gần) Fermi Với điều kiện giới hạn T = 0 K, hãy tính năng lượng của các mức tựa Fermi trong chất bán dẫn, như là một hàm của mật độ điện tử và lỗ trống, Ne và Nh. 15 3.12. Các mức tựa Fermi trong GaAs Sử dụng kết quả của bài toán trước, hãy tính các mức tựa Fermi của GaAs tại nhiệt độ T = 0 K với mật độ hạt tải được tiêm vào Ne = Nh = 2.1018cm-3 (khối lượng hiệu dụng trong GaAs là mc = 0,067 mo, mu = 0,46 m0). Hãy đánh giá độ chính xác của phương pháp gần đúng này ở nhiệt độ T = 300 K và so sánh với các kết quả chính xác. 3.13. Dẫn xuất điều kiện Bernard-Duraffourg Hãy chứng minh điều kiện Bernard-Duraffourg đối với độ khuếch đại trong một chất bán dẫn: E’2-E’1 Eg. Sử dụng kết quả này để tính các mức trên và dưới trong GaAs cho chuyển dịch có chênh lệch năng lượng 1,45 eV [khối lượng hiệu dụng trong GaAs là mc = 0,067 m0, mu = 0,46 m0, Eg= 1,424 eV]. 3.15. Sự phụ thuộc vào tần số của độ khuếch đại của một chất bán dẫn ngược Hãy xem xét một chất bán dẫn ngược. a) Cho các biểu thức giải tích của độ khuếch đại như là một hàm của năng lượng photon tại nhiệt độ T = 0 K và hãy tìm năng lượng sao cho độ khuếch đại lớn nhất; b) Hãy giải thích định lượng vì sao các biểu thức này có thể biến đổi ở nhiệt độ phòng. 3.16. Giếng lượng tử lý tưởng Xem xét một hạt có khối lượng m trong giếng thế một chiều độ dày L, với rào thế vô hạn tại các biên. Sử dụng các khái niệm cơ bản của cơ học lượng tử, hãy tính các mức năng lượng gián đoạn trong giếng. 16 3.17. Độ khuếch đại vi phân của bộ khuếch đại GaAs Với mật độ hạt tải N = 2.1018 cm-3 và năng lượng photon vượt băng cấ m 10 MeV, thì h ệ s ố khu ế ch đại củ a GaAs có th ể tính đượ c b ằng g = 217 cm-1. Giả sử độ trong suốt là Ntr = 1. 2.1018 cm-3, hãy tính toán độ khuếch đại vi phân. 3.18. Độ dày của giếng lượng tử: luật xác định độ lớn Hãy xem xét một lớp GaAs có độ dày L kẹp giữa hai lớp ngăn cách AlGaAs tại nhiệt độ phòng (T = 300 K). Xác định độ dày lớp sao cho hiệu ứng giam giữa lượng tử bắt đầu đóng một vai trò của các điện tử trong vùng dẫn (khối lượng hiệu dụng trong GaAs là mc = 0,067 / m0). [Gợi ý: hãy tính bước sóng De Broglie cho các điện tử nhiệt hóa]. 4. QUÁ TRÌNH TRUYỀN TIA VÀ SÓNG ÁNH SÁNG QUA MÔI TRƯỜNG QUANG HỌC 4.1. Ma trận ABCD của tia truyền qua mặt cầu Tính ma trận ABCD cho một tia sáng truyền từ môi trường chiết suất n1 đến một môi trường chiết suất n2 qua mặt cầu có bán kính cong R (tâm mặt cầu nằm bên phải). 4.2. Ma trận ABCD của một thấu kính mỏng Sử dụng các kết quả tính ma trận truyền ABCD cho mặt cầu trong bài toán 4.1, hãy tính ma trận truyền cho thấu kính mỏng (tạo thành từ hai mặt cầu có bán kính R1 và R2 chất đầy vật liệu có chiết suất n2 nhúng chìm trong một môi trường có chiết suất n1. 4.3. Ma trận ABCD của một mảnh thủy tinh Tính ma trận ABCD cho một mảnh thủy tinh chiều dài L và chiết suất n. 17 4.4. Sự phản xạ tại một giao diện bằng phẳng Một sóng điện từ liên tục chiếu vuông góc với giao diện phẳng giữa hai môi trường có chiết suất n1 và n2 với hướng trực giao cho các giao diện. Rút ra các biểu thức của hệ số phản xạ và truyền qua và chứng minh rằng tổng của cường độ phản xạ và cường độ truyền qua bằng 1. 4.5. Gương điện môi phản xạ cao Hãy xét một tấm gương điện môi phản xạ cao được phun xen nhau các lớp điện môi có độ dày λ/4 từ các vật liệu có chiết suất cao và thấp. Ví dụ: TiO2 (nH = 2,28 tại 1,064 µ m) và SiO2 (nL = 1,45 tại 1,064 µm) tương ứng được sử dụng như điện môi chiết suất cao và chiết suất thấp, trong khi đó, đế thủy tinh BK7 (ns = 1,54 tại 1,064 µm). Hãy tính toán thiết kế một gương quang học (lớp dày và số lượng của các lớp) sao cho nó có hệ số phản xạ R> 99% ở bước sóng laser Nd: YAG λ0= 1064 µm. 4.6. Giao thoa kế Fabry-Perot Một giao thoa Fabry-Perot gồm hai gương giống nhau, cách nhau bằng lớp không khí dày L và được chiếu bởi một sóng điện từ đơn sắc có thể điều chỉnh tần số. Từ kết quả đo sự phụ thuộc của cường độ truyền qua vào tần số sóng vào, chúng ta thấy rằng khoảng phổ tự do của giao thoa kế là 3×109 Hz (khoảng cách giữa hai tần số cộng hưởng liền nhau) và độ phân giải của nó là 30 MHz. Hãy tính khoảng cách giữa hai gương L, độ mịn và hệ số phản xạ của gương. 4.7. Giao thoa Fabry-Perot quét tần số Một laser Nd: YAG hoạt động ở bước sóng 1,064 µm và trên 100 mode dọc cách nhau 100 MHz; hãy thiết kế một giao thoa kế Fabry-Perot làm từ hai gương cách nhau lớp không khí có thể quét được tất cả các mode đã cho. Chú ý thêm, nhờ đầu dò áp điện để quét tương ứng với khoảng tần số tự do. 4.8. Hệ quang tạo ảnh Chứng minh rằng một hệ quang học được mô tả bởi ma trận ABCD với B = 0 có thể tạo ảnh trên mặt phẳng vào ở mặt phẳng ra với độ 18 khuếch đại A. Kiểm tra lại bằng thấu kính mỏng, khi ảnh cách thấu kính một khoảng di và vật đặt cách thấu kính một khoảng d0 [Gợi ý: theo quang hình học, l/d0 + 1 / di = l/f ] 4.9. Định luật ABCD cho chùm Gaussian Xây dựng quy tắc ABCD cho chùm Gaussian, bằng cách sử dụng chùm Gaussian của tham số phức q1:  x12 + y12  u ( x1 , y1 , z1 ) = exp− jk  2q1   được chuyển đổi thành chùm Gaussian sau đây: u ( x, y , z ) =  1 x2 + y2  exp− jk  A + B / q1 2q   trong đó, q quan hệ với q1 qua quy tắc sau: q= Aq1 + B Cq1 + D 4.10. Ống kính chuẩn trực Một thấu kính hội tụ có tiêu cự f được đặt cách mặt thắt bán kính w0 của chùm Gaussian một khoảng d. Hãy tính biểu thức của tiêu cự f theo các tham số w0 và d, sao cho chùm Gaussian có mặt sóng phẳng. Ngoài ra, tìm khoảng cách từ mặt thắt sao cho tiêu cự ngắn nhất cần thiết để tạo chùm tia song song. 4.11. Hệ thống xử lý quang học đơn giản Hãy xem xét quá trình truyền của một chùm tia quang học với biên độ u1(x1,y1,z1) qua một hệ quang học được tạo thành từ không gian trống có chiều dài f, một thấu kính tiêu cự f và tiếp theo một không gian trống có chiều dài f. Tính toán biên độ tại mặt phẳng ra của hệ. Thảo luận về ứng dụng có thể có của hệ quang học này. (Mức độ khó cao hơn mức trung bình). 19 4.12. Mũi khoan laser Để ứng dụng trong gia công vật liệu, một chùm tia TEM00 ở bước sóng λ =532 nm phát ra từ hòa âm bậc hai của laser Nd: YAG được hội tụ bằng thấu kính tiêu cự f = 50 mm và khẩu độ số NA = 0,3. Để tránh hiệu ứng nhiễu xạ ở mép thấu kính do quá trình thu gọn chùm tia Gaussian, người ta thường chọn đường kính thấu kính theo tiêu chí D> 2,25 w1. Giả sử rằng chất lượng vẫn như trong các biểu thức trên và mặt thắt chùm tia tới nằm trên thấu kính, tức là w1 = w01. Tìm kích thước điểm hội tụ. 4.13. Máy đo xa từ Trái Đất tới Mặt Trăng bằng laser Giả sử rằng một chùm Gaussian TEM00 phát ra từ laser ruby ( λ = 694,3 nm) được truyền qua một kính viễn vọng có đường kính 1m để chiếu lên Mặt Trăng. Giả sử một khoảng cách từ Trái Đất đến Mặt Trăng là z = 348.000 km và sử dụng hệ thức D = 2,25 W0 giữa đường kính kính vật và vết chùm tia, hãy tính kích thước vết trên Mặt Trăng. (Hiệu ứng méo ảnh do khí quyển có thể là quan trọng, nhưng ở đây chúng ta bỏ qua). 4.14. Laser He-Ne Một laser He-Ne phát ở mode cơ bản nhất TEM00 có phân bố Gaussian tại λ = 632,8 nm với một công suất P = 5mW và được mở rộng sao cho góc phân kỳ ở trường xa là 1 mrad. Hãy tính kích thước vết, cường độ đỉnh và điện trường đỉnh tại điểm thắt. 4.15. Laser Argon Một chùm Gaussian TEM00 từ laser Argon bước sóng λ = 514,5 nm có công suất ra bằng 1 W được gửi tới một mục tiêu ở khoảng cách L = 500 m. Giả sử chùm tia xuất phát từ mặt thắt của nó, hãy tìm thấy kích thước của vết bảo đảm cường độ đỉnh lớn nhất tại mục tiêu và tính cường độ này. 4.16. Gaussian chùm lan truyền qua hệ thống quang học Cho một chùm tia Gaussian có kích thước mặt thắt w1 và bán kính cong R1 lan truyền qua một hệ quang học được mô tả bởi ma trận thực ABCD, hãy tính kích thước vết w tại mặt phẳng ra. (Mức độ khó cao hơn mức trung bình). 20
- Xem thêm -

Tài liệu liên quan