Đăng ký Đăng nhập
Trang chủ Viễn chuyển lượng tử, các trạng thái kết hợp bốn mode...

Tài liệu Viễn chuyển lượng tử, các trạng thái kết hợp bốn mode

.PDF
72
25
71

Mô tả:

LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc đến TS.Trần Thái Hoa, người đã tận tình giúp đỡ chỉ bảo và cung cấp cho tôi những kiến thức nền tảng để tôi hoàn thành bài luận văn này. Thầy cũng là người đã giúp tôi ngày càng tiếp cận và có niềm say mê khoa học trong suốt thời gian được làm việc cùng thầy. Tôi xin bày tỏ lòng biết ơn tới các thầy, các cô công tác tại phòng sau Đại Học, Khoa Vật Lý Trường Đại học sư phạm Hà Nội 2 và các Giáo sư, Tiến sĩ đã trực tiếp giảng dạy, truyền đạt cho tôi những kiến thức quý báu về chuyên môn cũng như kinh nghiệm nghiên cứu khoa học trong thời gian qua. Cuối cùng, tôi xin chân thành gửi lời cảm ơn đến những người thân trong gia đình, bạn bè đã luôn giúp đỡ, động viên và tạo mọi điều kiện cho tôi trong suốt quá trình học tập và hoàn thiện luận văn này. Hà Nội, tháng 11 năm 2011 Tác giả Nguyễn Thị Ánh Tuyết LỜI CAM ĐOAN Tên tôi là: Nguyễn Thị Ánh Tuyết, học viên cao học khóa 2009 – 2011 chuyên nghành Vật lý lý thuyết và vật lý toán – Trường Đại học Sư phạm Hà Nội 2. Tôi xin cam đoan đề tài: “Viễn chuyển lượng tử, các trạng thái kết hợp bốn mode”, là kết quả nghiên cứu, thu thập của riêng tôi. Các luận cứ, kết quả thu được trong đề tài là trung thực, không trùng với các tác giả khác. Nếu có gì không trung thực trong luận văn tôi xin hoàn toàn chịu trách nhiệm trước hội đồng khoa học. Hà Nội, tháng 11 năm 2011 Tác giả Nguyễn Thị Ánh Tuyết MỤC LỤC MỞ ĐẦU .......................................................................................................... 1 1. Lý do chọn đề tài .......................................................................................... 1 2. Mục đích nghiên cứu .................................................................................... 1 3. Nhiệm vụ nghiên cứu: ................................................................................... 2 4. Đối tượng và phạm vi nghiên cứu ................................................................ 2 5. Phương pháp nghiên cứu ............................................................................... 2 6. Cấu trúc luận văn........................................................................................... 2 NỘI DUNG ....................................................................................................... 3 Chương 1: Giới thiệu ...................................................................................... 3 Chương 2: Các khái niệm cơ bản ................................................................ 10 2.1 Bit lượng tử ............................................................................................... 10 2.2 Rối lượng tử .............................................................................................. 15 2.3 Trạng thái kết hợp ..................................................................................... 17 2.4 Qubit dưới dạng chồng chập của hai mode ............................................... 22 2.5 Các thiết bị quang học tuyến tính.............................................................. 25 2.5.1 Bộ tách chùm................................................................................ 26 2.5.2 Bộ dịch pha .................................................................................. 30 2.5.3 Toán tử dịch chuyển ..................................................................... 33 2.6 Các trang thái rôi kết hợp ......................................................................... 35 Chương 3: Viễn chuyển lượng tử các trạng thái kết hợp hai mode ......... 41 3.1 Viễn chuyển lượng tử ................................................................................ 41 3.2 Viễn chuyển lượng tử các trạng thái kết hợp hai mode tổng quát...... ...... 43 3.2.1. Sơ đồ thực hiện ........................................................................... 44 3.2.2. Viễn chuyển trọn vẹn .................................................................. 47 3.2.3. Viễn chuyển gần trọn vẹn ........................................................... 49 Chương 4: Viễn chuyển lượng tử các trạng thái kết hợp bốn mode ........ 54 4.1. Đặt vấn đề................................................................................................. 54 4.2. Trạng thái rối kết hợp loại kết nhóm cluster ............................................ 57 4.3 Phương pháp tạo ra trạng thái rối của bốn mode lượng tử ....................... 58 KẾT LUẬN .................................................................................................... 64 TÀI LIỆU THAM KHẢO ............................................................................ 65 1 MỞ ĐẦU 1. Lý do chọn đề tài Hơn hai thập kỉ qua, khoa học thông tin lượng tử đã trở thành một trong những lĩnh vực thu hút được nhiều sự quan tâm nhất của các nhà khoa học. Nó được xem là một lĩnh vực mới có khả năng tạo ra sự đột phá mạnh mẽ trong lĩnh vực khoa học và kỹ thuật có liên quan đến sự tính toán, thông tin liên lạc, phép đo chính xác và khoa học lượng tử cơ bản. Lý thuyết thông tin cổ điển do Claude Shanon phát minh ra cách đây hơn 50 năm đã phát triển và trở thành một trong những nhánh sai quả và đẹp nhất của ngành toán học. Hiện nay, nó thật sự là một lý thuyết không thể thiếu trong lĩnh vực công nghệ thông tin, bất cứ ở đâu mà thông tin được lưu trữ và xử lý. Mặc dù đã có những thành công không thể nào phủ nhận được song thông tin cổ điển vẫn còn tồn tại rất nhiều hạn chế do nó chỉ bám rễ trong phạm vi của vật lý cổ điển. Chính vì vậy, việc nghiên cứu và áp dụng lý thuyết lượng tử vào việc xử lý thông tin luôn thôi thúc các nhà khoa học, và gần đây, nó đã mang lại nhiều thành công đáng kinh ngạc. Vì thế, việc tìm hiểu và nghiên cứu về khoa học thông tin lượng tử là một việc làm rất hợp thời đại. Đó cũng là lý do để tôi chọn đề tài “Viễn chuyển lượng tử, các trạng thái kết hợp bốn mode ”. Nó sẽ giúp bản thân tôi có cái nhìn sâu sắc hơn về thông tin lượng tử. 2. Mục đích nghiên cứu - Xây dựng sơ đồ viễn chuyển trạng thái - Sử dụng các toán tử dịch chuyển thích hợp - Viễn chuyển trạng thái kết hợp bốn mode bằng cách sử dụng bộ tách chùm, bộ dịchpha... 2 3. Nhiệm vụ nghiên cứu: - Từ các khái niệm cơ bản: Bit lượng tử, rối lượng tử, trạng thái kết hợp, các thiết bị quang học tuyến tính, các phép đo trạng thái giả Bell với các thiết bị quang học tuyến tính...nghiên cứu viễn chuyển trọn vẹn và gần trọn vẹn. 4. Đối tượng và phạm vi nghiên cứu - Một số thiết bị quang học tuyến tính thường được sử dụng trong các sơ đồ xử lý thông tin lượng tử. - Bộ p chéo Keer (K), hai bộ tách chùm 50:50 và hai bộ dịch pha p / 2 . 5. Phương pháp nghiên cứu - Xây dựng một sơ đồ để viễn chuyển trạng thái sử dụng các thiết bị quang học tuyến tính. - Viễn chuyển các trạng thái kết hợp bốn mode bằng cách áp dụng một bộ p chéo Keer (K), hai bộ tách chùm 50:50 và hai bộ dịch pha p / 2 . 6. Cấu trúc luận văn. Chương 1: Giới thiệu Chương 2: Các khái niệm cơ bản Chương 3: Viễn chuyển lượng tử các trạng thái kết hợp hai mode tổng quát Chương 4: Viễn chuyển lượng tử các trạng thái kết hợp bốn mode. 3 NỘI DUNG CHƯƠNG 1: GIỚI THIỆU VÀ CÁC KHÁI NIỆM CƠ BẢN VỀ THÔNG TIN LƯỢNG TỬ Hơn hai thập kỉ qua, khoa học thông tin lượng tử đã trở thành một trong những lĩnh vực thu hút được nhiều sự quan tâm nhất của các nhà khoa học. Nó được xem là một lĩnh vực mới có khả năng tạo ra sự đột phá mạnh mẽ trong lĩnh vực khoa học và kỹ thuật có liên quan đến sự tính toán, thông tin liên lạc, phép đo chính xác và khoa học lượng tử cơ bản. Lĩnh vực này xuất hiện kể từ lúc một số nhà khoa học tiên phong như Charles Bennett, Paul Benioff, Richard Feynman và những người khác bắt đầu nghĩ đến việc áp dụng trực tiếp cơ học lượng tử trong các tính toán và xử lý thông tin. Lý thuyết thông tin cổ điển do Claude Shanon phát minh ra cách đây hơn 50 năm đã phát triển và trở thành một trong những nhánh sai quả và đẹp nhất của ngành toán học. Hiện nay, nó thật sự là một lý thuyết không thể thiếu trong lĩnh vực công nghệ thông tin, bất cứ ở đâu mà thông tin được lưu trữ và xử lý. Mặc dù đã có những thành công không thể nào phủ nhận được song thông tin cổ điển vẫn còn tồn tại rất nhiều hạn chế do nó chỉ bám rễ trong phạm vi của vật lý cổ điển. Chính vì vậy, việc nghiên cứu và áp dụng lý thuyết lượng tử vào việc xử lý thông tin luôn thôi thúc các nhà khoa học, và gần đây, nó đã mang lại nhiều thành công đáng kinh ngạc. Kể từ năm 1990, Khi Max Planck đề xuất giả thuyết về tính gián đoạn của bức xạ điện từ phát ra từ các vật - giả thuyết lượng tử - để giải thích những kết quả thực nghiệm về bức xạ nhiệt của vật đen thì vật lý học lượng tử đã ra đời. Sự xuất hiện của vật lý lượng tử và thuyết tương đối lả cuộc cách mạng của ngành vật lý học vào cuối thế kỷ 19 và đầu thế kỷ 20 và là cơ sở khoa học của nhiều ngành công nghệ cao như công nghệ cao như công nghệ điện tử và vi điện tử, công 4 nghệ viễn thông, công nghệ quang tử, công nghệ tự động hoá, công nghệ thông tin…. Có thể nói rằng, cơ học lượng tử là một trong những lý thuyết thành công nhất của thế kỷ 20. Theo cơ học lượng tử, những hệ vi mô có các tính chất khác hẳn so với các hệ vĩ mô. Ví dụ, các đối tượng lượng tử có thể ở nhiều trạng thái cùng một lúc. Hai đối tượng tách biệt nhau hoàn toàn vẫn có thể bị rối với nhau, có nghĩa là chúng phản ứng đồng thời với các thí nghiệm riêng biệt dù chúng có ở xa nhau thế nào đi nữa. Ngoài ra, cơ học lượng tử cũng đã được xác minh bằng thực nghiệm: những tiên đoán của nó chưa bao giờ sai dù nó có kỳ lạ như thế nào đi chăng nữa. Thật ra, trong thời kỳ đầu đã có rất nhiều nhà tiên phong của cơ học lượng tử cho rằng nó là một lý thuyết không đầy đủ. Đại diện cho số đó chính là Albert Einstein, người đã không đồng ý về tính xác suất trong cơ học lượng với câu nói: “Chúa không chơi xúc xắc”. Đặc biệt, năm 1935 Einstein, Podolsky và Rosen đã nêu ra nghịch lý EPR [22], cho rằng cơ học lượng tử là không đầy đủ. Phải đợi tới 30 năm sau, năm 1964, Bell mới đưa ra được một bất đẳng thức (sau này gọi là bất đẳng thức Bell) cho phép kiểm tra bằng thực nghiệm nghịch lý này [13]. Những nghiên cứu mới về cơ học lượng tử trong thời gian gần đây đã và đang hướng đến một lĩnh vực mới. Khoa học thông tin lượng tử. Việc áp dụng vật lý lượng tử và công nghệ thông tin có thể làm thay đổi hẳn cách chúng ta giao tiếp và xử lý thông tin. Điều mấu chốt khi tìm hiểu lĩnh vực này là sự tách biệt rõ ràng giữa dấu hiệu hàng ngày của thông tin cổ điển và bản đối ứng lượng tử kém trực giác của nó. Thông tin cổ điển có thể bị đọc và sao chép lại y nguyên mà không hề để lại một dấu vết nào về sự đọc trộm và sao chép đó. Trong khi đó, thông tin lượng tử không thể nào sao chép được nguyên vẹn và bất cứ một sự đọc trộm nào đều có thể bị phát hiện. Đây là một đặc điểm rất quan trọng của cơ học lượng tử mà có thể được tận dụng để trao đổi thông tin một cách hoàn toàn tuyệt mật. Các trạng thái rối lượng tử còn có 5 thể tạo ra một mức độ song song trong tính toán cao hơn hẳn một máy tính có kích thước bằng cả vũ trụ. Đó là các tính toán được thực hiện một cách hoàn toàn mới, gọi là tính toán lượng tử. Trong lý thuyết thông tin cổ điển, đại lượng cơ bản của thông tin là bit, còn trong thông tin lượng tử thì đại lượng cơ bản của nó là bit lượng tử, còn được gọi qubit, thuật ngữ này đã được Ben Schuhmacher đưa ra năm 1995. Nói chung, thông tin lượng tử được xem như là sự tổng quát hoá hay sự mở rộng của thông tin cổ điển. Bất kỳ một hệ lượng tử nào cũng có thể được xem như là một qubit nếu nó được xác định bởi hai trạng thái độc lập tuyến tính với nhau. Các photon phân cực, các hạt có spin 1/2, các nguyên tử hai mức, các cấu trúc chấm lượng tử kép,…đều có thể sử dụng như các qubit. Ngoài ra còn có thể sử dụng cả các đặc trưng ngoại như hai hướng truyền khác nhau của một hạt như là các qubit. Năm 1985 David Deutsch đã giới thiệu về máy tính lượng tử và cho thấy rằng lý thuyết lượng tử có thể giúp các máy tính thực hiện công việc nhanh hơn rất nhiều. Trong khi các máy tính số ngày nay xử lý thông tin cổ điển được mã hoá theo các bit thì máy tính lượng tử lại xử lý thông tin lượng tử theo các qubit. Máy tính lượng tử có thể được sử dụng để thực thi những nhiệm vụ rất khó thực hiện đối với máy tính số thông thường. Ví dụ, các siêu máy tính số ngày nay phải mất một thời gian dài hơn cả tuổi thọ của vũ trụ để có thể tìm ra được các thừa số nguyên tố của một số nguyên lớn có khoảng vài trăm chữ số, trong khí đó các máy tính lượng tử có thể thực hiện nhiệm vụ này trong khoảng chưa đầy một giây. Những phát triển gần đây của lý thuyết thông tin lượng tử đã đem lại rất nhiều sự tiến bộ trong sự hiểu biết cơ học lượng tử và khả năng ứng dụng rộng rãi vào công nghệ tương lai. Những hứa hẹn về các ngành công nghệ mới như: Tính toán lượng tử [27,41,31], Viễn chuyển lượng tử [13], Mật mã 6 lượng tử [40], Hội thoại lượng tử [37], Kiểm tra lượng tử [38], Viễn tác các toán tử [39],….đã thu hút được rất nhiều sự quan tâm của các nhà khoa học. Những nhà phát minh ra cơ học lượng tử chắc không thể ngờ rằng các trạng thái rối lượng tử lại có thể có những công dụng to lớn đến như thế. Vậy mục đích quan trọng trong lý thuyết thông tin lượng tử là làm thế nào để tạo ra, định lượng và sử dụng rối lượng tử, đó không chỉ là bản chất của cơ học lượng tử mà còn là nguồn tài nguyên không thể thay thế được cho việc xử lý thông tin lượng tử. Những công nghệ thông tin lượng tử được mong đợi là có thể khắc phục được những hạn chế còn tồn tại của công nghệ thông tin cổ điển. Những ý tưởng tính toán lượng tử xuất phát từ việc cho rằng các máy tính thực chất là các hệ vật lý và các quá trình tính toán là các quá trình vật lý. Việc tăng gấp đôi lượng tranzito trên một mạch tích hợp cứ sau mỗi 18 tháng trong suốt 30 năm qua đã khẳng định dự đoán của Moore. Đến một thời điểm nào đó thì việc áp dụng các quy luật cơ học lượng tử để xử lý thông tin trong tính toán là không thể tránh khỏi. Năm 1980, lần đầu tiên Feynman nhận thấy rằng các hiệu ứng cơ học lượng tử bất kỳ không thể nào mô phỏng được một cách hiệu quả bởi một máy tính cổ điển [27]. Năm 1990, người ta thấy rằng sự song song lượng tử dựa trên đặc trưng của quá trình tiến hoá Unita (quá trình U) có thể làm tăng tốc độ tính toán một cách đáng kể trong các bài toán như phân tích một số nguyên lớn ra thừa số nguyên tố hay dò tìm dữ liệu… Các công nghệ thông tin liên lạc và mật mã cũng đã được khám phá dựa trên cơ học lượng tử. Sự phân bố khoá lượng tử cho phép sự liên lạc tuyệt mật mà điều này không bao giờ có thể thực hiện được theo các giao thức cổ điển như hiện nay. Tính chất không định xứ của cơ học lượng tử dẫn đến một hiện tượng vô cùng kỳ lạ đó là “Viễn thông lượng tử”. Bằng viễn chuyển lượng tử, một trạng thái lượng tử chưa biết bất kỳ bị phá huỷ ở một nơi và một bản sao hoàn 7 hảo của nó lại xuất hiện một nơi rất xa khác. Dù đã có rất nhiều thành công đáng kinh ngạc về lĩnh vực này trong thời gian qua nhưng vẫn còn quá xa trước khi hiện thực hoá việc xử lý thông tin lượng tử trong các ứng dụng thực tiễn. Đối với tính toán lượng tử, các nhà nghiên cứu phải tìm một hệ qubit vật lý có thể đo được, một tập hợp các hoạt động cổng và các phương pháp xuất/ nhập qubit. Hơn thế nữa, các lỗi không thể tránh khỏi xảy ra sự phá vỡ kết hợp dòi hỏi các phương pháp sửa lỗi [12] là rất cần thiết. Đến nay, cũng đã có nhiều nghiên cứu khác nhau về sự thực thi của một máy tính lượng tử dựa vào cộng hưởng từ nhật nhân (NMR), bẫy ion, hệ các trạng thái rắn và quang. Những minh hoạ gần đây nhất về tính toán lượng tử chỉ mới giới hạn 7 qubit, có nghĩa là chúng vẫn đang ở một mức độ cơ bản. Năm 1998, Chuang đã báo cáo về sự hiện thực hoá 2 qubit của một thuật toán lượng tử cơ bản (thuật toán Deustch - Jozsa), ông đã thu được bằng cách sử dụng công nghệ khối NMR. Trong cùng năm đó và năm tiếp theo, cũng đã có một số minh hoạ thực nghiệm tương tự, ví dụ như Jones và Mosca đã tạo được một thiết bị 2 qubit dựa trên chất lỏng, trong đó 2 qubit được tích trữ trong các spin hạt nhân của các nguyên tử Hydro; Vandersypen cùng các cộng sự đã phát triển một số thiết bị 7 qubit bằng cách sử dụng NMR để minh hoạ thuật toán thừa số hoá Shor trong năm 2000. Năm 2003, đã có một số nhà nghiên cứu lạc quan như Stonechm tin rằng ông có thể tạo ra một chiếc máy tính lượng tử dựa trên nghiên cứu vật liệu silic đến năm 2010. Trong hơn 20 năm qua, nhiều thí nghiệm quang học cũng đã chứng tỏ các hiệu ứng không định xứ trong phòng thí nghiệm và gần đây là trong sợi quang dài 10km. Gần đây nhất, Aspelmayer cùng các cộng sự đã chứng minh rằng rối của sự phân cực photon có thể thu được trong không gian tự do trên khoảng 600m. Mật mã lượng tử được xem như là một trong những ứng dụng thông tin lượng tử đầy hứa hẹn cho sự thương mại hoá thành công trong tương lai không xa. Tuy vẫn còn 8 nhiều hạn chế của các thiết bị vật lý và bao gồm cả các nguồn nhiễu nữa nhưng các tiến bộ về mặt thực nghiệm đáng chú ý đã được tạo ra kể từ khi mật mã lưộng tử ban đầu hơn 32 cm được thực hiện . Trong năm 2003, Shields và các cộng sự đã có thể minh họa mật mã lượng tử trên các sợi quang học dài hơn 100km đủ để có thể bao phủ cả một vùng dân cư. Theo các phương tiện thông tin đại chúng thì chúng ta có thể tìm thấy được các sản phẩm mật mã lượng tử thương mại trên thị trường trong thời gian không xa nữa. Thông tin lượng tử là một lĩnh vực mới, rộng lớn và có tính bao quát. Trong luận văn này chúng tôi sẽ nghiên cứu một khía cạnh của nó là “Viễn chuyển lượng tử, các trạng thái rối kết hợp bốn mode ”. Như chúng ta đã biết, thông tin lượng tử được mã hoá trong các photon đơn có thể truyền đi rất nhanh do các photon chuyển động với tốc độ rất cao và có khả năng chống lại sự phá vỡ kết hợp. Tuy nhiên, các cổng hai photon hầu như rất khó thực thi được do sự tương tác vô cùng yếu giữa các photon riêng biệt. Thêm vào đó, các nguồn photon đơn hiện nay vẫn chưa có thể tạo ra được. Cách đơn giản nhất để khắc phục hạn chế này là mã hoá thông tin lượng tử theo các trạng thái của trường đa photon bởi vì các trường như thế này tương tác với nhau mạnh hơn rất nhiều. Do đầu ra của các laser ổn định được mô tả rất tốt bởi các trạng thái kết hợp nên việc mã hoá thông tin theo sự chồng chập của các trạng thái kết hợp là rất thuận tiện. Thay vì các qubit người ta đưa vào khái niệm qubit logic được định nghĩa như sau F = x a + y -a Trong đó ±añ = e - a 2 /2 å ( ±a ) nñ / ¥ n =0 n! là hai trạng thái kết hợp cùng biên độ phức a nhưng có pha ngược nhau và x, y là các hệ số chuẩn hoá. Khi thông tin lượng tử được mã hoá theo các trạng thái biến liên tục 9 được mô tả bởi một không gian Hilbert có số chiều xác định thì một qubit logic (1.1) là một vector trong khôn gian Hilbert hai chiều nhận vector trạng thái độc lập tuyến tính { a , -a } làm hệ vector cơ sở. Chú ý rằng, mặc dù a và -a không trực giao nhau nhưng tích phân xen phủ của chúng là exp(-2 a ) lại bị triệt tiêu nhanh khi tăng a . 2 Đã có rất nhều giao thức dựa trên trạng thái kết hợp về chiết rối lượng tử, tạo rối đối xứng từ xa, tính toán lượng tử, sửa lỗi lượng tử, kiểm tra tính lượng xứ lượng tử,…Enk và Hirota là những người đầu tiên đề xuất ra sơ đồ để viễn chuyển một qubit logic có dạng (1.1) với các hệ số x,y bất kỳ chưa biết bằng cách sử dụng các thiết bị quang học tuyến tính như các bộ tách chùm, các bộ dịch pha, các máy đếm photon chính xác. Gần đây cũng đã có các sơ đồ khác được thiết kế có sử dụng các thiết bị quang phi tuyến [39,40]. Những sơ đồ này không cần các máy đếm photon chính xác nhưng lại cần một yếu tố khác như bộ điều chế pha chéo, là một môi trường phi tuyến Kerr [41]. Khi hai mode truyền qua môi trường này sẽ có một sự dịch pha giữa chúng, tuy nhiên số photon của chúng thì lại không thay đổi. Các trạng thái kết hợp mai mode có dạng tổng quát là F 12 = N ( a1 a, a + a 2 a, -a + a 3 -a, a + a 4 -a, -a ) 12 trong đó 4 N = å a1 + 2e -2 i =1 2 -2 a 2 RE ( a1*a 3 + a *2a 4 + a1*a 2 + a *3a 4 ) + 2e -4 a 2 RE ( a1*a 4 + a *2a 3 ) . 10 CHƯƠNG 2: CÁC KHÁI NIỆM CƠ BẢN 2.1. Bit lượng tử Đơn vị cơ bản của thông tin cổ điển là bit. Một bit có thể nhận hai giá trị hoặc là 0 hoặc 1 và chứa lượng thông tin nhỏ nhất. Một bit có thể được hiện thực hoá trong một hệ vật lý đơn giản ví dụ như một tín hiệu điện “tắt’ hoặc “mở”. Quá trình sử lý thông tin cổ điển liên quan đến việc làm thế nào để lập mã, giải mã, lưu trữ, truyền và bảo mật thông tin cổ điển mà trong đó nó được mô tả bởi các bit theo những cách có hiệu quả. Shannon, trong công trình đầu tiên của mình, đã giải quyết vấn đề làm sao để giải nén và truyền một cách đáng tin cậy thông tin cổ điển [46]. Về nguyên tắc, thông tin mã hoá bởi các bit có thể đọc trộm mà không ai biết hoặc sao chép ra bao nhiêu bản cũng được mà không hề để lại dấu vết gì trên nguyên bản. Cơ học lượng tử sử dụng hai công cụ chủ yếu để mô tả tự nhiên: các đại lượng vật lý quan sát được và các véctơ trạng thái. Mỗi đại lượng vật lý ứng với một toán tử Hermitic. Giá trị đo được của đại lượng vật lý tuỳ thuộc vào việc nó được đo trong véctơ trạng thái nào. Khác với vật lý cổ điển, vật lý lượng tử cho phép một sự chồng chập tuyến tính ( hay tổ hợp tuyến tính) của nhiều trạng thái khả dĩ khác nhau. Chúng ta hãy xét một hạt lượng tử A và giả sử rằng x1 biểu diễn trạng thái của hạt ở xung quanh vị trí x1, x 2 biểu diễn trạng thái của hạt ở xung quanh vị trí x2. Ví dụ, chúng ta có thể giả sử hai giếng thế hệ riêng biệt như hình được vẽ ở hình 1.1. Trong đó, các trạng thái x1 và x 2 có thể được xem là các bó sóng Gauss. Trong khi một hạt cổ điển chỉ có thể ở trong giếng thế này hoặc giếng thế kia thì một hạt lượng tử có thể ở trong trạng thái chồng chập của hai trạng thái cho đến lúc một phép đo được thực hiện để tìm ra vị trí của nó. Một trong các trạng thái chồng chập tuyến tính nơi mà hạt A có thể ở đó là 11 1 ( x 1 > + e iF x 2 > ) 2 (2.1) trong đó 1 / 2 là thừa số chuẩn hoá và f là thừa số pha. Mỗi lần chúng ta đo toạ độ của hạt A thì xem thật sự nó ở đâu thì trạng thái (1.2) sẽ xẹp xuống và hạt A sẽ được tìm thấy xung quanh x1 hoặc x2 với xác suất bằn nhau và bằng 1/2. Hình 1.1: Sơ đồ về sự chồng chập tuyến tính của hai bó sóng Gauss trong một giếng thế kép. Một hạt cổ điển phải ở một trong hai giếng thế vào một thời điểm nào đó nhưng một hạt lượng tử thì có thể ở trong một sự chồng chập của hai trạng thái khác nhau giống như (c). Một trong những điểm đáng chú ý của trạng thái chồng chập (1.2) là sự giao thoa giữa các trạng thái x1 và x 2 có thể ảnh hưởng đến sự phân bố xác suất của phép đo toạ độ lên trạng thái (1.2). Mức độ giao thoa thay đổi tuỳ 12 theo giá trị của f . Biểu thức (1.2) không có nghĩa rằng hạt A hoặc là ở xung quanh x1 hoặc là ở xung quanh x2 và xác suất của chúng là bằng nhau như một trường hợp của hỗn hợp thống kê: Một trạng thái tương ứng với một trạng thái trộn của x1 và x 2 với các xác suất bằng nhau được mô tả bởi một toán tử mật độ 1/2 ( x1 x1 + x 2 x 2 ) , hạt A cũng không ở một nơi nào đó giữa x1 và x2. Cũng thật nguy hiểm khi nói rằng hạt A đồng thời ở cả xung quanh x1 và x2 tại cùng một thời điểm. Nó thật rộng bởi vì chẳng ai có thể xác minh được nó nếu không tiến hành một phép đo trực tiếp. Đã có một số ví dụ nghịch lý để minh hoạ tính chất kỳ lạ này. Nghịch lý con mèo của Schrödinger cho thấy sự mô tả của cơ học lượng tử về tự nhiên kỳ lạ như thế nào khi nó được áp dụng vào các hệ vât lý vĩ mô. Thí nghiệm hai khe hẹp giải thích hiệu ứng giao thoa của một hạt lượng tử đơn trong một trạng thái chồng chập. Nghịch lý của Hardy minh hoạ cách mà một sự chồng chập lượng tử tạo ra một kết quả vô nghĩa khi kể đến sự tương tác giữa vật chất và phản vật chất. Những ví dụ này đều cho thấy làm thế nào mà một sự chồng chập lượng tử của hai trạng thái A và B có thể dẫn đến một kết quả thực nghiệm thứ ba do sự giao thoa lượng tử mà không bao giowd thu được từ A , B giống như từ hỗn hợp cổ điển của A và B . Những hiệu ứng này (ví dụ như vân giao thoa trong thí nghiệm hai khe hẹp) biến mất khi bất kỳ một phép đo nào được thực hiện để theo dõi tiến trình của một hiện tượng lượng tử. Vẫn còn rất nhiều tranh luận về nguồn gốc của sự kỳ lạ này bao gồm cả những nỗ lực thực nghiệm để chấm dứt những tranh luận này. Nguyên tắc chủ yếu của vật lý lượng tử gợi mở việc đưa ra một khái niệm mới về đơn vị của thông tin lượng tử, gọi là bit lượng tử (tức “quantum bit” hay viết tắt là qubit). Một qubit được định nghĩa như là một chồng chập của hai trạng thái giá trị, một cho giá trị 0 và một cho giá trị 1. Nó không phải 13 là một trường hợp của một hỗn hợp thống kê của 0 và 1, cũng không phải là một giá trị trung gian của cả hai trạng thái này. Qubit được định nghĩa trong một không gian Hilbert hai chiều H có véctơ cơ sở trực chuẩn: { 0 , 1 }; i j = dij (2.2) Một trạng thái qubit được biểu diễn như sau Y =a 0 +b1 (2.3) là sự chồng chập tuyến tính của hai trạng thái cơ bản với các số phức a và b bất kỳ. Hình 1.2: Sơ đồ về các bit và bit lượng tử. Trong khi một bit chỉ chiếm một trong hai cực tương ứng với 0 hoặc 1 thì một bit lượng tử lại có thể ở bất kỳ điểm nào trên bề mặt quả cầu Bloch vì nó có thể ở trong trạng thái chồng chập khác nhau. Nói chung, một bit lượng tử có thể được đặt bất cứ một điểm nào ở bên trong quả cầu nếu như nó ở trong một trạng thái hỗn hợp. Thoả mãn điều kiện chuẩn hoá, a + b = 1 , trong đó a ( b ) tươgn ứng 2 2 2 2 với xác suất mà qubit đo được có giá trị “0” (“1”). Chú ý rằng các trạng thái cơ sở có thể được chọn một cách tuỳ ý. Ví dụ như ( 0 + 1 ) / 2 và ( 0 - 1 ) / 2 cũng 14 có thể là một hệ cơ sở trực chuẩn khác. Dạng tổng quát của một ma trận mật độ của một qubit là r ur 1 rqubit = (I + r + s) 2 (2.4) r ur trong đó r là vectơ thực, s = (s x , s y , s z ) là các toán tử Pauli là ma trận đơn vị. r Điều kiện dương của toán tử mật độ rqubit ³ 0 dẫn đến bất đẳng thức r £ 1 . r Một qubit có thể được biểu diễn bởi r trong một quả cầu tưởng tượng với bán kính đơn vị (xem hình 1.2), gọi là quả cầu Bloch. Nếu một qubit ở trong một trạng thái sạch thì điểm tương ứng của nó luôn luôn nằm trên mặt cầu. Người ta có thể nghĩ rằng người này hay người kia nhận được nhiều thông tin từ một bit lượng tử hơn là một bit bởi vì một qubit có thể tồn tại như là một số vô hạn trong các trạng thái chồng chập khác nhau. Nhưng thật ra, không có nhiều thông tin hơn có thể thu được từ một qubit bởi vì kết quả đọc ra của một qubit là một quá trình đo cơ học lượng tử. Nói chung, cơ học lượng tử không cho phép người ta đo một trạng thái lượng tử mà không phá huỷ nó. Vì vậy, nói chung, một qubit không thể bị đọc mà không biến mất trong khi một bit thì lại có thể. Một quá trình đọc ra của một qubit y sẽ làm cho trạng thái qubit xẹp xuống là 0 hoặc 1 tuỳ thuộc vào kết quả đo. Cùng lý do đó mà một qubit bất kỳ không thể được nhân bản một cách hoàn hảo, đó là nội dung của định lý “không nhân bản” được tìm ra năm 1982 và là một định lý đóng vai trò quan trọng trong xử lý thông tin lượng tử. Đã có một số đề xuất hiện thực hoá các qubit đối với quá trình xử lý thông tin lượng tử trong các hệ vật lý như nguyên tử, các hệ vật chất ngưng tụ và quang học. Theo nguyên tắc, bất kỳ một hệ lượng tử hai chiều nào đều có thể được xem như là một hệ qubit. Một hạt Spin -1/2, một nguyên tử hai mức, một trạng thái photon phân cực… là những ví dụ quen thuộc. Tuy nhiên, để 15 tìm ra một hệ qubit thích hợp cho quá trình xử lý thông tin lượng tử lại là một chuyện khác, hệ qubit đó phải có thể nhập vào, kiểm soát, đo đạt và có thể đọc được trước khi nó bị phá vỡ bởi tương tác với môi trường xung quanh. Có hai loại qubit đó là: qubit quang học (không có khối lượng) rất tốt cho truyền tin và qubit vật thật (có khối lượng) rất tốt cho tính toán lượng tử. Việc chuyển hoá thông tin lượng tử từ các qubit quang học sang các qubit vật chất và ngược lại là cần thiết và đã được nghiên cứu khá kỹ càng trong [43] và xem các tài liệu tham khảo trong đó. 2.2. Rối lượng tử Rối lượng tử là một trong những điều thú vị nhất của cơ học lượng tử. Cái tên rối lần đầu tiên được đưa ra bởi Shrödinger bằng tiếng Đức là “verschrankung” (tiếng Anh là “entanglement”). Khi hai hệ tương tác với nhau và sau khoảng thời gian ảnh hưởng lẫn nhau các hệ tách riêng ra trở lại thì lúc đó chúng không còn được mô tả theo cách như trước đây nữa. Đây là nét đặc trưng của cơ học lượng tử. Do đã tương tác với nhau mà hai hệ trở nên rối với nhau, dù sau đó chúng có ở cách xa nhau bao nhiêu cũng được (hình 2.3). Gần đây, các nghịch lý đã được thảo luận trong chương trước lại xuất hiện và đóng góp vào rối của các hệ vật lý hơn là giải thích cũ dựa trên nguyên lý bất định Heisenberg. Như đã được giải thích bởi Shrödinger, các trạng thái rối có thể sinh ra do tương tác giữa các hệ lượng tử, ví dụ như khi hai hạt được tạo ra một cách đồng thời với một số yêu cầu là spin hay xung lượng phải được bảo toàn. Tuy nhiên, một trạng thái rối có thể mất rối do tương tác với môi trường. Rối đóng vai trò không thể thay thế như là nguồn tài nguyên trong các quá tình xử lý thông tin lượng tử bao gồm viễn chuyển lượng tử, mật mã lượng tử và tính toán lượng tử. Giả sử một trạng thái hai hệ 1 và 2 được định nghĩa trong một không gian Hilbert H1 Ä H2 như sau: y 12 = (a 0 1 1 2 + b 1 1 0 2 , a + b =1 2 2 (2.5) 16 Có thể thấy rằng trạng thái này không thể được biểu diễn như là một tích hợp trực tiếp của hai trạng thái bất kỳ y 1 Ä y ' . Khi đó (1.6) được gọi 2 là một trạng thái rối. Khi a ¹ b ta có trạng thái rối một phần. Trạng thái rối cực đại ứng với trường hợp a = b . Bốn trạng thái rối cực đại trong không gian H1 Ä H2 tạo thành một hệ đủ trực chuẩn là f± = 1 ( 0 0 ± 1 1 ), 2 (2.6) y± = 1 (0 1 ± 1 0 ) 2 (2.7) được gọi là các trạng thái Bell hay các cặp EPR. Một cách tổng quát, chúng ta nói rằng trạng thái y 12 là rối trong H1 Ä H2 khi nó không thể được biểu diễn như là một tích trực tiếp của hai trạng thái bất kỳ y với y 1 y ' 2 12 ¹ y 1 Ä y' 2 (2.8) là vectơ trạng thái của hệ 1 (2). Sự rối không phải chỉ xảy ra giữa hai hệ lượng tử mà cũng có thể xảy ra giữa nhiều hệ lượng tử khác nhau. Khi đó ta có rối đa hệ [39, 40, 41, 42]. Rối đa hệ rất quan trọng đối với các giao thức lượng tử đa nhân trong một mạng lưới lượng tử. Các trạng thái rối cực đại là những kênh lượng tử rất tốt trong xử lý thông tin lượng tử. Ví dụ, trong viễn chuyển nếu một kênh lượng tử sử dụng không phải là rối cực đại thì xác suất thành công sẽ luôn bé hơn xác suất thành công của việc sử dụng rối cực đại. Để tạo được một trạng thái lượng tử rối cực đại là một việc làm không dễ. Tuy nhiên, các giao thức cũng đã phát triển để chắt lọc ra một số ít các trạng thái rối cực đại từ một số lớn các trạng thải rối không cực đại bằng cách sử dụng các tác dụng định xứ và các giao tiếp cổ điển [13]. Những sơ đồ này được gọi là chiết hay sự chắt lọc rối.
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất