Đăng ký Đăng nhập
Trang chủ Thống kê lượng tử và áp dụng thống kê fermin dirac biến dạng q nghiên cứu tính...

Tài liệu Thống kê lượng tử và áp dụng thống kê fermin dirac biến dạng q nghiên cứu tính chất từ của khí điện tử tự do

.PDF
63
35
99

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 DƯƠNG ĐẠI PHƯƠNG THỐNG KÊ LƯỢNG TỬ VÀ ÁP DỤNG THỐNG KÊ FERMI-DIRAC BIẾN DẠNG q NGHIÊN CỨU TÍNH CHẤT TỪ CỦA KHÍ ĐIỆN TỬ TỰ DO Chuyên ngành: Vật lý chất rắn Mã số: 60 44 07 LUẬN VĂN THẠC SĨ VẬT LÝ Người hướng dẫn khoa học: Tiến sĩ Lưu Thị Kim Thanh HÀ NỘI, 2009 1 LỜI CẢM ƠN Luận văn này được thực hiện tại trường Đại Học Sư Phạm Hà Nội 2 dưới sự hướng dẫn của Tiến sĩ Lưu Thị Kim Thanh, người đã đặt nền móng và tận tình hướng dẫn tôi hoàn thành bài luận văn này. Cô luôn động viên, khích lệ để tôi vượt qua khó khăn, vươn lên trong cuộc sống đặc biệt trong học tập và công tác nghiên cứu khoa học. Tôi xin bày tỏ lòng kính trọng, biết ơn chân thành và sâu sắc nhất đối với cô. Tôi xin chân thành cảm ơn các thầy giáo, cô giáo Khoa Vật lý, Phòng Sau Đại Học, Ban Giám Hiệu Trường Đại Học Sư Phạm Hà Nội 2; Khoa Cơ Bản, Trường Sỹ Quan Tăng Thiết Giáp - Bộ Tư Lệnh Tăng Thiết Giáp; Phòng Quản Lý Học Viên, Đoàn 871 - Bộ Quốc Phòng đã tạo mọi điều kiện để tôi hoàn thành chương trình học và bài luận văn tốt nghiệp này. Cuối cùng, tôi xin cảm ơn gia đình, bạn bè đã tạo mọi điều kiện thuận lợi nhất, đóng góp những ý kiến, kinh nghiệm quí báu giúp tôi hoàn thành luận văn. Hà nội, tháng 09 năm 2009 Tác giả Dương Đại Phương 2 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn của Tiến sĩ Lưu Thị Kim Thanh. Luận văn này không hề trùng lặp với những đề tài nghiên cứu khác. Hà nội, tháng 09 năm 2009 Tác giả Dương Đại Phương 3 MỤC LỤC Trang Mở đầu Nội dung Chương 1. Xây dựng các phân bố thống kê lượng tử bằng phương pháp Gibbs. 1.1 Phân bố chính tắc Gibbs lượng tử. 1.2 Giá trị trung bình của số chứa đầy. 1.3 Phân bố thống kê lượng tử Maxwell-Boltzman. 1.4 Phân bố thống kê lượng tử Bose-Einstein. 1.5 Phân bố thống kê lượng tử Fermi-Dirac. Chương 2. Xây dựng các phân bố thống kê lượng tử và các phân bố thống kê lượng tử biến dạng –q bằng phương pháp lý thuyết trường lượng tử. 2.1 Xây dựng các phân bố thống kê lượng tử bằng phương pháp lý thuyết trường lượng tử. 2.1.1 Hình thức luận dao động tử điều hòa. 2.1.2 Phân bố thống kê lượng tử Bose-Einstein. 2.1.3 Phân bố thống kê lượng tử Fermi-Dirac. 2.2 Xây dựng các phân bố thống kê lượng tử biến dạng q bằng phương pháp lý thuyết trường lượng tử. 2.2.1 Lý thuyết về q-số. 2.2.2 Dao động tử điều hòa biến dạng q, biến dạng q của dao động Fermion. 2.2.3 Phân bố thống kê lượng tử Bose-Einstein biến dạng q. 2.2.4 Phân bố thống kê lượng tử Fermi-Dirac biến dạng q. 4 Chương 3. Áp dụng phân bố thống kê lượng tử Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do. 3.1 Tổng quan về các tính chất từ. 3.1.1 Khái niệm và các đại lượng đặc trưng cho vật liệu từ. 3.1.2 Phân loại các vật liệu từ. 3.2 Áp dụng phân bố thống kê lượng tử Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. 3.2.1 Khảo sát khí điện tử tự do trong kim loại. 3.2.2 Áp dụng phân bố thống kê lượng tử Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. 3.3 Áp dụng phân bố thống kê lượng tử Fermi-Dirac biến dạng q nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. Kết luận Tài liệu tham khảo 5 MỞ ĐẦU 1. Lý do chọn đề tài. Vật lý học phát triển cùng với sự phát triển của lịch sử loài người, những ứng dụng của nó đã đạt được nhiều thành tựu vĩ đại trong mọi hoạt động đời sống xã hội. Thế kỷ XVIII cơ học cổ điển Newton ra đời đã trở thành môn khoa học cơ bản, thế kỷ XIX lý thuyết điện từ trường của Maxwell và Faraday đã có nhiều ứng dụng quan trọng trong khoa học kỹ thuật, thế kỷ XX là thế kỷ của vật lý học hiện đại với khuynh hướng thâm nhập sâu vào cấu trúc vi mô của vật chất người ta đã thấy rằng các quy luật được tìm thấy trong vật lý học cổ điển hơn nữa mà ở đây còn xuất hiện quy luật mới đó là quy luật thống kê. Vật lý thống kê là một bộ phận của vật lý học hiện đại nghiên cứu các tính chất của hệ lượng tử bằng các phương pháp của vật lý lý thuyết. Trong vật lý lý thuyết cũng như trong vật lý chất rắn, khi có sự sai khác giữa một lý thuyết chính tắc và một kết quả thực nghiệm, người ta thường dùng các phương pháp gần đúng để giải quyết chẳng hạn như phương pháp nhiễu loạn. Tuy nhiên, nhiều hiện tượng vật lý lại không dễ dàng thấy được bằng phương pháp này như sự phá vỡ đối xứng tự phát, sự chuyển pha các trạng thái… Điều đó đòi hỏi phải có những phương pháp mới phù hợp đảm bảo được các yếu tố phi tuyến của lý thuyết như phương pháp tác dụng hiệu dụng, phương pháp nhóm lượng tử mà cấu trúc của nó là đại số biến dạng. Khoảng hai thập kỷ gần đây, việc nghiên cứu nhóm lượng tử và đại số lượng tử đã thu hút được sự quan tâm của nhiều nhà vật lý lý thuyết, đặc biệt các cấu trúc toán học mới này phù hợp với nhiều vấn đề của vật lý lý thuyết như: Thống kê lượng tử, quang học phi tuyến, vật lý chất rắn…Khi áp dụng đại số biến dạng vào vật lý thống kê, chúng ta rất thuận lợi trong nghiên cứu dao động tử điều hoà biến dạng, hơn nữa lý thuyết này còn rất thành công trong việc nghiên cứu và giải thích các vấn đề liên quan đến hệ các hạt đồng nhất Boson và Fermion. Xuất phát từ những vấn đề đó, tôi chọn đề tài: 6 “ Thống kê lượng tử và áp dụng thống kê Fermi-Dirac biến dạng q nghiên cứu tính chất từ của khí điện tử tự do” làm nghiên cứu cho luận văn tốt nghiệp của mình. 2. Mục đích nghiên cứu. - Xây dựng các định luật phân bố thống kê lượng tử bằng phương pháp Gibbs và phương pháp lý thuyết trường lượng tử trong trường hợp chưa có biến dạng. - Xây dựng các định luật phân bố thống kê lượng tử và các định luật phân bố thống kê lượng tử biến dạng q bằng phương pháp lý thuyết trường lượng tử. - Áp dụng thống kê Fermi-Dirac nghiên cứu độ cảm từ của khí điện tử tự do. - So sánh kết quả tính toán lý thuyết thu được với kết quả thực nghiệm và rút ra kết luận. 3. Nhiệm vụ nghiên cứu. - Sử dụng phương pháp Gibbs và phương pháp lý thuyết trường lượng tử để xây dựng các phân bố thống kê lượng tử. - Áp dụng thống kê Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. 4. Đối tượng và phạm vi nghiên cứu. a. Đối tượng. - Các phân bố thống kê lượng tử. - Hệ khí Fermion và thống kê Fermi-Dirac. - Độ cảm từ của khí điện tử tự do trong kim loại. b. phạm vi nghiên cứu. Khí điện tử tự do trong kim loại. 5. Phương pháp nghiên cứu. - Phương pháp vật lý lý thuyết. - Phương pháp toán lý. 7 6. Nội dung. Chương 1. Xây dựng các phân bố thống kê lượng tử bằng phương pháp Gibbs. 1.1 Phân bố chính tắc Gibbs lượng tử. 1.2 Giá trị trung bình của số chứa đầy. 1.3 Phân bố thống kê lượng tử Maxwell-Boltzman. 1.4 Phân bố thống kê lượng tử Bose-Einstein. 1.5 Phân bố thống kê lượng tử Fermi-Dirac. Chương 2. Xây dựng các phân bố thống kê lượng tử và các phân bố thống kê lượng tử biến dạng –q bằng phương pháp lý thuyết trường lượng tử. 2.1 Xây dựng các phân bố thống kê lượng tử bằng phương pháp lý thuyết trường lượng tử. 2.1.1 Hình thức luận dao động tử điều hòa. 2.1.2 Phân bố thống kê lượng tử Bose-Einstein. 2.1.3 Phân bố thống kê lượng tử Fermi-Dirac. 2.2 Xây dựng các phân bố thống kê lượng tử biến dạng q bằng phương pháp lý thuyết trường lượng tử. 2.2.1 Lý thuyết về q-số. 2.2.2 Dao động tử điều hòa biến dạng q, biến dạng q của dao động Fermion. 2.2.3 Phân bố thống kê lượng tử Bose-Einstein biến dạng q. 2.2.4 Phân bố thống kê lượng tử Fermi-Dirac biến dạng q. Chương 3. Áp dụng phân bố thống kê lượng tử Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do. 3.1 Tổng quan về các tính chất từ. 3.1.1 Khái niệm và các đại lượng đặc trưng cho vật liệu từ. 3.1.2 Phân loại các vật liệu từ. 3.2 Áp dụng phân bố thống kê lượng tử Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. 8 3.2.1 Khảo sát khí điện tử tự do trong kim loại. 3.2.2 Áp dụng phân bố thống kê lượng tử Fermi-Dirac nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. 3.3 Áp dụng phân bố thống kê lượng tử Fermi-Dirac biến dạng q nghiên cứu tính chất từ của khí điện tử tự do trong kim loại. 7. Những đóng góp mới về khoa học, thực tiễn của đề tài. - Xây dựng được lý thuyết q-số, lý thuyết biến dạng q của dao động Boson và Fermion cho hệ các hạt đồng nhất. - Xây dựng được hai định luật phân bố thống kê lượng tử: BoseEinstein và Fermi-Dirac trong trường hợp có biến dạng. - Xác định được độ cảm từ của khí điện tử tự do trong kim loại trong trường hợp có biến dạng. 9 NỘI DUNG CHƯƠNG 1 XÂY DỰNG CÁC PHÂN BỐ THỐNG KÊ LƯỢNG TỬ BẰNG PHƯƠNG PHÁP GIBBS 1.1 Phân bố chính tắc gibbs lượng tử. Các hạt của thế giới vi mô ( hạt lượng tử ) như electron, photon ... tuân theo các định luật của cơ học lượng tử. Những hệ được cấu thành bởi các hạt lượng tử như hệ các electron trong kim loại, hệ khí photon ... được gọi là hệ lượng tử. Đối với hệ đẳng nhiệt có các mức năng lượng hoàn toàn không suy biến thì phân bố chính tắc lượng tử là.   k      Wk = exp  (1.1) Nếu xẩy ra suy biến nghĩa là cùng một mức năng lượng ứng với nhiều hàm  k khác nhau, tức là nhiều trạng thái vật lý khác nhau lúc đó.   k   gk    Wk = exp  (1.2) Trong đó gk là độ suy biến. Nói chung, số hạt trong hệ không phải là bất biến cho nên thay thế cho phân bố chính tắc lượng tử ta dùng phân bố chính tắc lớn lượng tử có dạng:         nl l    1  l 0 W(n0, n1, ...)  exp   gk  !      Trong đó N   nl l 0  là thế nhiệt động lớn. µ là thế hóa học. 10 (1.3) 1.2 Giá trị trung bình của số chứa đầy. Do tính đồng nhất như nhau của các hạt vi mô và tính đối xứng của hàm sóng. Nếu hệ gồm các hạt không tương tác thì ta có.  Ek   nl  l (1.4) l 0 Trong đó  l là năng lượng của một hạt riêng lẻ của hệ. nl là số chứa đầy tức là số hạt có cùng năng lượng  l . Kí hiệu G (n0, n1,...)  gk ! Thay vào (1.3) ta được      nl (    l )     l 0 W(n0, n1, ...) = exp   G(n0, n1,...)      (1.5) Từ (1.5) ta có nhận xét sau đây. Bởi vì vế bên phải của (1.5) có thể coi là hàm của các nl cho nên ta có thể đoán nhận công thức đó như là xác suất để cho có n0 hạt nằm trên mức năng lượng ε0, nl hạt nằm trên mức năng lượng εl, ... nghĩa là, đó là xác suất của các số chứa đầy; do đó, nhờ công thức này ta có thể tìm được số hạt trung bình nằm trên các mức năng lượng. nk   ...nk w(n0 , n1...) n0 (1.6) n1 Ta có điều kiện chuẩn hóa ...w(n , n ...) 0 n0  1 =1 (1.7) n1  n0 n1        nl (    l )  l 0 ...exp   G(n0, n1,...) = 1      11     nl (    l )          exp     ...exp  l  0  G(n0,n1...) = 1      n0 n1           exp   Z = 1   (1.8) Trong đó      nl (    l )  Z   ...exp  l 0  G(n0,n1,...)  n0 n1     (1.9) Từ (1.8) ta suy ra Ω = −θlnZ. (1.10) Để tính giá trị trung bình của các số chứa đầy (số hạt trung bình nằm trên các mức năng lượng khác nhau) ta dùng thủ thuật toán học sau đây. Ta gắn cho đại lượng μ trong công thức (1.5) chỉ số l, nghĩa là ta sẽ coi hệ ta xét hình như không phải chỉ có một thế hóa học μ mà có cả một tập hợp các thế hóa học μ l và cuối phép tính toán ta sẽ đặt tất cả các μ l bằng nhau và bằng μ. Nghĩa là      nl ( l   l )  Z   ...exp  l 0  G(n0,n1,...).  n0 n1     Ta xét đạo hàm của Ω theo μk  1     k   k Kết hợp (1.8) ta suy ra  1    = −θexp      k   k    k 12 (1.11)    nl ( l   l )    1   = −θexp    ... nk exp  l 0  G(n0,n1...).      n0 n1          nl ( l   l )     l 0 = −  ...nk exp   G(n0,n1...).  n0 n1     (1.12) Ta thấy khi μk = μ vế phải của công thức (1.12) có ý nghĩa là giá trị trung bình của số chứa đầy nk, nghĩa là ta được. nk = −   k (1.13) k   1.3 Phân bố thống kê lượng tử Maxwell-Boltzman. Trong phân bố thống kê lượng tử Maxwell-Boltzman các số chứa đầy có thể có trị số bất kỳ và có độ suy biến. g    = ! n0 ! n1 !...nk ! Suy ra G(n0,n1...)  g ( k ) !  1 n0 ! n1 !... (1.14) Ta có tổng trạng thái.      nl ( l   l )  1 Z   ...exp  n 0   n0 n1   n0 ! n1 !...   Z  n0 ( 0   0 )     n0 !  exp  n0  n1 ( 1  1 )     ... n1 !  exp  n1       exp  l l  n      Z  n! l 0 n 0     l 0  l   l   Z   exp exp     (1.15) 13 Ta có   l 0  l   l       Ω = −θlnZ = −θln  exp exp     l 0    l   l     l   l    = −θ  exp          l 0 = −θ  ln exp exp exp  (1.16) Số hạt trung bình trên các mức năng lượng là: nl Mà  l = −θ l    1         exp  l l  = −θ exp  l l  l           l    exp  l     Suy ra nl = −  l l   (1.17)    l   exp      (1.18) Mà số hạt trung bình trên một mức năng lượng nào đó tỉ lệ với xác suất tìm hạt trên mức đó. Vậy ta có phân bố thống kê lượng tử Maxwell-Boltzman        f  (ε)  exp  (1.19) 1.4 Phân bố thống kê lượng tử Bose-Einstein. Đối với hệ hạt boson, số hạt trên các mức năng lượng có thể có trị số bất kỳ ( từ 0 đến ∞ ) và G(n0,n1...) = 1. Ta có tổng trạng thái      nl ( l   l )  Z   ...exp  l 0   n0 n1        l   l    n     Z    exp  l 0 n 0  Vì  l   l   n  là tổng của cấp số nhân lùi vô hạn nên      exp  n 0 14   l   l   1 n           1  exp  l l      exp  n 0  1     l 0 1  exp  l l     (1.20) Z  Từ đó suy ra  1     l 0 1  exp  l l     Ω = −θlnZ = −θln    l 0  l   l   Ω = θ  ln 1  exp     l l     (1.21)  l   l         ln 1  exp  l 0      exp  l l  1             l exp  l l   1 exp  l      (1.22)   1  Suy ra số hạt trung bình trên các mức năng lượng là: nl = −  l  l   1 (1.23)    exp   1    Vậy ta có phân bố thống kê lượng tử Bose-Einstein. f B (ε)  1 (1.24)    exp   1     Thế hóa học μ trong phân bố được xác định: n l = (1.25) l 0 1.5 Phân bố thống kê lượng tử Fermi-Dirac. Đối với hệ hạt fermion, theo nguyên lí pauli số hạt trung bình trên một mức năng lượng chỉ có thể bằng 0 hoặc bằng 1 (nl  1) và G(n0, n1...) = 1 Ta có tổng trạng thái 15      nl ( l   l )  Z   ...exp  l 0   n0 1 n1 1           exp  0 0 n0    = 1  1   1      n0   exp    n1      n1   l   l    n =       exp  l  0 n 0   l 0    l 0 l   l   Từ đó Ω = −θlnZ = −θln  1  exp    l 0   l   l        1  exp  (1.26)    l   l       = −θ  ln 1  exp  (1.27) Suy ra số hạt trung bình trên các mức năng lượng là: nl = −  l l         exp  l l    1     =        1  exp  l l            exp  l l  1             l 1  exp  l l  exp  l        1  (1.28) Vậy ta có phân bố thống kê lượng tử Fermi-Dirac. fF (ε)  1    exp   1    (1.29) Kết luận chương 1: Như vậy trong chương 1 chúng ta đã đưa ra nội dung của phương pháp Gibbs, thông qua phân bố chính tắc lớn Gibbs ta xác định được giá trị trung bình của số lấp đầy, làm cơ sở để xây dựng các phân bố thống kê lượng tử. Bằng phương pháp Gibbs ta đã xây dựng các phân bố thống kê lượng tử: Thống kê lượng tử Maxwell-Boltzman; Thống kê lượng tử BoseEinstein; Thống kê lượng tử Fermi-Dirac. 16 CHƯƠNG 2 XÂY DỰNG CÁC PHÂN BỐ THỐNG KÊ LƯỢNG TỬ VÀ CÁC PHÂN BỐ THỐNG KÊ LƯỢNG TỬ BIẾN DẠNG q BẰNG PHƯƠNG PHÁP LÝ THUYẾT TRƯỜNG LƯỢNG TỬ 2.1 Xây dựng các phân bố thống kê lượng tử bằng phương pháp lý thuyết trường lượng tử. 2.1.1 Hình thức luận dao động tử điều hòa. Dao động tử điều hòa một chiều là một chất điểm có khối lượng m chuyển động dưới tác dụng của lực chuẩn đàn hồi F = −k x dọc theo một đường thẳng nào đó. Toán tử Hamiltonian của dao động tử điều hòa một chiều có dạng: 2 p m 2  2 x  x  2 2m (2.1) d Trong đó x  q  x là toán tử tọa độ và p x  i là toán tử xung lượng. dx Hệ thức giao hoán giữa p và q  p, q   pq  q p  i d x  xi d   dx dx  p, q   i d  x   xi d   i   dx dx   p, q   i   (2.2) Hamiltonian biểu diễn qua p và q có dạng: 2 p m 2  2   q 2m 2 (2.3) Đặt pi q  m    a a 2     a a 2m   (2.4)  17 Biểu diễn  theo a và a  ta được: 2 p m 2  2 1 2 m      q  i   aa 2m 2 2m 2   2   m 2    a  a 2 2m   1      aa 2 2     a  a    1      aa 2 2    a  a    a  a   a  a   1               2aa 2a a  aa  a a 2 2 2   2   2 2        (2.5) Các toán tử a và a  có thể được biểu diễn ngược lại qua p và q như sau:  m    a  a  a  a  2  p i      a  a  a  a  2m  q   2 p  i p m m i 2 2m q  q   2m (2.6) (2.7) Từ đó ta thu được:  a  và  a  m   p   q  i  2   m (2.8) m   p   q  i  2   m (2.9) Dễ dàng chứng minh được rằng các toán tử a và a  thỏa mãn hệ thức  a , a   = 1   (2.10) Thật vậy    a  a  a , a    aa   m   p m   p m   p m   p   q  i     q  i     q  i     q  i  2   m  2   m 2   m  2   m  i i 2i pq  2i q p    pq  q p    i   1  2    1 18 (đpcm) Do đó toán tử Hamiltonian có dạng 1       a a   2  (2.11) Ta đưa vào toán tử mới    a a (2.12) Hệ thức giao hoán giữa toán tử  với các toán tử a và a  là     aa    a   , a    a  a   a aa         a  1a  a  a a  aa   a  a   1   (2.13) Tương tự ta cũng có          a  a  a  a  aa     a  a  a  1  , a     a  a   a aa     a   a     1 (2.14) Ký hiệu n là véc tơ riêng của toán tử  ứng với trị riêng n, ta có phương trình:  n n n  n  n  n n n n n n (2.15) Từ phương trình (2.15) ta có n n  n nn   n n   n r  Vì  n a a n nn 2 (2.16) 0  dr  0   n a a n   a n r  2  dr  0 Kết luận 1: Các trị riêng của toán tử  là các số không âm. Xét véc tơ trạng thái thu được bằng cách tác dụng toán tử a lên n ta thu được véc tơ trạng thái 19 a n .Tác dụng lên véc tơ trạng thái này toán tử  và sử dụng công thức (2.13) ta có:  a n  a   1 n  a  n  1 n   n  1 a n   (2.17) Ý nghĩa: Hệ thức (2.17) có ý nghĩa là véc tơ trạng thái a n cũng là một véc tơ trạng thái riêng của toán tử  ứng với trị riêng (n-1). Tương tự như vậy a 2 n , a 3 n ... cũng là véc tơ trạng thái của toán tử  ứng với trị riêng (n − 2), (n − 3)... Xét véc tơ trạng thái a  n ta tác dụng lên véc tơ trạng thái này toán tử  và sử dụng công thức (2.14) ta có.  a    n  a  n  1 n   n  1 a n (2.18) Ý nghĩa: Hệ thức (2.18) chứng tỏ véc tơ trạng thái a  n cũng là một véc tơ trạng thái riêng của toán tử  ứng với trị riêng (n + 1). Tương tự ta có thể dễ dàng chứng minh được rằng a 2 n , a 3 n ... cũng là các véc tơ riêng của toán tử  ứng với trị riêng (n + 2), (n + 3)... Kết luận 2: Nếu n là một véc tơ riêng của toán tử  ứng với trị riêng n thì P = 1, 2, 3,..., a p n ...cũng là một véc tơ riêng của toán tử  ứng với trị riêng n – p. Kết hợp kết luận 1 và kết luận 2 ta thấy n là một trị riêng của toán tử  thì chuỗi các số không âm n – 1, n – 2, n – 3...cũng là trị riêng của toán tử  . Vì chuỗi này giảm dần nên phải tồn tại một số không âm nhỏ nhất sao cho: a nmin  0 (2.19) Vì nếu a nmin  0 thì đó là véc tơ trạng trái ứng với trị riêng nmin  1  nmin , sẽ trái với giả thiết nmin là trị riêng nhỏ nhất. Từ (2.19) ta có  a a nmin   nmin  0 (2.20) 20
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất