Đăng ký Đăng nhập
Trang chủ Tập hút lùi đối với một lớp phương trình parabolic phi tuyến...

Tài liệu Tập hút lùi đối với một lớp phương trình parabolic phi tuyến

.PDF
53
26
140

Mô tả:

LỜI CẢM ƠN Qua bản luận văn này tôi xin bày tỏ lòng cảm ơn chân thành và sâu sắc tới thầy giáo-Tiến sĩ Cung Thế Anh, người thầy đã tận tình hướng dẫn, giúp đỡ tôi trong suốt quá trình làm luận văn. Tôi xin chân thành cảm ơn ban chủ nhiệm khoa Toán, phòng sau đại học cũng như các thầy cô giáo trong khoa đã giảng dạy và giúp đỡ tôi trong suốt những năm học vừa qua. Tôi xin chân thành cảm ơn các thầy cô giáo trong hội đồng đồng bảo vệ đã giúp đỡ tôi hoàn thành luận văn này. Qua đây tôi cũng xin gửi lời cảm ơn sâu sắc tới gia đình và bạn bè đã giúp đỡ, tạo điều kiện, động viên tôi trong suốt quá trình học tập và làm luận văn. Do thời gian và trình độ bản thân còn hạn chế nên bản luận văn không tránh khỏi những thiếu sót. Vì vậy tôi rất mong được sự giúp đỡ, góp ý của các thầy cô và các bạn để bản luận văn của tôi được hoàn thiện hơn. LỜI CAM ĐOAN Tôi xin cam đoan luận văn là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn của TS. Cung Thế Anh. Hà Nội, tháng 10 năm 2010 Tác giả Tạ Thị Hồng Yến Mục lục Lời cảm ơn i Lời cam đoan i Mục lục i Danh mục các kí hiệu i Mở đầu 1 1 5 2 Một số kiến thức chuẩn bị 1.1. Các không gian hàm và toán tử . . . . . . . . . . . . . . 5 1.2. Sự tồn tại D− tập hút lùi. . . . . . . . . . . . . . . . . . 8 1.3. Số chiều fractal của D− tập hút lùi . . . . . . . . . . . . 10 1.4. Tính nửa liên tục trên của D−tập hút lùi . . . . . . . . . 13 Sự tồn tại và duy nhất của nghiệm yếu 14 2.1. Phát biểu bài toán . . . . . . . . . . . . . . . . . . . . . 14 2.1.1. Phát biểu bài toán và các giả thiết . . . . . . . . 14 ii iii 3 2.1.2. Định nghĩa nghiệm yếu . . . . . . . . . . . . . . . 15 2.2. Sự tồn tại và duy nhất của nghiệm yếu . . . . . . . . . . 17 Sự tồn tại, đánh giá số chiều và tính nửa liên tục trên của D− tập hút lùi 22 3.1. Sự tồn tại D−tập hút lùi trong Hµ (Ω) ∩ Lp (Ω) . . . . . . 23 3.2. Đánh giá số chiều fractal của D− tập hút lùi . . . . . . . 34 3.3. Tính nửa liên tục trên của D−tập hút lùi tại µ = 0 . . . 41 Kết luận 45 DANH MỤC CÁC KÍ HIỆU |.|2 là chuẩn trong L2 (Ω). (., .) là tích vô hướng trong L2 (Ω). k.kµ là chuẩn trong Hµ (Ω). ((., .))µ là tích vô hướng trong Hµ (Ω). |.|p là chuẩn trong Lp (Ω). ΩM = Ω(u(t) ≥ M ) = {x ∈ Ω : u(x, t) ≥ M }. Hµ−1 (Ω) là không gian đối ngẫu của Hµ (Ω). MỞ ĐẦU 1. Lý do chọn đề tài Vấn đề nghiên cứu dáng điệu tiệm cận nghiệm đối với các hệ động lực vô hạn chiều là một trong những bài toán quan trọng nhất của vật lý toán hiện đại. Một trong những cách tiếp cận bài toán này đối với các hệ động lực vô hạn chiều là nghiên cứu sự tồn tại và các tính chất của tập hút toàn cục đối với hệ động lực vô hạn chiều đang xét. Sau gần ba thập kỷ phát triển, sự tồn tại và tính chất của tập hút toàn cục đã được nghiên cứu cho một lớp khá rộng các phương trình đạo hàm riêng mà ôtônôm, tức là khi mà ngoại lực g, các hệ số của toán tử, số hạng phi tuyến không phụ thuộc tường minh vào thời gian (xem [3],[4],[5]). Trong những năm gần đây, việc nghiên cứu dáng điệu tiệm cận nghiệm đối với các phương trình không ôtônôm đã thu hút được sự quan tâm của nhiều nhà toán học trong và ngoài nước. Khi nghiên cứu dáng điệu tiệm cận nghiệm của các phương trình không ôtônôm thì khái niệm tập hút toàn cục cổ điển không còn thích hợp (Vì lúc này tương ứng u0 7→ u(t), u(t) là nghiệm của bài toán với điều kiện biên ban đầu u0 , không còn sinh ra nửa nhóm như trường hợp ôtônôm). Vì vậy các nhà toán học đã đưa ra những khái niệm tập hút mới đặc trưng cho phương trình không ôtônôm. Chẳng hạn tập hút đều (uniform attractors, xem [6]), tập hút lùi (pullback attractors, xem [4]). Hiện nay việc nghiên cứu sự tồn tại và các tính chất của tập hút lùi cho các phương trình đạo riêng phi tuyến không ôtônôm đã và đang là một trong những vấn đề thời sự, 2 thu hút sự quan tâm của nhiều nhà toán học trong và ngoài nước. Chính vì vậy chúng tôi đã chọn đề tài của luận văn là "Tập hút lùi đối với một lớp phương trình parabolic phi tuyến". Trong luận văn này chúng tôi nghiên cứu bài toán sau:   µ   u + f (u) = g(x, t), x ∈ Ω, t > τ, u − ∆u −  t 2  |x|   u|∂Ω = 0, t > τ,       u (x, τ ) = uτ (x) , x ∈ Ω, trong đó uτ ∈ L2 (Ω) cho trước, 0 < µ ≤ µ∗ là tham số, µ∗ = (0.1)  N −2 2 2 là hằng số tốt nhất trong bất đẳng thức Hardy, số hạng phi tuyến f và ngoại lực g thoả mãn các điều kiện sau: (F ) Hàm f ∈ C 1 (R) và thoả mãn C1 |u|p − k1 ≤ f (u)u ≤ C2 |u|p + k2 , p ≥ 2, f 0 (u) ≥ −`, ∀u ∈ R; 1,2 (G) g ∈ Wloc (R; L2 (Ω)) được thoả mãn Z0   eλ1,µ s |g(s)|22 + |g 0 (s)|22 ds < ∞, −∞ Z0 Zs eλ1,µ s |g(r)|22 drds < ∞, −∞ −∞ trong đó λ1,µ là giá trị riêng của toán tử Aµ = −∆ − µ |x|2 trong Ω với điều kiện biên Dirichlet thuần nhất. 2. Mục đích nghiên cứu Trong luận văn này chúng tôi nghiên cứu sự tồn tại, đánh giá số chiều fractal và tính nửa liên tục trên của D−tập hút lùi đối với một lớp phương trình parabolic phi tuyến không ôtônôm với thế vị kiểu Hardy. 3 3. Nhiệm vụ nghiên cứu Nghiên cứu tập sự tồn tại và duy nhất nghiệm yếu của bài toán trên. Nghiên cứu sự tồn tại D−tập hút lùi đối với quá trình sinh bởi bài toán trên. Nghiên cứu về số chiều fractal của D−tập hút lùi đối với quá trình sinh bởi bài toán trên. Nghiên cứu về tính nửa liên tục trên của D−tập hút lùi đối với quá trình sinh bởi bài toán trên. 4. Đối tượng và phạm vi nghiên cứu Nghiên cứu sự tồn tại và dáng điệu của nghiệm của một lớp phương trình parabolic phi tuyến không ôtônôm với thế vị kiểu Hardy. 5. Phương pháp nghiên cứu Để chứng minh sự tồn tại nghiệm yếu của bài toán trên ta dùng phương pháp compact của Lions (xem [10]). Để chứng minh sự tồn tại D−tập hút lùi, xét số chiều fractal của D−tập hút lùi và chứng minh tính nửa liên tục trên của D− tập hút lùi chúng tôi dùng phương pháp của lý thuyết hệ động lực tán xạ vô hạn chiều. 6. Bố cục của luận văn Luận văn được chia thành 3 chương: Chương 1 trình bày một số kiến thức chuẩn bị cần thiết cho việc trình bày các chương sau, các kết quả về không gian hàm và toán tử liên quan đến phương trình, các khái niệm và định lý tổng quát về sự tồn tại, đánh giá số chiều và tính nửa liên tục trên của D−tập hút lùi. 4 Chương 2 trình bày các kết quả về sự tồn tại và duy nhất nghiệm yếu của bài toán trên. Chương 3 trình bày các kết quả chính của luận văn. Trong chương này, chứng minh sự tồn tại D−tập hút lùi đối với họ quá trình liên kết với bài toán trên. Hơn nữa, chúng ta chứng minh D− tập hút lùi nhận được có số chiều fractal hữu hạn và phụ thuộc nửa liên tục trên vào tham số µ trong số hạng chứa thế vị. Nói riêng, khi µ → 0+ thì D− tập hút lùi của bài toán dẫn đến D− tập hút lùi của phương trình truyền nhiệt cổ điển (tức là phương trình không có số hạng chứa thế vị − |x|µ2 u). 7. Những đóng góp mới của đề tài Đề tài chứng minh được sự tồn tại và duy nhất nghiệm yếu của bài toán trên. Chứng minh được sự tồn tại của D− tập hút lùi đối với quá trình sinh bởi bài toán trên. Chứng minh được số chiều fractal của D− tập hút lùi là hữu hạn. Chứng minh được tính nửa liên tục trên của D− tập hút lùi. Các kết quả của luận văn là mới, có ý nghĩa khoa học và đang được gửi đăng ở tạp chí chuyên nghành (xem [1]). Chương 1 Một số kiến thức chuẩn bị Trong chương này chúng tôi trình bày một số kiến thức chuẩn bị về các không gian hàm và toán tử, các khái niệm và định lý tổng quát về sự tồn tại, đánh giá số chiều và tính nửa liên tục trên của D−tập hút lùi phục vụ cho việc chứng minh các chương sau. 1.1. Các không gian hàm và toán tử Cho 0 ≤ µ ≤ µ∗ , chúng ta định nghĩa không gian Hµ (Ω) là bao đóng của C0∞ (Ω) với chuẩn kuk2µ = Z  |u|2 |∇u|2 − µ 2 |x|  dx. Ω Khi đó Hµ (Ω) là không gian Hilbert với tích vô hướng tương ứng  Z  uv hu, viµ = ∇u∇v − µ 2 dx, với mọi u, v ∈ Hµ (Ω). |x| Ω Chúng ta biết (xem [14]) rằng nếu 0 ≤ µ < µ∗ thì Hµ (Ω) ≡ H01 (Ω). Trong trường hợp tới hạn, nghĩa là khi µ = µ∗ , chúng ta nhắc lại bất 5 6 đẳng thức Hardy-Poincare trong [14]  Z  2 2 ∗ |u| |∇u| − µ dx ≥ C(q, Ω)kuk2W 1,q (Ω) , 1 ≤ q < 2, 2 |x| (1.1) Ω 2N và cho 0 ≤ s < 1, 1 ≤ r < r∗ = N −2(1−s) ,  Z  2 |u| |∇u|2 − µ∗ 2 dx ≥ C(s, r, Ω)kuk2W s,r (Ω) |x| (1.2) Ω với mọi u ∈ C0∞ (Ω). Điều này suy ra phép nhúng liên tục thoả mãn với 1 ≤ q < 2 và 0 ≤ s < 1, Hµ (Ω) ,→ W01,q (Ω), Hµ (Ω) ,→ H0s (Ω). (1.3) Hơn nữa, từ W01,q (Ω) nhúng compact trong H0s (Ω) với q = q(s) gần 2 và H0s (Ω) nhúng compact trong L2 (Ω), chúng ta suy ra các phép nhúng Hµ1 (Ω) ,→ L2 (Ω), Hµ (Ω) ,→ H0s (Ω), 0 ≤ s < 1, (1.4) là compact. Nhắc lại rằng phép nhúng W 1,q ,→ Lq (Ω) liên tục với 1 ≤ p ≤ q < N . Khi đó ký hiệu p∗ = Nq N −q Nq N −q và với 1 ≤ q < 2, từ (1.3) suy ra là phép nhúng liên tục Hµ (Ω) ,→ Lp (Ω) thoả mãn với bất kỳ 1 ≤ p ≤ p∗ . Bây giờ chúng ta xét bài toán biên   µ  −∆u − 2 u = λu với x ∈ Ω, |x|   u = 0 với x ∈ ∂Ω. (1.5) Để áp dụng mở rộng Friedrichs của các toán tử đối xứng (xem [17]) 7 chúng ta nhắc lại bất đẳng thức Hardy mở rộng trong [14]  2 Z Z Z 2 N − 2 |u| |∇u|2 dx ≥ dx + λΩ |u|2 dx, 2 2 |x| Ω Ω (1.6) Ω e = trong đó λΩ là hằng số dương phụ thuộc vào Ω, tập X = L2 (Ω), D(A) e = −∆u − C0∞ (Ω), Au µ |x|2 u. e là toán tử dương và tự liên Từ đó suy ra A hợp. Không gian năng lượng XE bằng Hµ (Ω) vì XE là không gian đủ e = C0∞ (Ω) với tích vô hướng tương ứng của D(A)  Z  uv hu, viµ = ∇u∇v − µ 2 dx. |x| Ω Hơn nữa, e ⊂ A ⊂ AE , A ở đây AE : Hµ (Ω) → Hµ−1 (Ω) là mở rộng năng lượng (Hµ−1 (Ω) là không gian đối ngẫu của Hµ (Ω)) và A = −∆ − µ |x|2 là mở rộng Friedrichs của e với miền xác định A D(A) = {u ∈ Hµ (Ω) : A(u) ∈ X}. Chúng ta có bộ ba tiến hoá Hµ (Ω) ,→,→ L2 (Ω) ,→,→ Hµ−1 (Ω) với các phép nhúng là compact và trù mật. Do đó, với mỗi 0 < µ ≤ µ∗ , ở đó tồn tại một hệ trực chuẩn các vectơ riêng (ej,µ , λj,µ ) phụ thuộc vào µ sao cho (ej,µ , ek,µ ) = δj,k và − ∆ej,µ − µ ej,µ = λj,µ ej,µ , |x|2 j, k = 1, 2, ... 0 < λ1,µ ≤ λ2,µ ≤ λ3,µ ≤ ..., λj,µ → +∞ khi j → +∞. Cuối cùng chúng ta chú ý rằng với mọi u ∈ Hµ (Ω), kuk2µ ≥ λ1,µ |u|22 . (1.7) 8 1.2. Sự tồn tại D− tập hút lùi. Cho (X, d) là không gian mêtric. Với A, B ⊂ X, ta định nghĩa nửa khoảng cách Hausdorff giữa 2 tập A và B là dist(A, B) = sup inf d(x, y). x∈A x∈B Cho {U (t, τ ) : t ≥ τ, τ ∈ R} là một quá trình trong X, nghĩa là một họ ánh xạ gồm hai tham số U (t, τ ) : X → X sao cho U (τ, τ ) = Id và U (t, s)U (s, τ ) = U (t, τ ) với mọi t ≥ s ≥ τ, τ ∈ R. Quá trình {U (t, τ )} được gọi là liên tục norm-to-weak (norm-to-weak continuous) trên X nếu U (t, τ )xn hội tụ yếu tới U (t, τ )x khi xn hội tụ mạnh tới x trong X, với mọi t ≥ τ, τ ∈ R. Giờ, chúng ta nhắc lại một phương pháp hữu ích để chỉ ra quá trình trên là liên tục norm-to-weak. Bổ đề 1.1. [16] Cho X và Y là hai không gian Banach , X ∗ , Y ∗ là hai không gian đối ngẫu tương ứng. Giả thiết rằng X là trù mật trong Y , phép chiếu i : X → Y là liên tục, ánh xạ liên hợp i∗ : Y ∗ → X ∗ là trù mật, và {U (t, τ )} là quá trình liên tục hoặc liên tục yếu trên Y . Khi đó {U (t, τ )} là liên tục norm-to-weak trên X nếu với t ≥ τ, τ ∈ R, {U (t, τ )} biến một tập compact của X thành một tập bị chặn của X. Cho B(X) là họ tất cả các tập con bị chặn khác rỗng của X và D là một lớp khác rỗng các tập tham số hoá D̂ = {D(t) : t ∈ R} ⊂ B(X). Định nghĩa 1.2.1. Một quá trình {U (t, τ )} được gọi là D−compact tiệm cận lùi nếu với mọi t ∈ R, mọi D̂ ∈ D, mọi τn → −∞ và mọi dãy xn ∈ D(τn ), dãy {U (t, τn )xn } là compact tương đối trong X. 9 Định nghĩa 1.2.2. Một quá trình {U (t, τ )} được gọi là ω − D− giới hạn compact hấp thụ lùi nếu và chỉ nếu  > 0, bất kỳ t ∈ R và D̂ ∈ D tồn tại τ0 (D, , t) ≤ t sao cho α (∪τ ≤τ0 U (t, τ )D(τ )) ≤  trong đó α là độ đo tính không compact Kuratowski của tập B ∈ B(X), được định nghĩa bởi α(B) = inf {δ > 0 : B có một phủ mở hữu hạn các tập có bán kính nhỏ hơn δ}. Bổ đề 1.2. [11] Quá trình {U (t, τ )} là D−compact tiệm cận lùi nếu nó là ω − D−compact giới hạn lùi. Định nghĩa 1.2.3. Một họ các tập bị chặn của B̂ ∈ D được gọi là D−hấp thụ lùi đối với quá trình {U (t, τ )} nếu với mọi t ∈ R, mọi D̂ ∈ D tồn tại τ0 = τ0 (D̂, t) sao cho [ U (t, τ )D(τ ) ⊂ B(t). τ ≤τ0 Định nghĩa 1.2.4. Một họ  = {A(t) : t ∈ R} ⊂ B(X) gọi là D−tập hút lùi với quá trình {U (t, τ )} nếu nó thoả mãn tất cả các điều kiện sau: 1. A(t) là compact với mọi t ∈ R; 2.  là bất biến; tức là U (t, τ )A(τ ) = A(t) với mọi t ≥ τ ; 3.  là D−hút lùi; nghĩa là lim dist(U (t, τ )D(τ ), A(t)) = 0 τ →−∞ với mọi D̂ ∈ D và mọi t ∈ R; 10 4. Nếu {C(t) : t ∈ R} là họ khác rỗng các tập hút đóng thì A(t) ⊂ C(t) với mọi t ∈ R. Định lý 1.2.1. [11] Cho {U (t, τ )} là quá trình liên tục norm-to-weak sao cho {U (t, τ )} là D−compact tiệm cận lùi. Nếu tồn tại một họ các tập D−hấp thụ lùi B̂ = {B(t) : t ∈ R} ∈ D, thì {U (t, τ )} có một D−tập hút lùi duy nhất  = {A(t) : t ∈ R} và \[ A(t) = U (t, τ )B(τ ). s≤t τ ≤s 1.3. Số chiều fractal của D− tập hút lùi Cho H là không gian Hilbert tách được, với tích vô hướng (., .) và chuẩn |.|. Cho trước tập compact K ⊂ H và  > 0, ký hiệu bởi N (K) số nhỏ nhất các hình cầu mở trong H với bán kính <  cần thiết để phủ K. Định nghĩa 1.3.1. Cho tập compact khác rỗng K ⊂ H, số chiều fractal của K được định nghĩa bởi dF (K) = lim sup →0 log(N (K)) . log( 1 ) (1.8) Xét V ⊂ H là không gian Hilbert thực tách được sao cho phép chiếu từ V vào H là liên tục và V là trù mật trong H. Ta đồng nhất H với đối ngẫu tô pô H 0 của nó và đồng nhất v ∈ V với phần tử fv ∈ H 0 định nghĩa bởi fv (h) = (v, h), h ∈ H. Cho F : V × R → V 0 (V 0 là đối ngẫu của V ) là một họ các toán tử không tuyến tính sao cho với mọi τ ∈ R và bất kỳ u0 ∈ H tồn tại duy 11 nhất một hàm u(t) = u(t; τ, u0 ) thoả mãn    u ∈ L2 (τ, T ; V ) ∩ C([τ, T ]; H), F (u(t), t) ∈ L1 (τ, T ; V 0 ), với mọi T > τ.     du = F (u(t), t), t > τ,  dt     u(τ ) = u0 . (1.9) Ta định nghĩa U (t, τ )u0 = u(t, τ ; u0 ), τ ≤ t, u0 ∈ H. (1.10) Cho T ∗ ∈ R cố định. Ta giả thiết có một họ {K(t) : t ≤ T ∗ } các tập con compact khác rỗng của H thoả mãn tính chất bất biến U (t, τ )K(τ ) = K(t), với mọi τ ≤ t ≤ T ∗ (1.11) và với mọi τ ≤ t ≤ T ∗ , mọi u0 ∈ K(τ ) tồn tại một toán tử tuyến tính liên tục L(t, τ, u0 ) ∈ L(H) sao cho: |U (t, τ )u0 − U (t, τ )u0 − L(t, τ, u0 )(u0 − u0 )| ≤ γ(t − τ, |u0 − u0 |)|u0 − u0 |, (1.12) với mọi u0 ∈ K(τ ), ở đó γ : R+ × R+ → R+ là một hàm sao cho γ(s, .) không tăng với mọi s ≥ 0 và lim γ(s, r) = 0, với bất kỳ s ≥ 0. r→0 (1.13) Chúng ta giả sử với mọi t ≤ T ∗ , ánh xạ F (., t) là khả vi Gateaux trên V , nghĩa là với bất kỳ u ∈ V tồn tại một toán tử tuyến tính liên tục F 0 (u, t) ∈ L(V, V 0 ) sao cho: 1 lim (F (u + v, t) − F (u, t) − F 0 (u, t)v) = 0 ∈ V 0 . →0  12 Hơn nữa, chúng ta giả sử rằng ánh xạ F 0 : (u, t) ∈ V × (−∞, T ∗ ] 7→ F 0 (u, t) ∈ L(V ; V 0 ) là liên tục (do đó, trong trường hợp đặc biệt, với mỗi t ≤ T ∗ , ánh xạ F (., t) là khả vi Frechet liên tục trên V ). Do đó với mỗi τ ≤ T ∗ và bất kỳ u0 , v0 ∈ H tồn tại duy nhất v(t) = v(t; τ, u0 , v0 ) là nghiệm của bài toán    v ∈ L2 (τ, T ; V ) ∩ C([τ, T ]; H), với mọi τ < T ≤ T ∗ ,     dv 0 ∗ dt = F (U (t, τ )u0 , t)v, τ < t < T ,      v(τ ) = v0 . (1.14) Chúng ta giả thiết rằng v(t; τ, u0 , v0 ) = L(t, τ, u0 )v0 , với mọi τ ≤ t ≤ T ∗ , u0 , v0 ∈ K(τ ). (1.15) Ta viết với j = 1, 2, ....,  1 T τ ≤T ∗ u0 ∈K(τ −T ) q̃j = lim sup sup T →+∞  Zτ 0 T rj (F (U (s, τ − T )u0 , s))ds , sup τ −T (1.16) trong đó 0 T rj (F (U (s, τ )u0 , s)) = sup v0i ∈H,|v0i |≤1,i≤j j X ! 0 (F (U (s, τ )u0 , s)ei , ei ) , i=1 e1 , ..., ej là cơ sở trực chuẩn trong H với không gian con sinh bởi v(s; τ, u0 , v01 ), ..., v(s; τ, u0 , v0j ). Định lý 1.3.1. [9] Với giả thiết phía trên và nói riêng là (1.11)-(1.13), (1.15) và giả sử rằng [ τ ≤T ∗ K(τ ) là compact tương đối trong H, (1.17) 13 và tồn tại qj , j = 1, 2, .... sao cho q̃j ≤ qj , với mỗi j ≥ 1, (1.18) qn0 ≥ 0, qn0 +1 < 0, với n0 ≥ 1 nào đó (1.19) và qj ≤ qn0 + (qn0 − qn0 +1 )(n0 − j), với mọi j = 1, 2, ... (1.20) qn 0 , với mọi τ ≤ T ∗ . qn0 − qn0 +1 (1.21) Khi đó dF (K(τ )) ≤ d0 := n0 + 1.4. Tính nửa liên tục trên của D−tập hút lùi Định nghĩa 1.4.1. Cho {U (t, τ ) :  ∈ [0, 1]} là một họ quá trình trong không gian Banach X với D−tập hút lùi tương ứng  = {A (t) : t ∈ R,  ∈ [0, 1]}. Với bất kỳ đoạn bị chặn I ⊂ R ta nói { (.)} là nửa liên tục trên tại  = 0 với t ∈ I nếu lim sup dist(A (t), A0 (t)) = 0. →0 t∈I Định lý 1.4.1. [5] Cho {U (t, τ ) :  ∈ [0, 1]} là một họ quá trình với D−tập hút lùi tương ứng {A (t) : t ∈ R,  ∈ [0, 1]}. Khi đó, với bất kỳ I ⊂ R bị chặn, {U (t, τ ) :  ∈ [0, 1]} là nửa liên tục trên tại 0 với t ∈ I nếu với mỗi t ∈ R, mỗi tập con compact K và mỗi T > 0, các điều kiện sau được thoả mãn: 1. supτ ∈[t−T,t] supχ∈K d(U (t, τ )χ, U0 (t, τ )χ) → 0 khi  → 0; 2. S 3. S ∈[0,1] S t≤t0 0<≤1 A (t) A (t) là bị chặn với t0 cho trước; là compact với mỗi t ∈ R. Chương 2 Sự tồn tại và duy nhất của nghiệm yếu Trong chương này chúng tôi phát biểu bài toán và các điều kiện của bài toán, chứng minh sự tồn tại và duy nhất nghiệm yếu của bài toán. 2.1. Phát biểu bài toán 2.1.1. Phát biểu bài toán và các giả thiết Cho Ω là miền bị chặn trong RN (N ≥ 3) chứa gốc toạ độ. Trong luận văn này ta xét bài toán biên ban đầu thứ nhất đối với phương trình parabolic không ôtônôm với thế vị kiểu Hardy có dạng:   µ   u − ∆u − u + f (u) = g(x, t), x ∈ Ω, t > τ,  t 2  |x|   u|∂Ω       u (x, τ ) = 0, t > τ, = uτ (x) , x ∈ Ω, 14 (2.1) 15 trong đó uτ ∈ L2 (Ω) cho trước, 0 < µ ≤ µ∗ là tham số, µ∗ =  N −2 2 2 hằng số tốt nhất trong bất đẳng thức Hardy Z Z 2 |u| µ∗ dx ≤ |∇u|2 dx, ∀u ∈ C0∞ (Ω), 2 |x| Ω là (2.2) Ω số hạng phi tuyến f và ngoại lực g thoả mãn các điều kiện sau: (F ) Hàm f ∈ C 1 (R) và thoả mãn C1 |u|p − k1 ≤ f (u)u ≤ C2 |u|p + k2 , p ≥ 2, f 0 (u) ≥ −`, ∀u ∈ R; 1,2 (G) g ∈ Wloc (R; L2 (Ω)) được thoả mãn Z0   eλ1,µ s |g(s)|22 + |g 0 (s)|22 ds < ∞, −∞ Z0 Zs eλ1,µ s |g(r)|22 drds < ∞, −∞ −∞ trong đó λ1,µ là giá trị riêng đầu tiên của toán tử Aµ = −∆ − µ |x|2 trong Ω với điều kiện biên Dirichlet thuần nhất. Ta ký hiệu X = L2 (τ, T ; Hµ (Ω)) ∩ Lp (τ, T ; Lp (Ω)), 0 0 X ∗ = L2 (τ, T ; Hµ−1 (Ω)) ∩ Lp (τ, T ; Lp (Ω)), ở đó p0 là liên hợp p và µ ∈ [0, µ∗ ]. 2.1.2. Định nghĩa nghiệm yếu Định nghĩa 2.1.1. Một hàm u(x, t) được gọi là nghiệm yếu của bài toán ∗ (2.1) trên khoảng (τ, T ) nếu u ∈ X, ∂u ∂t ∈ X , u|t=τ = uτ hầu khắp x ∈ Ω
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất