Đăng ký Đăng nhập
Trang chủ Tính artin của các môđun đối đồng điều địa phương suy rộng phân bậc...

Tài liệu Tính artin của các môđun đối đồng điều địa phương suy rộng phân bậc

.PDF
47
97
58

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH TRẦN THỊ HIẾU NGHĨA TÍNH ARTIN CỦA CÁC MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG PHÂN BẬC LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH TRẦN THỊ HIẾU NGHĨA TÍNH ARTIN CỦA CÁC MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG PHÂN BẬC Chuyên ngành : Đại số và Lí thuyết số Mã số: 60 46 05 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn PGS.TS. Trần Tuấn Nam Thành phố Hồ Chí Minh 2012 MỤC LỤC LỜI CẢM ƠN .................................................................................................. 4 MỞ ĐẦU .......................................................................................................... 5 DANH MỤC CÁC KÍ HIỆU.......................................................................... 8 CHƯƠNG 1: KIẾN THỨC CHUẨN BỊ ....................................................... 9 1.1 MỘT SỐ TÍNH CHẤT VỀ VÀNH VÀ MÔĐUN ................................................. 9 1.2 ĐỘ DÀI, DÃY CÁC PHẦN TỬ CHÍNH QUY CỦA MỘT MÔĐUN ............... 11 1.3 GIỚI HẠN THUẬN ............................................................................................. 13 1.4 MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG ...................................................... 15 1.5 MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG................................. 17 1.7 DÃY PHỔ ............................................................................................................. 23 CHƯƠNG 2: TÍNH ARTIN CỦA CÁC MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG PHÂN BẬC .................................................. 28 2.1 MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG PHÂN BẬC ........... 28 2.2 MỘT SỐ TÍNH CHẤT VỀ TÍNH ARTIN CỦA CÁC MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG PHÂN BẬC ...................................................... 29 KẾT LUẬN .................................................................................................... 45 TÀI LIỆU THAM KHẢO ............................................................................ 46 LỜI CẢM ƠN Luận văn này được hoàn thành dưới sự hướng dẫn khoa học của PGS.TS Trần Tuấn Nam. Tác giả xin chân thành cảm ơn thầy vì đã lựa chọn một đề tài mà qua đó tác giả củng cố được các kiến thức về đại số giao hoán, đại số đồng điều và làm quen được với những kiến thức cơ bản của lí thuyết đối đồng điều địa phương. Tôi cũng xin gửi lời cảm ơn chân thành đến các thầy trong khoa Toán - Tin học trường Đại học Sư phạm TP. Hồ Chí Minh và Đại học Khoa học Tự nhiên TP. Hồ Chí Minh đã giúp đỡ tác giả nâng cao trình độ chuyên môn và phương pháp làm việc hiệu quả trong quá trình học tập tại trường. Xin cảm ơn Ban giám hiệu, Phòng Sau đại học trường Đại học Sư phạm TP. Hồ Chí Minh đã tạo điều kiện để tác giả hoàn thành luận văn này. Nhân dịp này, tác giả muốn gửi lời cảm ơn đến gia đình, bạn bè đã động viên và tạo điều kiện thuận lợi để tác giả học tập trong suốt thời gian qua. Và tôi cũng tỏ lòng biết ơn tới những tác giả các tài liệu mà tôi đã tham khảo trong quá trình thực hiện đề tài này. MỞ ĐẦU Năm 1974, J. Herzog đã giới thiệu khái niệm đối đồng điều địa phương suy rộng lần đầu tiên trong tài liệu [7]. Đây là khái niệm mở rộng của khái niệm đối đồng điều địa phương cổ điển của Grothendieck. Một cách tự nhiên, các tính chất của đối đồng điều địa phương cổ điển được tổng quát hóa thành các tính chất của đối đồng điều địa phương suy rộng. Chúng ta sẽ xét đến một trong những tính chất quan trọng được tổng quát lên, đó là tính Artin của các môđun đối đồng điều địa phương. Tính Artin của các môđun đối đồng điều địa phương đã được nghiên cứu bởi các nhà toán học S.H.Tahamtan, H.Zakeri, Reza Sazeedeh, ... và thu được nhiều kết quả quan trọng. Sau đó, nhiều nhà toán học đã mở rộng các kết quả này cho các môđun đối đồng điều địa phương suy rộng. Việc nghiên cứu tính Artin của các môđun đối đồng điều địa phương cổ điển và suy rộng đến nay vẫn là vấn đề mở. Với mong muốn tiếp cận hướng nghiên cứu này, chúng tôi bắt đầu bằng việc tìm hiểu những kết quả cơ bản về tính Artin của các môđun đối đồng điều địa phương suy rộng phân bậc trong các bài báo: [1.] “On graded generalized local cohomology” của Nazer Zamani (2006, Achiv der Mathematik, Birkhäuser Verlag, Basel). [2.]“Artinianess of graded generalized local cohomology modules” của Tahamman S. (2011, Mathematics Scientific Journal, Vol. 7, No. 1, 107 -117). [3.]“Some finiteness properties of generalized graded local cohomology modules” của Ismael Akray, Adil Kadir Jabbar, Reza Sazeedeh (2012, International Journal of Algebra, Vol. 6, no. 11, 539 – 547). Từ các bài báo này, chúng tôi chọn trình bày lại chi tiết một số kết quả về tính Artin của các môđun đối đồng điều địa phương suy rộng phân bậc trong một số trường hợp đặc biệt nào đó. Và do vậy luận văn mang tên: "Tính Artin của các môđun đối đồng điều địa phương suy rộng phân bậc". Luận văn bao gồm phần mở đầu, hai chương nội dung và phần kết luận. Cụ thể: Phần mở đầu: Nêu xuất xứ của vấn đề. Chương 1: KIẾN THỨC CHUẨN BỊ Giới thiệu các khái niệm cơ bản về môđun đối đồng điều địa phương và trình bày những kiến thức về vành và môđun cần thiết cho các chứng minh ở chương 2. Chương 2: TÍNH ARTIN CỦA CÁC MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG PHÂN BẬC Giới thiệu môđun đối đồng điều địa phương suy rộng phân bậc H Ii ( M , N ) với R là vành phân bậc, I là iđêan phân bậc của R và M , N là các R -môđun phân bậc. Sau đó, chúng tôi trình bày một số điều kiện đủ để một số môđun đối đồng điều địa phương suy rộng phân bậc là Artin. Phần kết luận: Đưa ra nhận xét và những vấn đề mở cần tiếp tục nghiên cứu. Trong khuôn khổ một luận văn cao học, chúng tôi cố gắng trình bày lại các kết quả đã có trong một hệ thống, với các chứng minh chi tiết nhất có thể và nêu ra được các tính chất cơ bản mà các tác giả đã sử dụng. Một số kết quả trong phần kiến thức chuẩn bị chúng tôi không nêu chứng minh vì đã được trình bày rõ trong các tài liệu tham khảo. Chúng tôi trình bày một số bổ đề liên quan trực tiếp đến các kết quả chương 2 hay một số bài tập mà các tác giả đưa ra trong tài liệu tham khảo. Các kí hiệu được dùng trong bản luận văn này hoặc là các kí hiệu thông dụng hoặc sẽ được giải thích khi sử dụng lần đầu (xem Danh mục các kí hiệu). Để trích dẫn một số kết quả, chúng tôi dùng cách trích dẫn quen thuộc. Chẳng hạn, xem [[3], Theorem 2.3] nghĩa là xem Định lí 2.3 trong tài liệu [3]. Cuối cùng, mặc dù đã có nhiều cố gắng nhưng luận văn cũng khó tránh khỏi những thiếu sót. Vì vậy rất mong sự đóng góp ý kiến của các Thầy Cô và các bạn. Thành phố Hồ Chí Minh, tháng 8 năm 2012. DANH MỤC CÁC KÍ HIỆU Ký hiệu Ý nghĩa  Tập hợp các số tự nhiên Ab Phạm trù các nhóm abel C ( R) Phạm trù các R -môđun * C ( R) ( R, m ) HomR ( M , N ) Z R (M ) Spec( R) AssR ( M ) Supp ( M ) Phạm trù các R -môđun phân bậc R là vành địa phương với m là iđêan tối đại duy nhất Tập tất cả các R -đồng cấu từ M đến N Tập tất cả các ước của 0 của R -môđun M Tập tất cả các iđêan nguyên tố của vành R Tập tất cả các iđêan nguyên tố liên kết của R -môđun M Giá của môđun M Chiều Krull của R -môđun M dim R ( M ) Chiều xạ ảnh của R -môđun M Pd R ( M ) Chiều nội xạ của R -môđun M Id R ( M ) Các hàm tử mở rộng Ext Ri ( M , − ) Ext Ri ( −, N ) Tori R Tori R ( A, − ) ( −, B ) Các hàm tử xoắn CHƯƠNG 1: KIẾN THỨC CHUẨN BỊ Trong suốt luận văn này, nếu không nói gì thêm, chúng tôi luôn giả sử R là vành giao hoán có đơn vị 1 ≠ 0 . Chương này trình bày một số kết quả đã được đề cập trong đại số đại cương, đại số giao hoán và đại số đồng điều có liên quan đến chương 2 của luận văn. 1.1 MỘT SỐ TÍNH CHẤT VỀ VÀNH VÀ MÔĐUN Mệnh đề 1.1.1: n i. Cho P1 , P2 ,..., Pn là các iđêan nguyên tố và I là iđêan của R thỏa mãn I ⊂  Pi . i =1 Khi đó tồn tại i ∈ {1, 2,...., n} sao cho I ⊂ Pi . ii. Cho I1 , I 2 ,..., I n là các iđêan và P một iđêan nguyên tố của R thỏa mãn n I i ⊂P i =1 . Khi đó tồn tại i ∈ {1, 2,...., n} sao cho I i ⊂ P . Bổ đề 1.1.2: (Bổ đề Nakayama) M là R -môđun hữu hạn sinh, I là một iđêan của R và I là con của căn Jacobson của R . Khi đó, nếu IM = M thì M = 0 . Mệnh đề 1.1.3 Cho R là một vành, I là iđêan của R và M là một R -môđun. Ta có ( R /I ) ⊗ R M ≅ M / IM . Mệnh đề 1.1.4 Cho R là vành địa phương, M và N là các R -môđun hữu hạn sinh. Khi đó, nếu M ⊗ R N = 0 thì M = 0 hoặc N = 0 . Mệnh đề 1.1.5 Cho dãy khớp ngắn các R -môđun 0 → M → N → P → 0 . Khi đó ta có N Artin khi và chỉ khi M và P Artin. Từ điều này ta suy ra nếu dãy các R -môđun M → N → P khớp tại N và M , P là các môđun Artin thì N cũng là môđun Artin. Mệnh đề 1.1.6 Vành R Artin khi và chỉ khi R Noether và dim R = 0 . Mệnh đề 1.1.7 Cho R là vành, I là một iđêan của R và M là một R -môđun. Khi đó, với mọi số tự nhiên n tồn tại đẳng cấu: HomR ( R / I n , M ) ≅ ( 0 :M I n ) . Định nghĩa 1.1.8 Cho R là một vành, M là một R -môđun, iđêan nguyên tố P của R được gọi là iđêan nguyên tố liên kết của M nếu tồn tại x ∈ M \ {0} sao cho P = Ann ( x ) . Tập hợp tất cả các iđêan nguyên tố liên kết của R -môđun M được kí hiệu là AssR ( M ) . Giá của R -môđun M , kí hiệu Supp ( M ) = {P ∈ Spec ( R ) : M P ≠ 0}. M P là địa phương hóa của môđun M theo tập con nhân R \ P . Đặt V ( I ) = {P ∈ Spec ( R ) : I ⊂ P} . Mệnh đề 1.1.9 Nếu M là R -môđun hữu hạn sinh thì Supp ( M ) = V ( Ann ( M ) ) . Mệnh đề 1.1.10 Nếu R là vành Noether và I là một iđêan của R thì Supp( R / I ) = V ( I ) Mệnh đề 1.1.11 Cho R là vành Noether, M là một R -môđun hữu hạn sinh, I là một iđêan của R . Khi đó Supp ( M ) ⊂ V ( I ) khi và chỉ khi tồn tại số nguyên k sao cho I k M = 0 . Mệnh đề 1.1.12 Cho M , N là các R -môđun hữu hạn sinh. Khi đó Supp ( M ⊗ R = N ) Supp ( M ) ∩ Supp ( N ) Từ mệnh đề trên và Mệnh đề 1.1.3 ta suy ra kết quả sau: Hệ quả 1.1.13 Cho M là một R -môđun hữu hạn sinh, I là một iđêan bất kì của R , khi đó Supp ( M / IM ) = V ( I ) ∩ V ( Ann ( M ) ) = V ( I + Ann ( M ) ) . Mệnh đề 1.1.14 Cho R là vành Noether, M là R -môđun khác 0. i. Phần tử tối đại của { Ann ( x ) : x ∈ M } là iđêan nguyên tố liên kết của M , hay AssR ( M ) ≠ ∅ . ii. Tập hợp tất cả các ước của không của M là hợp của tất cả các iđêan nguyên tố liên kết của M . Mệnh đề 1.1.15 Cho M , N , P là các R -môđun và dãy khớp 0 → M → N → P → 0 thì ta có các kết quả sau: i. AssR ( N ) ⊂ AssR ( M ) ∪ AssR ( P ) = ii. Supp ( N ) Supp ( M ) ∪ Supp ( P ) Mệnh đề 1.1.16 Cho R là vành Noether và M là R -môđun hữu hạn sinh. Khi đó ta có: i. AssR ( M ) có hữu hạn phần tử ii. AssR ( M ) ⊂ Supp ( M ) iii. Phần tử tối tiểu của AssR ( M ) và Supp ( M ) như nhau. Mệnh đề 1.1.17 Cho M , N là các R -môđun và Pd R ( M ) = n . Ta có: Ext Ri ( M , N ) = 0 với mọi i > n . 1.2 ĐỘ DÀI, DÃY CÁC PHẦN TỬ CHÍNH QUY CỦA MỘT MÔĐUN a. Độ dài: Một dãy các R -môđun con của môđun M là dãy ( M i )0≤i ≤ n các môđun con phân biệt của M thỏa mãn M = M 0 ⊃ M 1 ⊃ ... ⊃ M n = 0 . Ta nói n là độ dài của dãy này. Một chuỗi hợp thành của M là dãy tối đại các môđun con của M , tức là không thể thêm vào một môđun con nào nữa hay các môđun thương M i / M i +1 là đơn. Độ dài của chuỗi hợp thành của một R -môđun M là đại lượng không đổi và được kí hiệu là lR ( M ) và gọi là độ dài của R -môđun M . Nhận xét: Độ dài của R -môđun M tồn tại khi và chỉ khi R -môđun M Artin và Noether. Mệnh đề 1.2.1 Cho R là vành Noether, M là R -môđun hữu hạn sinh. Khi đó các điều sau là tương đương: i. lR ( M ) < ∞ ii. Mọi phần tử thuộc AssR ( M ) đều là iđêan tối đại của R . iii. Mọi phần tử thuộc Supp ( M ) đều là iđêan tối đại của R . Hệ quả 1.2.2 Cho R là vành Noether, M là R -môđun hữu hạn sinh, N là R -môđun bất kì. Nếu lR ( N ) < ∞ thì lR ( HomR ( M , N ) ) < ∞ . Do đó nếu N là R -môđun Artin thì HomR ( M , N ) cũng là R -môđun Artin. b. Dãy chính quy: Định nghĩa 1.2.3 Cho M là một R -môđun, một phần tử r ∈ R được gọi là M -chính quy nếu rx ≠ 0, ∀x ∈ M \ {0} . Định nghĩa 1.2.4 Một dãy các phần tử a1 , a2 ,..., an của R là một M -dãy chính quy nếu nó thỏa mãn các điều kiện sau: i. a1 là M -chính quy, a2 là M / a1M -chính quy,…, an là M / < a1 , a2 ,..., an −1 > M -chính quy; ii. M ≠< a1 , a2 ,..., an > M . Chú ý: Khi ta hoán vị các phần tử của M –dãy chính quy thì không chắc dãy mới là M -dãy chính quy. Mệnh đề 1.2.5 Cho R là vành Noether địa phương, M là R -môđun hữu hạn sinh và a1 , a2 ,..., an là một M -dãy chính quy thì ta có: dim ( M / ( a1 , a2 ,..., an ) M < a1 , a2 ,..., an > M = ) dim M − n. 1.3 GIỚI HẠN THUẬN Trong phạm vi luận văn này, chúng tôi chỉ xét khái niệm giới hạn thuận trong phạm trù các R -môđun. a. Định nghĩa giới hạn thuận: Định nghĩa 1.3.1 (Tập sắp thứ tự thuận) Một tập hợp Λ sắp thứ tự bộ phận được gọi là tập sắp thứ tự thuận nếu với mọi i, j ∈ Λ tồn tại k ∈ Λ sao cho i ≤ k và j ≤ k . Định nghĩa 1.3.2 (Hệ thống thuận) Cho ( M i )i∈Λ là một họ các R -môđun được đánh chỉ số trên tập sắp thứ tự thuận Λ . Với mỗi cặp phần tử i, j ∈ Λ mà i ≤ j cho R -đồng cấu µ ij : M i → M j thỏa mãn các điều kiện sau: µii Id M , ∀i ∈ Λ i.= i ii. µki = µkj °µ ij , ∀i ≤ j ≤ k Khi đó, họ Ω =( M i ; µ ij )i ; j∈Λ các R -môđun M i và R -đồng cấu µ ij được gọi là một hệ thống thuận. Định nghĩa 1.3.3 Giới hạn thuận của hệ thống thuận Ω =( M i ; µ ij )i ; j∈Λ là môđun lim  M i và họ các đồng cấu µi : M i → lim  M i thỏa mãn những điều kiện sau: i∈Λ i. µ j µ ij = µi với mọi i ≤ j , i∈Λ ii. Với N là một R -môđun bất kì, các đồng cấu fi : M i → N thỏa mãn f j µ ij = fi với mọi i ≤ j . Khi đó tồn tại duy nhất đồng cấu θ : lim  M i → N sao cho biểu đồ sau giao i∈Λ hoán. Mệnh đề 1.3.4 Giới hạn thuận của một hệ thống thuận Ω =( M i ; µ ij ) luôn tồn tại. i ; j∈Λ Ta có thể chỉ ra giới hạn thuận đó là tập M = ⊕ M i / D , với D là R -môđun con của i∈Λ ⊕ M i được sinh bởi các phần tử µ j µ ij (mi ) − µi (mi ) với mi ∈ M i , i ≤ j , µi : M i → M i∈Λ là đơn cấu. b. Đồng cấu giữa hai hệ thống thuận Cho hai hệ thống thuận các R -môđun Ω =( M i ; µ ij )i ; j∈Λ và Φ =( N i ; vij )i ; j∈Λ cùng đánh chỉ số trên tập sắp thứ tự thuận Λ . Gọi M , N là các giới hạn thuận tương ứng và µi : M i → M , vi : N i → N là các đồng cấu tự nhiên. Một đồng cấu Ψ : Ω → Φ được định nghĩa là một họ các R -môđun ψ i : M i → N i thỏa mãn ψ j °µ ij = ν ij °ψ i , ∀i ≤ j. Khi đó, đồng cấu Ψ : Ω → Φ sẽ cảm sinh R -đồng cấu ψ lim =  : M → N thỏa mãn i∈Λ ψµ = ν iψ i , ∀i ∈ Λ . i c. Tính chất: Một dãy các hệ thống thuận Ω → Φ → Π được gọi là khớp nếu các dãy tương ứng của các R -môđun và R -đồng cấu là khớp. Ta có các mệnh đề sau: Mệnh đề 1.3.5 Cho một dãy khớp các hệ thống thuận Ω → Φ → Π . Khi đó, dãy cảm sinh sau cũng là khớp: lim  Ω → lim  Φ → lim  Π . i∈Λ i∈Λ i∈Λ Mệnh đề 1.3.6 Cho R là một vành, N là một R -môđun và {( M i ; µ ij )i ; j∈Λ } là một hệ thống thuận các R -môđun. Khi đó ta có: lim(  M i ⊗ R N ) ≅ (lim  M i ) ⊗ R N i∈Λ i∈Λ 1.4 MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG Trong mục này ta giả sử R là vành Noether, giao hoán, có đơn vị khác 0, M , N là các R -môđun và I là một iđêan của R . Chúng tôi sẽ trình bày khái niệm và một số tính chất về môđun đối đồng điều địa phương cần sử dụng trong chương sau. Các chứng minh cho các tính chất này có thể tham khảo ở các tài liệu [3], [6]. a. Định nghĩa hàm tử I -xoắn: Với mỗi R -môđun M , Γ I ( M ) :=  ( 0 :M I n ) là một R -môđun con của M . n∈ Với mỗi đồng cấu R -môđun f : M → N , ta có f ( Γ I ( M ) ) ⊂ Γ I ( N ) nên ta có thể định nghĩa Γ I ( f ) : Γ I ( M ) → Γ I ( N ) là đồng cấu thu hẹp của f lên Γ I ( M ) . Hơn nữa với g : M → N và h : N → L là các đồng cấu R -môđun và r là phần tử thuộc R ta có các tính chất: Γ I ( hg ) = ΓI ( h) ΓI ( g ) ΓI ( f + g ) = ΓI ( f ) + ΓI ( g ) Γ I ( rf ) = rΓ I ( f ) Γ I ( Id M ) = Id Γ I ( M ) Do đó Γ I ( − ) là hàm tử hiệp biến và cộng tính từ phạm trù các R -môđun vào chính nó. Γ I ( − ) còn được gọi là hàm tử I -xoắn. Nhận xét: Hàm tử Γ I ( − ) là hàm tử khớp trái. n Ta có đẳng cấu: Γ I ( M ) ≅ lim  HomR ( R /I , M ) . n∈ Định nghĩa 1.4.1 Với mỗi i ∈  , hàm tử dẫn xuất phải thứ I của Γ I ( − ) được kí hiệu là H Ii ( − ) và được gọi là hàm tử đối đồng điều địa phương thứ i theo iđêan I . 0 và M là I -xoắn nếu Γ I ( M ) = M. Ta nói M là I -không xoắn nếu Γ I ( M ) = Ta kiểm tra được ( i n H Ii ( M ) ≅ lim  Ext R R / I , M i∈ ) và H ( M ) được gọi là môđun đối đồng điều địa i I phương thứ i của môđun M theo iđêan I . Mệnh đề 1.4.2 Cho M là một R -môđun. Khi đó ta có: i. Nếu I chứa một phần tử không là ước của không đối với M thì M là I -không xoắn. ii. Giả sử M là hữu hạn sinh. Khi đó M là I -không xoắn khi và chỉ khi I chứa phần tử không là ước của không đối với M . Chứng minh: ( Γ I ( M ) ≠ 0 ⇒ ∃m ∈ M \ {0} , ∃n ∈  : m ∈ 0 :M I n ) Đặt n0 = min {n ∈  : m ∈ (0 :M I n )} . Khi đó, = I n m I= ( I n −1m ) 0 . 0 0 Do cách đặt n0 nên I n −1m ≠ 0 ⇒ ∃b ∈ I n −1 : bm ≠ 0 . 0 0 Khi đó với mọi a thuộc I ta có abm = 0 . Suy ra I ⊂ ZR ( M ) . Ngược lại, M hữu hạn sinh nên AssR ( M ) hữu hạn (theo Mệnh đề 1.1.6). Giả sử AssR ( M ) = { p1 , p2 ,..., pr } . I ⊂ ZR ( M ) =  p suy ra ∃i ∈ {1, 2,..., r} : I ⊂ pi . (theo Mệnh đề 1.1.1) p∈AssR ( M ) Mà pi ∈ AssR ( M ) ⇒ ∃v ∈ M \ {0} : pi = Ann ( v ) ⇒ Iv ⊂ pi v ⇒ v ∈ Γ I ( M ) ⇒ ΓI ( M ) ≠ 0 .  Mệnh đề 1.4.3 Nếu M là R -môđun nội xạ thì Γ I ( M ) là nội xạ. Hệ quả 1.4.4 Cho M là R -môđun nội xạ thì dãy khớp 0 → Γ I ( M ) → M → M / Γ I ( M ) → 0 chẻ. Hệ quả 1.4.5 Cho M là R -môđun I -xoắn. Khi đó có một phép giải nội xạ của M mà tất cả các thành phần đều là R -môđun I -xoắn. Mệnh đề 1.4.6 (Định lí Melkersson) Nếu M là một R -môđun I xoắn và ( 0 :M I ) Artin thì M cũng Artin. 1.5 MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG SUY RỘNG Cho R là vành Noether giao hoán có đơn vị 1 ≠ 0 , I là một iđêan của vành R , M và là N các R -môđun. Khi đó, với mỗi số tự nhiên i, i n H Ii ( M , N ) ≅ lim  Ext R ( M / I M , N ) được gọi là môđun đối đồng điều địa phương suy n∈N rộng thứ i của môđun N ứng với M theo iđêan I . Trường hợp riêng, với M là R ta có H Ii ( R, N ) ≅ H Ii ( N ) . Khi M là một R -môđun hữu hạn sinh thì ta có thể tiếp cận môđun H Ii ( M , N ) theo một số cách khác (xem ở [16]). Ở đây chúng tôi chọn trình bày cách tiếp cận mà các hàm tử dùng để mô tả môđun này là các hàm tử quen thuộc: hàm tử đối đồng điều địa phương cổ điển H Ii (−) , hàm tử Hom và hàm tử đối đồng điều H i ( −) . Mệnh đề 1.5.1 ( ) H I0 ( M , N ) ≅ H I0 ( Hom ( M , N ) ) ≅ Hom M , H I0 ( N ) . Mệnh đề 1.5.2 Cho M là một R -môđun hữu hạn sinh, N là R -môđun bất kì, J • là phép giải nội xạ của N . Khi đó, với mọi số tự nhiên i , ta có: ( ( ( H Ii ( M , N ) ≅ H i H I0 Hom M , J • ))) ≅ H i ( Hom ( M , H 0 I ( J ))) . • Mệnh đề 1.5.3 Cho dãy khớp ngắn các R -môđun 0 → X → Y → Z → 0 và M , N là các R -môđun hữu hạn sinh thì ta có các dãy khớp dài các môđun đối đồng điều địa phương suy rộng sau: 0 → H I0 ( M , X ) → H I0 ( M , Y ) → H I0 ( M , Z ) → H I1 ( M , X ) → ... và 0 → H I0 ( Z , N ) → H I0 (Y , N ) → H I0 ( X , N ) → H I1 ( Z , N ) → ... Hàm tử I -xoắn cho một môđun có thể được mở rộng cho một cặp môđun như sau: Γ I ( M , N ) := li m Hom R ( M / I n M , N ) . n∈N Theo [[6], 1.1.2] ta có mệnh đề: Mệnh đề 1.5.4 Nếu I , J là các iđêan của R thì Γ I ( Γ J ( M ) ) =Γ I + J ( M ) với mọi R -môđun M . Mệnh đề sau là một kết quả tổng quát hơn: Mệnh đề 1.5.5 Cho I , J là các iđêan của R . Khi đó ta có ΓI +J ( M , N ) = ΓI ( M , Γ J ( N )) = Γ J ( M , Γ I ( N ) ) với mọi R -môđun M . Mệnh đề 1.5.6 Cho I , J là các iđêan của R , N là R -môđun J -xoắn, M là R -môđun bất kì. Khi đó H Ii + J ( M , N ) ≅ H Ii ( M , N ) , ∀i ∈  . Mệnh đề 1.5.7 Cho M , N là các R -môđun trong đó M hữu hạn sinh. Khi đó ta có: ( ) ( ) Supp H Ii ( M , N ) ⊂ V ( I ) và Supp H Ii ( M , N ) ⊂ Supp ( M ) ∩ Supp ( N ) . Mệnh đề 1.5.8 Cho M là R -môđun hữu hạn sinh, N là R -môđun bất kì. i. H Ii ( M , N ) là I -xoắn với mọi giá trị của i . ii. Nếu N là I -xoắn thì H Ii ( M , N ) ≅ Ext Ri ( M , N ) . Hệ quả 1.5.9 Cho N là R -môđun I -xoắn. Khi đó ta có: i. Nếu M là R -môđun xạ ảnh thì H Ii ( M , N ) = 0, ∀i > 0. ii. Nếu Pd ( M ) = n thì H Ii ( M , N ) = 0, ∀i > n . iii. Nếu Id ( N ) = n thì H Ii ( M , N ) = 0, ∀i > n . Mệnh đề 1.5.10 Cho M , N là các R -môđun hữu hạn sinh, m là iđêan tối đại của R . Khi đó H mi ( M , N ) là môđun Artin với mọi i ≥ 0 . Từ Mệnh đề 1.5.6 và 1.5.10 ta có hệ quả: Hệ quả 1.5.11 Cho I , J là các iđêan của R , N là R -môđun J -xoắn, M là R -môđun bất kì, I + J là iđêan tối đại của R . Khi đó H Ii ( M , N ) Artin với mọi i ∈  . Mệnh đề 1.5.12 Cho R /I Artin và M là R -môđun hữu hạn sinh. Khi đó H Ii ( M ) Artin với mọi i∈ . 1.6 VÀNH VÀ MÔĐUN PHÂN BẬC a. Vành phân bậc: Định nghĩa 1.6.1 Một vành R được gọi là phân bậc (cụ thể là  -phân bậc) nếu tồn tại một họ các nhóm con (đối với phép toán cộng) {Rn }n∈ của R thỏa mãn các điều kiện sau: i. R = ⊕ n∈ Rn ii. Rn .Rm ⊆ Rn + m với mọi m , n thuộc  Từ định nghĩa trên ta suy ra được: Phần tử đơn vị 1∈ R0 R0 là vành con của R Với mọi số nguyên n , Rn là R0 -môđun con của R Nếu vành phân bậc R = ⊕ n∈ Rn có Rn = 0 với mọi n < 0 thì ta gọi R là vành  phân bậc (hay là vành phân bậc dương). Cho R là vành phân bậc dương, ta có R+ := ⊕ n≥1 Rn là một iđêan của R . Ta nhắc lại một mệnh đề quan trọng sau: Mệnh đề 1.6.2 Cho R là vành phân bậc dương, ta có các điều sau tương đương: i. R là vành Noether. ii. R0 Noether và R là một R0 -đại số hữu hạn sinh. Ta xét đến một loại vành phân bậc đặc biệt sau: Định nghĩa 1.6.3 Vành phân bậc dương R được gọi là thuần nhất nếu R được xem như là một R0 -đại số với biến thuộc R1 ( R = R0 [ R1 ] ). Lúc này ta gọi R0 là vành cơ sở của R . Mệnh đề sau cho ta mô tả R trong một trường hợp cụ thể: Mệnh đề 1.6.4 Cho R là một vành phân bậc dương. Khi đó các điều sau tương đương: i. R thuần nhất và Noether ii. R0 Noether và R+ được sinh bởi hữu hạn phần tử của R1 iii. R0 Noether và R là R0 -đại số được sinh bởi hữu hạn phần tử của R1 Phần tử x ∈ R được gọi là thuần nhất (homogeneous) nếu tồn tại n ∈  sao cho x ∈ Rn . Trường hợp x ≠ 0 thì n là duy nhất và ta gọi số n đó là bậc của x , kí hiệu deg ( x) = n . Iđêan I của vành phân bậc R được gọi là iđêan phân bậc nếu nó được sinh bởi các phần tử thuần nhất.
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất