Đăng ký Đăng nhập
Trang chủ ứng dụng sai phân giải bài toán biên của phương trình eliptic...

Tài liệu ứng dụng sai phân giải bài toán biên của phương trình eliptic

.PDF
74
48
129

Mô tả:

Lời cảm ơn Em xin chân thành cảm ơn Phòng sau Đại học; Các thầy giáo, cô giáo trong Khoa Toán cùng toàn thể các anh chị em học viên khóa 13 chuyên ngành Toán giải tích Trường Đại học Sư phạm Hà Nội 2, đã động viên giúp đỡ để tác giả có điều kiện tốt nhất trong suốt quá trình thực hiện đề tài nghiên cứu khoa học. Đặc biệt, em xin bày tỏ lòng cảm ơn sâu sắc tới TS. Nguyễn Văn Hùng đã định hướng chọn đề tài và tận tình chỉ bảo giúp đỡ em hoàn thành Luận văn này. Do thời gian và kiến thức có hạn nên Luận văn không tránh khỏi những hạn chế và còn có thiếu sót nhất định. Em xin chân thành cảm ơn đã nhận được những ý kiến đóng góp của các thầy giáo, cô giáo và các bạn học viên. Hà Nội, tháng 11 năm 2011 Tác giả Bùi Văn Lương Lời cam đoan Em xin cam đoan, dưới sự hướng dẫn của TS. Nguyễn Văn Hùng, Luận văn Thạc sỹ chuyên ngành Toán giải tích với đề tài "ỨNG DỤNG SAI PHÂN GIẢI BÀI TOÁN BIÊN CỦA PHƯƠNG TRÌNH ELIPTIC" được hoàn thành bởi chính sự nhận thức của bản thân tác giả, không trùng với bất cứ Luận văn nào khác. Trong quá trình nghiên cứu thực hiện Luận văn, tác giả đã kế thừa những thành tựu của các nhà khoa học với sự trân trọng và biết ơn! Hà Nội, tháng 11 năm 2011 Tác giả Bùi Văn Lương Mục lục Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chương 1. Các khái niệm cơ bản về phương trình đạo hàm riêng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1. Các kí hiệu và định nghĩa chung . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 1.1.1. Về miền trong Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2. Về đạo hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3. Về các không gian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4. Định nghĩa phương trình đạo hàm riêng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.5. Các phương trình đặc biệt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2. Phân loại phương trình đạo hàm riêng . . . . . . . . . . . . . . . . . . . . 9 1.3. Các bài toán biên của phương trình Eliptic . . . . . . . . . . . . . . 10 Chương 2. Phương trình sai phân . . . . . . . . . . . . . . . . . . . . . 11 2.1. Các khái niệm cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1. Định nghĩa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2. Tính chất của sai phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2. Phương trình sai phân tuyến tính. . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1. Định nghĩa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2. Nghiệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3. Tuyến tính hóa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3. Phương trình sai phân tuyến tính cấp một . . . . . . . . . . . . . . . 25 2.3.1. Định nghĩa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2. Nghiệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1 2.3.3. Một số phương pháp tìm nghiệm riêng x∗n của phương trình sai phân tuyến tính cấp một không thuần nhất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.4. Phương trình sai phân tuyến tính cấp một với hệ số biến thiên . . . . . . . . . . 29 2.4. Phương trình sai phân tuyến tính cấp hai . . . . . . . . . . . . . . . . 31 2.4.1. Định nghĩa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.2. Nghiệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.3. Phương trình sai phân tuyến tính cấp hai với hệ số biến thiên . . . . . . . . . . . 35 Chương 3. Giải bài toán biên phương trình Eliptic bằng phương pháp sai phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1. Sai phân hóa bài toán biên của phương trình Eliptic . . . . . 38 38 3.1.1. Bài toán biên Đirichlê . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2. Những bước đi chính trong việc sai phân hóa bài toán biên Đirichlê. . . . . . 39 3.1.3. Thí dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.4. Bài toán biên Nơman. Sai phân hóa biên kiện ∂u/∂n . . . . . . . . . . . . . . . . . . . . 45 3.2. Phương pháp giải hệ phương trình sai phân của bài toán biên phương trình Eliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.1. Vài điều chú ý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2. Về việc giải lặp các hệ phương trình đại số tuyến tính . . . . . . . . . . . . . . . . . . . 52 3.2.3. Phép lặp Iacôbi và phép lặp Zayđen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.4. Phép giảm dư quá hạn kế tiếp (phép lặp SOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.5. Phép lặp luân hướng (phép lặp ADI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.6. Các phép lặp khối . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3. Sự hội tụ của bài toán biên sai phân phương trình Eliptic 66 3.3.1. Đường lối chung để chứng minh sự hội tụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2. Cách chứng minh cụ thể. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 70 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 71 Lời nói đầu Phương trình đạo hàm riêng được nghiên cứu lần đầu tiên vào giữa thế kỷ 18 trong các công trình của những nhà toán học nổi tiếng như Ơle, Đalambe, Lagrăng và Laplaxơ như là một công cụ quan trọng để mô tả các mô hình của vật lý và cơ học. Những bài toán có nội dung tương tự vẫn còn được nghiên cứu đến tận ngày nay và là một trong các nội dung cơ bản của lý thuyết phương trình đạo hàm riêng. Chỉ đến giữa thế kỷ 19 và đặc biệt là trong các công trình của Riemann, phương trình đạo hàm riêng mới trở thành công cụ mạnh trong những lĩnh vực khác của toán học lý thuyết. Phương trình đạo hàm riêng thường xuyên xuất hiện trong các bài toán ứng dụng của lý thuyết thuỷ động học, cơ học lượng tử, điện học, điện – từ trường.... Đa số các bài toán này rất phức tạp, không có phương pháp giải đúng. Nhiều bài toán không có nghiệm theo nghĩa cổ điển. Vấn đề tìm nghiệm đúng của các phương trình đạo hàm riêng nhiều khi không thể và cũng không cần thực hiện trong mọi trường hợp. Bởi vậy trong nhiều trường hợp ta chỉ tìm được nghiệm gần đúng của các phương trình đạo hàm riêng và cũng từ đó xuất hiện các phương pháp để giải gần đúng các phương trình đó. Phương pháp sai phân (hay còn gọi là phương pháp lưới) là một trong những phương pháp được áp dụng rộng rãi trong nhiều lĩnh vực khoa học, kỹ thuật. Nội dung của nó là dẫn đối tượng cần xét về việc giải phương trình sai phân. Một trong những ứng dụng của phương 4 pháp này là giải bài toán biên phương trình đạo hàm riêng, trong đó có phương trình Eliptic là một trong những phương trình đạo hàm riêng quan trọng. Với mong muốn được tìm hiểu kỹ hơn các ứng dụng của sai phân, cùng với sự giúp đỡ và hướng dẫn tận tình của Tiến sĩ Nguyễn Văn Hùng, tôi xin giới thiệu đề tài: “ỨNG DỤNG SAI PHÂN GIẢI BÀI TOÁN BIÊN CỦA PHƯƠNG TRÌNH ELIPTIC”. 5 Chương 1 Các khái niệm cơ bản về phương trình đạo hàm riêng 1.1. Các kí hiệu và định nghĩa chung 1.1.1. Về miền trong Rn  Rn = x = (x1 , x2 , ..., xn ) | xi ∈ R, i = 1, n .  n  21 P 2 xi . Chuẩn kxk = i=1 Tích vô hướng: x.y = n P x i yi . i=1 n Hình cầu mở tâm a ∈ R , bán kính r > 0. Kí hiệu: Br (a) hoặc B(a, r); B(a, r) = {x ∈ Rn : kx − ak < r}. Ω ⊂ Rn là một miền ⇔ Ω mở và liên thông. r Π2 . Wn là thể tích của Br (a) trong Rn , Wn =  n Γ +1 2 1.1.2. Về đạo hàm Đa chỉ số: là một bộ α = (α1 , α2 , ..., αn ) ∈ Nn . Khi đó bậc của α là số |α| = α1 + α2 + · · · + αn . Đạo hàm cấp α của hàm số u = u(x), x ∈ Rn là: Dα u(x) = ∂ |α| u . ∂xα1 1 ∂xα2 2 ...∂xαnn 6 Với hàm số z = f (x, y). Thay cho viết ∂f , ta viết fx (x, y) hoặc zx (x, y). ∂x ∂ 3f Thay cho viết , ta viết zxxy (x, y), vài trường hợp còn kí hiệu ∂x2 ∂y Dxxy f (x, y). 1.1.3. Về các không gian Giả sử A ⊂ Rn là một tập bất kì. C k (A) là tập hợp tất cả các hàm u = u(x), xác định trên A và có đạo hàm Dα u(x) với |α| ≤ k liên tục trên A0 và có thể thác triển liên tục trên toàn bộ A. A0 là tập các điểm trong A, A mở thì A0 = A = Ω. Khi đó C k (Ω) cũng được hiểu tương tự như trên. Rn+1 = Rn × R các phần tử x = (x0 , t) với x0 ∈ Rn , t ∈ R; x0 là biến không gian, t là biến thời gian. Với A ∈ Rn+1 , kí hiệu C k,m (A) tập tất cả các hàm u(x, t) xác định trên A sao cho u(x, t) và Dxα Dtβ u(x, t) liên tục trên A0 và có thể thác triển liên tục trên A với mọi α ≤ k, 0 ≤ β ≤ n. ∂Ω là tập các điểm biên của Ω. 1.1.4. Định nghĩa phương trình đạo hàm riêng Định nghĩa: Phương trình liên hệ giữa các hàm ẩn u1 , u2 , ..., un ; các biến và các đạo hàm riêng của chúng được gọi là phương trình đạo hàm riêng. Một phương trình đạo hàm riêng chứa ít nhất một đạo hàm cấp m và không chứa đạo hàm cấp cao hơn m được gọi là phương trình đạo hàm 7 riêng cấp m. Phương trình đạo hàm riêng được gọi là tuyến tính nếu nó tuyến tính đối với tất cả các hàm ẩn và các đạo hàm riêng của chúng. Cũng vì vậy mà phương trình đạo hàm riêng tuyến tính chỉ chứa các đạo hàm hàm ẩn bậc một. Phương trình đạo hàm riêng gọi là tựa tuyến tính nếu nó tuyến tính với các đạo hàm cấp cao nhất. Thí dụ: Xét hàm 2 biến u = u(x, y). Phương trình: x2 uxx + uyy + u2 = 1 là phương trình đạo hàm riêng tựa tuyến tính. ∂ 2u ∂u ∂ 2u + − + y 2 u = x2 − y 2 là phương trình Phương trình: 2 ∂x ∂x∂y ∂x đạo hàm riêng cấp 2 và nó tuyến tính. Phương trình tuyến sóng: utt − ∆u = f (x, t) là tuyến tính với u = u(x, t). Nghiệm của phương trình đạo hàm riêng là một hệ bất kì các hàm sao cho khi thay vào các hàm ẩn, phương trình biến thành đồng nhất thức. ∂ 2u 2 ∂ 2u Thí dụ: Một nghiệm của phương trình 2 −a = 0 là hàm u(x, y) = ∂x ∂y 2 cos(ax + y) + e−ax+y . 1.1.5. Các phương trình đặc biệt Toán tử Laplace: ∆= ∂2 ∂2 ∂2 + + · · · + ∂x21 ∂x22 ∂x2n ∂ 2u ∂ 2u ∂ 2u ∆u = 2 + 2 + · · · + 2 ∂x1 ∂x2 ∂xn 8 Phương trình Poison: ∆u = f (x). Khi f (x) = 0 trên Ω ta có phương trình Laplace. Phương trình truyền nhiệt: ut − ∆u = f (x, t); (x, t) ∈ QT , ở đây u = u(x, t). Phương trình tuyến sóng: utt − ∆u = f (x, t). 1.2. Phân loại phương trình đạo hàm riêng Xét phương trình tuyến tính cấp 2 ∂ 2u ∂ 2u ∂ 2u ∂u ∂u Lu := A 2 + 2B +C 2 +a +b + c.u = f (x, y). (1.1) ∂x ∂x∂y ∂y ∂x ∂y Nếu các hệ số A, B, C không phụ thuộc vào x, y thì ta có biệt thức: A B = AC − B 2 . D = B C Ta nói phương trình (1.1) thuộc loại Eliptic nếu D > 0, thuộc loại Parabol nếu D = 0, thuộc loại Hypebol nếu D < 0. Để ý rằng phương trình không thay đổi sau mọi phép biến đổi không suy biến ξ = ϕ (x, y); ν = ψ (x, y), tức là ∂ϕ ∂ϕ ∂x ∂y ∂ψ ∂ψ 6= 0; ∀ (x, y) ∈ G, ∂x ∂y trong đó G là một miền thay đổi của (x, y) trong phương trình (1.1). Thí dụ: ∂ 2u ∂ 2u a, Phương trình Laplace: + 2 = 0 có D = A.C = 1 > 0 nên ∂x2 ∂y phương trình thuộc loại Eliptic. 9 ∂u ∂ 2 u b, Phương trình: − = 0 thuộc loại Parabol. ∂y ∂x2 Các dạng phổ biến: ∂ 2u ∂ 2u 1, Phương trình Laplace (Eliptic): ∆u = 2 + 2 = 0. ∂x ∂y 2 ∂u ∂ u 2, Phương trình truyền nhiệt: = a2 2 ; u = u (x, t). ∂t ∂x ∂ 2u ∂ 2u 3, Phương trình dây cung: 2 = a 2 ; u = u (x, t). ∂t ∂x 1.3. Các bài toán biên của phương trình Eliptic Xét phương trình: ∂ 2u ∂ 2u ∂u ∂y Lu := a 2 + b 2 + c + d + gu = f, ∂x ∂y ∂x ∂y (1.2) trong đó a, b, c, d, g, f là các hàm của (x, y) và mọi (x, y) ∈ G, D := a.b > 0 để (1.2) là phương trình Eliptic. Người ta phân biệt baloại bài toán biên  L(u) = f, (x, y) ∈ G 1) Bài toán Đirichlê: u | Γ = ϕ, (x, y) ∈ Γ.   L(u) = f, (x, y) ∈ G 2) Bài toán Nơman: ∂u  | Γ = ϕ, (x, y) ∈ Γ. ∂n   L(u) = f, (x, y) ∈ G   3) Bài toán hỗn hợp: ∂u  | Γ = ϕ, (x, y) ∈ Γ.  αu + α1 u ∂n 10 Chương 2 Phương trình sai phân Phương pháp sai phân là phương pháp được áp dụng rộng rãi trong nhiều lĩnh vực khoa học, kĩ thuật. Nội dung của nó là đưa bài toán cần xét về việc giải phương trình sai phân hoặc hệ phương trình sai phân (tức là hệ thức hoặc các hệ thức liên hệ các giá trị của các hàm số tại các điểm khác nhau như những hàm số của đối số nguyên). Thí dụ, để tìm nghiệm của phương trình đại số hoặc siêu việt f (x) = 0 (2.1) trên (a, b), trên đó f 0 (x) và f 00 (x) không đổi dấu và f (a)f (b) < 0 , ta có thể dùng phương pháp Niutơn theo công thức  f (xn )  xn+1 = xn − 0 f (xn )   x = c, với f (c)f 00 (c) > 0, c ∈ [a, b] . (2.2) 0 Có nghĩa là ta thay phương trình (2.1) bằng phương trình sai phân (2.2) (gọi là sai phân hóa), để tính nghiệm gần đúng xn của (2.1) theo công thức truy hồi (2.2). Ta cũng có thể viết (2.1) dưới dạng: x = ϕ(x) (2.3) sao cho |ϕ0 (x)| ≤ q ≤ 1, ∀x ∈ (a, b) và tìm nghiệm của (2.3) (cũng có 11 nghĩa là nghiệm của (2.1)) bằng phương pháp lặp đơn theo công thức:  xn+1 = ϕ (xn ) (2.4)  x = c, c ∈ (a, b), 0 tức là ta đã thay (2.1) bằng phương trình sai phân (2.4). Để minh họa, ta lấy ví dụ đơn giản là tìm nghiệm của phương trình x2 + x − 1 = 0 trên (0, 1). 2.1. Các khái niệm cơ bản Xét dãy số {xn }; dạng khai triển của nó là: {x0 , x1 , ..., xn , ...}. Thí dụ, dãy số tự nhiên kí hiệu là N có dạng: {n} = {0, 1, 2, ..., n, ...}; + dãy  số nguyên   dương Z có  dạng: {n} = {1, 2, ..., n, ...}; dãy số điều 1 1 1 hòa = 1, , ..., , ... . n 2 n Có thể xem dãy số là một hàm của đối số nguyên n. Kí hiệu x(n) = xn . 2.1.1. Định nghĩa Định nghĩa 2.1. Ta gọi sai phân hữu hạn cấp 1 của hàm số x(n) = xn với n ∈ Z: {n} = {0, ±1, ±2, ..., ±n, ...} (hoặc n ∈ Z+ hoặc n ∈ N) là hiệu: ∆xn = xn+1 − xn . Thí dụ: Hàm xn cho dưới dạng bảng n 0 1 2 3 4 x(n) 1 3 4 7 6 12 có sai phân hữu hạn cấp 1 là: ∆x0 = x1 − x0 = 3 − 1 = 2; ∆x1 = x2 − x1 = 4 − 3 = 1; ∆x2 = x3 − x2 = 7 − 4 = 3; ∆x3 = x4 − x3 = 6 − 7 = −1. Từ đây về sau, nếu không có gì nhầm lẫn với tỉ sai phân, ta gọi tắt sai phân hữu hạn là sai phân và cũng gọi sai phân cấp 1 là sai phân. Định nghĩa 2.2. Ta gọi sai phân cấp 2 của hàm số xn là sai phân của sai phân cấp 1, và nói chung sai phân cấp k của hàm số xn là sai phân của sai phân cấp k − 1 của hàm số đó. Như vậy, sai phân cấp 2 của hàm số xn là: ∆2 xn = ∆ (∆xn ) = ∆xn+1 − ∆xn = xn+2 − xn+1 − (xn+1 − xn ) = xn+2 − 2xn+1 + xn . Sai phân cấp 3 của hàm xn là:  ∆3 xn = ∆ ∆2 xn = ∆2 xn+1 − ∆2 xn = xn+3 − 2xn+2 + xn+1 − (xn+2 − 2xn+1 + xn ) = xn+3 − 3xn+2 + 3xn+1 − xn . Nói chung sai phân cấp k của hàm xn là:  ∆k xn = ∆ ∆k−1 xn = ∆k−1 xn+1 − ∆k−1 xn = k X (−1)i Cki xn+k−i , i=0 13 (2.5) k! . i!(k − i)! Thí dụ: Xét hàm xn trong định nghĩa 2.1, ta có: trong đó Cki = ∆2 x0 = x2 − 2x1 + x0 = 4 − 2.3 + 1 = −1; ∆2 x1 = x3 − 2x2 + x1 = 7 − 2.4 + 3 = 2; ∆2 x2 = x4 − 2x3 + x2 = 6 − 2.7 + 4 = −4; ∆3 x0 = x3 − 3x2 + 3x1 − x0 = 7 − 3.4 + 3.3 − 1 = 3; ∆3 x1 = x4 − 3x3 + 3x2 − x1 = 6 − 3.7 + 3.4 − 3 = −6; ∆4 x0 = x4 − 4x3 + 6x2 − 4x1 + x0 = 6 − 4.7 + 6.4 − 4.3 + 1 = −9. Từ công thức (2.5) suy ra một số tính chất của sai phân sau đây: 2.1.2. Tính chất của sai phân Tính chất 1. Sai phân các cấp đều có thể biểu diễn qua các giá trị của hàm số. Tính chất 2. Sai phân mọi cấp của hàm số là một toán tử tuyến tính. Tính chất 3. Sai phân cấp k của đa thức bậc m là 1. Đa thức bậc m − k, nếu k < m; 2. Hằng số, nếu k = m; 3. Bằng 0 khi k > m. Tính chất 4. N X ∆k xn = ∆k−1 xN +1 − ∆k−1 xa , với k ∈ Z+ . n=a 14 Chứng minh. N X k ∆ xn = N X ∆ ∆k−1 xn  n=a n=a = ∆k−1 xa+1 − ∆k−1 xa + ∆k−1 xa+2 − ∆k−1 xa+1 + · · · + ∆k−1 xN +1 − ∆k−1 xN = ∆k−1 xN +1 − ∆k−1 xa . Đặc biệt lưu ý với trường hợp k = 1, ta có: N X ∆xn = xN +1 − xa . n=a Ví dụ 2.1. Tính các tổng S = 1.1! + 2.2! + · · · + n.n! = Pn k=1 kk!;    S1 = 12 + 1 + 1 ! + 22 + 2 + 1 2! + · · · + n2 + n + 1 n! = n X  k 2 + k + 1 k!. k=1 Lời giải. Ta có k.k! = (k + 1)! − k! = ∆k! n n P P Vậy S = k.k! = ∆k! = (n + 1)! − 1. k=1 k=1 Vì   k 2 + k + 1 k! = k 2 + 2k + 1 − k k! = (k + 1)2 k! − kk! = (k + 1)(k + 1)! − kk! = ∆(kk!) nên S1 = n P k=1 (k 2 +k + 1)k! = n P ∆(kk)! = (n + 1)(n + 1)! − 1. k=1 15 Ví dụ 2.2. Tính các tổng Tm = 1m + 2m + 3m + · · · + nm , với m = 1; 2. Lời giải. T1 = 1 + 2 + · · · + n = T2 = 12 + 22 + · · · + n2 = n P k= k=1 n X 2 ∆ k=1 n X k= k=1 = n P k=1 k(k − 1) (n + 1)n = ; 2 2 ∆ (k − 1)k(2k − 1) 6 n(n + 1)(2n + 1) . 6 Ví dụ 2.3. Tính các tổng Sn = sin x + sin 2x + · · · + sin nx; Cn = cos x + cos 2x + · · · + cos nx. Lời giải. Ta có       1 1 1 ∆ cos k − x = cos k + x − cos k − x 2 2 2 x = −2 sin kx sin . 2 x +Nếu sin = 0 ⇔ x = 2kπ, k ∈ Z, thì 2 sin x = sin 2x = · · · = sin nx = 0, suy ra Sn = 0. x 6= 0 ⇔ x 6= 2kπ, k ∈ Z, thì 2   1 1 sin kx = − x ∆ cos k − 2 x, 2 sin 2 n n P 1 P 1 suy ra Sn = sin kx = − ∆cos(k − )x x 2 k=1 2 sin k=1 2    1 1 1 =− cos n + x − cos x x 2 2 2 sin 2 +Nếu sin 16 n+1 nx x sin 2 2 . = x sin 2  n, x = 2kπ, k ∈ Z   n+1 nx Tương tự Cn =   cos 2 x sin 2  , x= 6 2kπ, k ∈ Z. x sin 2 sin 2.2. Phương trình sai phân tuyến tính 2.2.1. Định nghĩa Định nghĩa 2.3. Phương trình sai phân tuyến tính là một hệ thức tuyến tính giữa sai phân các cấp:  F xn , ∆xn , ∆2 xn , ..., ∆k xn = 0, trong đó xn hiểu là sai phân cấp 0 của hàm xn , cấp lớn nhất của các sai phân (ở đây là bằng k) là cấp của phương trình sai phân tuyến tính. Do tính chất 1 của sai phân, sai phân các cấp đều có thể biểu diễn qua các giá trị của hàm số, nên người ta thường dùng định nghĩa dưới đây tương đương với định nghĩa trên, nhưng thuận tiện hơn. Định nghĩa 2.4. Phương trình sai phân tuyến tính của hàm xn là một biểu thức tuyến tính giữa các giá trị của hàm xn tại các điểm khác nhau: Lh xn = a0 xn+k + a1 xn+k−1 + · · · + ak xn = fn , (2.6) trong đó Lh là kí hiệu toán tử tuyến tính tác dụng lên hàm xn , xác định trên lưới có bước lưới h; a0 , a1 , ..., ak với a0 6= 0, ak 6= 0 là các hằng 17 số hoặc các hàm số của n, được gọi là các hệ số của phương trình sai phân; fn là một hàm số của n, được gọi là vế phải; xn là giá trị cần tìm, được gọi là ẩn. Phương trình (2.6) được gọi là phương trình sai phân tuyến tính cấp k (còn gọi là bậc k), vì để tính được tất cả các giá trị xn ta phải cho trước k giá trị liên tiếp của xn , rồi tính các giá trị còn lại của xn theo công thức truy hồi (2.6). Định nghĩa 2.5. Nếu fn ≡ 0 thì (2.6) gọi là phương trình sai phân tuyến tính thuần nhất. Nếu fn 6≡ 0 thì (2.6) gọi là phương trình sai phân tuyến tính không thuần nhất. Nếu fn ≡ 0 thì a0 , a1 , ..., ak là các hằng số, a0 6= 0, ak 6= 0 thì phương trình (2.6) trở thành Lh xn = a0 xn+k + a1 xn+k−1 + · · · + ak xn = 0 (2.7) và được gọi là phương trình sai phân tuyến tính thuần nhất cấp k với các hệ số hằng số. 2.2.2. Nghiệm Hàm số xn biến n, thỏa mãn (2.6) được gọi là nghiệm của phương trình sai phân tuyến tính (2.6). Hàm số x en phụ thuộc k tham số, thỏa mãn (2.7), được gọi là nghiệm tổng quát của (2.7), nếu với mọi tập giá trị ban đầu x0 , x1 , ..., xk−1 , ta đều xác định được duy nhất các tham số C1 , C2 , C3 , ..., Ck để nghiệm 18
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất