Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Kiến trúc xây dựng Nghiên cứu giám sát phóng điện cục bộ trực tuyến đối với mba và cáp ngầm trên lư...

Tài liệu Nghiên cứu giám sát phóng điện cục bộ trực tuyến đối với mba và cáp ngầm trên lưới điện tỉnh khánh hòa

.PDF
90
14
143

Mô tả:

ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐÀO MINH KÍNH NGHIÊN CỨU GIÁM SÁT PHÓNG ĐIỆN CỤC BỘ TRỰC TUYẾN ĐỐI VỚI MÁY BIẾN ÁP VÀ CÁP NGẦM LƯỚI ĐIỆN TỈNH KHÁNH HÒA LUẬN VĂN THẠC SĨ KỸ THUẬT Đà Nẵng - Năm 2017 12 ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐÀO MINH KÍNH NGHIÊN CỨU GIÁM SÁT PHÓNG ĐIỆN CỤC BỘ TRỰC TUYẾN ĐỐI VỚI MÁY BIẾN ÁP VÀ CÁP NGẦM LƯỚI ĐIỆN TỈNH KHÁNH HÒA Chuyên ngành: Kỹ thuật điện Mã số: 60 52 02 02 LUẬN VĂN THẠC SĨ KỸ THUẬT Người hướng dẫn khoa học: TS. ĐOÀN ANH TUẤN Đà Nẵng - Năm 2017 i LỜI CAM ĐOAN Tôi cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận văn Đào Minh Kính ii TRANG TÓM TẮT LUẬN VĂN NGHIÊN CỨU GIÁM SÁT PHÓNG ĐIỆN CỤC BỘ TRỰC TUYẾN ĐỐI VỚI MBA VÀ CÁP NGẦM TRÊN LƯỚI ĐIỆN TỈNH KHÁNH HÒA Học viên: ĐÀO MINH KÍNH Chuyên ngành: Kỹ thuật điện Mã số: 60 52 02 02 - Khóa: 2016-2018 - Trường Đại học Bách khoa - ĐHĐN Tóm tắt - Hiện nay, việc ứng dụng các công nghệ thí nghiệm chẩn đoán trong công tác phòng ngừa sự cố trong ngành Điện lực đang dần trở thành xu thế mới trên thế giới, cho thấy hiệu quả và ưu điểm vượt trội so với các công tác thí nghiệm thông thường. Phương pháp thí nghiệm chẩn đoán sẽ cho phép đánh giá thiết bị một cách chi tiết hơn, tổng quan hơn về tình trạng vận hành, giúp phát hiện và dò tìm điểm yếu để từ đó đề ra kế hoạch sửa chữa, bảo trì, bảo dưỡng hợp lý góp phần ngăn ngừa sự cố một cách hiệu quả. Để giảm suất sự cố, giảm mất điện, nâng cao độ tin cậy lưới điện, việc ứng dụng các công nghệ thí nghiệm chẩn đoán sự cố mà điển hình là đánh giá tình trạng phóng điện cục bộ (PD) của thiết bị điện là hết sức cần thiết. Phạm vi nghiên cứu của đề tài chỉ giới hạn trong việc giới thiệu về tổng quan về công nghệ đo PD theo tiêu chuẩn IEC 60270, ứng dụng công nghệ này để đánh giá hiện trạng cách điện của cáp ngầm và máy biến áp (MBA) nhằm ngăn ngừa sự cố. Đề tài ứng dụng thực tế thiết bị công nghệ của hãng OMICRON vào việc đo và phân tích đánh giá PD MBA 110kV tại trạm biến áp 110kV Bình Tân trên lưới điện Công ty Cổ phần Điện lực Khánh hòa (KHPC) quản lý vận hành. Từ khóa- Phóng điện cục bộ (PD); IEC 60270; cáp ngầm; máy biến áp; KHPC RESEARCH MONITORING PARTIAL DISCHARGE ON-LINE (PD ONLINE) FOR UNDERGROUND CABLES AND TRANSFORMERS ON THE GRID KHANH HOA Abstract - Currently, the application of diagnostic testing technologies in the prevention of incidents in the electricity industry is gradually becoming a new trend in the world, showing the efficiency and advantages over the other, normal laboratory work. The diagnostic test methodology will allow for a more detailed evaluation of the equipment, a more general overview of the operation status, the identification and detection of weaknesses, and a plan for repair, maintenance and maintain proper care contributes to preventing incidents effectively. In order to reduce fault rates, reduce power failures, improve grid reliability, the use of diagnostic testing technologies that typically assess the partial discharge (PD) status of electrical equipment is very necessary. The research scope of the topic is limited to the introduction of an overview of the PD measurement technology in accordance with IEC 60270, which uses this technology to assess the insulation status of underground cables and the transformers to prevent faults. The topic of practical application of OMICRON technology equipment on measuring and analyzing PD of 110kV transformers at 110kV Binh Tan substation on the grid Khanh Hoa Power Joint Stock Company (KHPC). Keywords- Partial discharge (PD); IEC 60270; Underground cables; transformers; KHPC iii MỤC LỤC LỜI CAM ĐOAN ...................................................................................................... i TRANG TÓM TẮT LUẬN VĂN ............................................................................ ii MỤC LỤC ................................................................................................................ iii DANH MỤC CÁC TỪ VIẾT TẮT ........................................................................ vi DANH MỤC CÁC BẢNG..................................................................................... viii DANH MỤC CÁC HÌNH ....................................................................................... ix MỞ ĐẦU ................................................................................................................... 1 1. ĐẶT VẤN ĐỀ ................................................................................................. 1 2. LÝ DO CHỌN ĐỀ TÀI ................................................................................... 1 3. MỤC TIÊU VÀ NHIỆM VỤ NGHIÊN CỨU CỦA ĐỀ TÀI ......................... 2 4. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU................................................. 2 5. PHƯƠNG PHÁP NGHIÊN CỨU ................................................................... 2 6. KẾT CẤU CỦA LUẬN VĂN ......................................................................... 3 CHƯƠNG 1. LÝ THUYẾT VỀ PD VÀ CÁC PHƯƠNG PHÁP ĐO PD ............ 4 1.1. LÝ THUYẾT VỀ PD .................................................................................... 4 1.1.1. Khái niệm về PD ................................................................................ 4 1.1.2. Ảnh hưởng của PD trong hệ thống cách điện ..................................... 6 1.2. CÁC PHƯƠNG PHÁP ĐO PD ..................................................................... 6 1.2.1. Giới thiệu ............................................................................................ 6 1.2.2. Hệ thống đo PD truyền thống (conventional) (IEC 60270) ............... 7 1.2.3. Hệ thống đo PD phi truyền thống (unconventional) ........................ 12 1.2.4. Tương quan giữa phương pháp truyền thống và phi truyền thống ... 13 1.2.5. So sánh hệ thống đo PD On-line và Off-line.................................... 14 1.3. XỬ LÝ TÍN HIỆU VÀ LỌC NHIỄU ......................................................... 15 1.3.1. Phát hiện tín hiệu PD ........................................................................ 15 1.3.2. Miền thời gian và Miền tần số (Time domain vs Frequency domain)15 1.3.3. Quan sát dạng PD ............................................................................. 17 1.3.4. Lọc nhiễu .......................................................................................... 22 1.3.5. Tóm tắt và kết luận ........................................................................... 22 CHƯƠNG 4. GIÁM SÁT PD ĐỐI VỚI MBA VÀ CÁP NGẦM TRÊN HTĐ . 24 2.1. MBA............................................................................................................ 24 2.1.1. MBA trong HTĐ .............................................................................. 24 2.1.2. Các kiểu PD trong MBA .................................................................. 25 2.1.3. Các kỹ thuật chẩn đoán và giám sát khác nhau về MBA ................. 25 2.1.4. Theo dõi PD on-line trên MBA ........................................................ 27 2.1.5. Các thiết bị hiện có để giám sát trực tuyến PD của MBA................ 31 iv 2.1.6. Tóm tắt và kết luận ........................................................................... 32 2.2. CÁP NGẦM ................................................................................................ 33 2.2.1. Hệ thống cáp ngầm trong HTĐ ........................................................ 33 2.2.2. Các cơ chế gây già hóa đối với cách điện của cáp ngầm ................. 34 2.2.3. Các kiểu PD trong hệ thống cáp ngầm ............................................. 36 2.2.4. Các kỹ thuật chẩn đoán và giám sát cáp khác nhau ......................... 36 2.2.5. Theo dõi PD trực tuyến trên cáp ngầm ............................................. 40 2.2.6. Các thiết bị có sẵn để giám sát PD on-line cáp ................................ 41 2.2.7. Tóm tắt và kết luận ........................................................................... 42 CHƯƠNG 3. TỔNG QUAN VỀ THỰC TRẠNG MBA 110KV VÀ CÁP NGẦM TRUNG THẾ TẠI KHPC. ỨNG DỤNG CÔNG NGHỆ ĐO PD VÀ THIẾT BỊ HỖ TRỢ CỦA HÃNG OMICRON TRONG CHẨN ĐOÁN PD MBA 110KV TẠI TBA BÌNH TÂN THUỘC KHPC ......................................... 43 3.1. TỔNG QUAN TÌNH HÌNH MBA 110kV TẠI KHPC .............................. 43 3.1.1. Hiện trạng MBA 110kV tại KHPC .................................................. 43 3.1.2. Những nguyên nhân gây hư hỏng MBA .......................................... 43 3.2. TỔNG QUAN TÌNH HÌNH CÁP NGẦM TRUNG THẾ TẠI KHPC ...... 47 3.2.1. Hiện trạng sử dụng cáp ngầm trung thế tại KHPC ........................... 47 3.2.2. Các nguyên nhân gây hư hỏng cáp ngầm ......................................... 49 3.2.3. Tóm tắt và kết luận ........................................................................... 49 3.3. PHÂN TÍCH PD MBA 110KV TẠI TBA BÌNH TÂN ............................. 49 3.3.1. Mục đích ........................................................................................... 50 3.3.2. Phương pháp ..................................................................................... 50 3.3.2.1. Phương pháp điện (Electrical) ....................................................... 50 3.3.2.2. Phương pháp âm thanh (Acoustic) ................................................. 50 3.3.3. Các thiết bị đo sử dụng ..................................................................... 52 3.3.4. Sơ đồ đấu nối .................................................................................... 52 3.3.5. Kết quả đo......................................................................................... 53 3.3.6. Kết luận ............................................................................................ 57 3.4. PHÂN TÍCH ĐÁP ỨNG TẦN SỐ MBA 110KV TẠI TBA BÌNH TÂN . 58 3.4.1. Mục đích ........................................................................................... 58 3.4.2. Phương pháp ..................................................................................... 58 3.4.3. Các thiết bị đo sử dụng ..................................................................... 58 3.4.4. Sơ đồ đấu nối .................................................................................... 58 3.4.5. Kết quả đo......................................................................................... 59 3.4.6. Kết luận ............................................................................................ 62 3.5. HÀM LƯỢNG ẨM TRONG CÁCH ĐIỆN RẮN...................................... 63 3.5.1. Mục đích ........................................................................................... 63 3.5.2. Phương pháp ..................................................................................... 63 v 3.5.3. Các thiết bị đo sử dụng: .................................................................... 63 3.5.4. Sơ đồ đấu nối .................................................................................... 63 3.5.5. Kết quả đo......................................................................................... 64 3.5.6. Kết luận ............................................................................................ 65 KẾT LUẬN VÀ KIẾN NGHỊ ................................................................................ 66 DANH MỤC TÀI LIỆU THAM KHẢO .............................................................. 69 QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN (BẢN SAO) CÁC QUYẾT ĐỊNH, BIÊN BẢN THÀNH LẬP HỘI ĐỒNG CHẤM LUẬN VĂN (BẢN SAO). vi DANH MỤC CÁC TỪ VIẾT TẮT AE AE sensor CBM Phát xạ âm tần (Acoustic Emission) Đầu dò tín hiệu âm thanh Bảo trì, bảo dưỡng dựa theo điều kiện (Condition Based Maintenance) Điện dung và hệ số tổn hao điện môi (Capacitance and Dissipation Factor) C&PF Điện dung và hệ số công suất (Capacitance and Power Factor) DGA Phân tích khí hòa tan EVN Tập đoàn điện lực Việt Nam EVNCPC Tổng công ty điện lực Miền Trung FDS Phổ tần số (Frequency Domain Spectrum) FRA Phân tích đáp ứng tần số (Frequency Response Analysis) Furans Họ của hợp chất hữu cơ FTRC Mạch cộng hưởng tần số GIS Trạm điện kiểu kín cách điện bằng khí SF6 HF Cao tần HFCT Biến dòng cao tần HTĐ Hệ thống điện HV Cao áp IEC Ủy ban kỹ thuật điện quốc tế IEEE Học viện kỹ nghệ điện và điện tử IFT Sức căng bề mặt của dầu cách điện IRA Phân tích đáp ứng xung (Impulse Response Analysis ) ITRC Mạch cộng hưởng theo cảm ứng LV Hạ áp MBA Máy biến áp MV Trung áp NMĐ Nhà máy điện OLTC Bộ chỉnh điện áp dưới tải (On Load Tap Changer) PD Phóng điện cục bộ (Partial Discharge) PDC Phân tích dòng phân cực/khử phân cực (Polarization/Depolarization Current analysis) PD on-line Phóng điện cục bộ trực tuyến Ppb Phần tỷ PRPD Phân tích góc pha PD (Phase Resolved Partial Discharge) 3PARD Sơ đồ quan hệ biên độ ba pha (3-Phase Amplitude Relation Diagram) SAIDI Chỉ số về thời gian mất điện trung bình của lưới điện phân phối C&DF vii SAIFI SCADA SRA TBA TDR UHF VHF VLF Chỉ số về số lần mất điện trung bình của lưới điện phân phối Hệ thống điều khiển giám sát và thu thập dữ liệu Phân tích đáp ứng bước (Step Response Analysis) Trạm biến áp Phương pháp phản xạ miền thời gian (Time-Domain Reflectrometry) Tần số siêu cao Tần số rất cao Tần số rất thấp (Very Low Frequency) viii DANH MỤC CÁC BẢNG Số hiệu Tên bảng Trang 1.1. Khả năng đo PD on-line trên các thiết bị điện lực Bảng so sánh phương pháp đo truyền thống và phi truyền thống Các bộ phận chính của MBA Cấu trúc và chức năng của cáp ngầm Cơ chế gây già hóa cách điện của cáp ngầm Các hư hỏng do khiếm khuyết trong thiết kế, kỹ thuật MBA Các hư hỏng do việc chế tạo kém hiệu quả đối với MBA Các hư hỏng do khiếm khuyết về mặt vật tư đối với MBA 12 1.2. 2.1. 2.2. 2.3. 3.1. 3.2. 3.3. 13 24 34 35 43 44 45 ix DANH MỤC CÁC HÌNH Số hiệu 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 1.9. 1.10. 1.11. 1.12. Tên hình Trang 4 5 6 6 8 8 9 10 11 11 13 16 1.20. 1.21. 2.1. 2.2. 2.3. 2.4. Mô hình mô phỏng mạch tương đương và dạng sóng của PD Các dạng PD Những hình ảnh về PD trong vật liệu cách điện Phá hủy cách điện do PD Mô hình tụ a-b-c và cơ chế đo Mạch tương đương của phép đo điện tích biểu kiến Sơ đồ đo Coupling device CD mắc nối tiếp với coupling capacitor Sơ đồ đo Coupling device CD mắc nối tiếp với thiết bị thử Sơ đồ bảo vệ điện áp cao cho thiết bị thử Sơ đồ hiệu chuẩn 1 hệ thống đo PD Các phương pháp đo PD phi truyền thống Mô tả một xung phóng điện theo miền thời gian Xung DIRAC được giữ nguyên biên độ khi chuyển từ miền thời gian sang miền tần số Biểu diễn các xung khác nhau nhưng có giá trị điện tích như nhau từ miền thời gian sang miền tần số Sơ đồ phân tích góc pha PD Dạng mẫu (pattern) của phóng điện vầng quang trên đồ thị PRPD (nguồn: tài liệu hãng OMICRON) Dạng mẫu (pattern) của phóng điện bên trong của cách điện rắn trên đồ thị PRPD (nguồn: tài liệu hãng OMICRON) Dạng mẫu (pattern) của phóng điện bên trong của một máy biến dòng (CT) trên đồ thị PRPD (nguồn: tài liệu hãng OMICRON) Dạng mẫu (pattern) của phóng điện bên trong của cách điện XLPE trên đồ thị PRPD (nguồn: tài liệu hãng OMICRON) Sơ đồ quan hệ biên độ ba pha - 3PARD Sơ đồ quan hệ biên độ ba pha - 3PARD (Nhiễu bên ngoài) Sơ đồ mạch đo PD trên sứ xuyên theo khuyến cáo của IEC 60270 Sơ đồ sử dụng các cảm biến lắp bên trong van xả dầu Sơ đồ lắp đặt cảm biến bên ngoài cửa sổ điện môi Sơ đồ dò sóng âm tần để định vị PD trong MBA 2.5. Lọc nhiễu bằng phương pháp sơ đồ quan hệ biên độ ba pha-3PARD 31 1.13. 1.14. 1.15. 1.16. 1.17. 1.18. 1.19. 16 17 18 19 19 20 20 21 22 28 29 29 30 x Số Tên hình Trang hiệu 2.6. Cấu trúc cáp XLPE 34 2.7. Dạng sóng nguồn áp xoay chiều có biên độ giảm dần (DAC) 38 Hình ảnh xác định các thông số hiện trạng ban đầu của cáp bởi 2.8. 39 phương pháp TDR 2.9. Phương pháp ghép nối điện dung gần đầu cáp và hộp nối cáp 40 2.10. Phương pháp ghép nối HFCT tại đầu cáp ngầm 41 Hệ thống giám sát và định vị PD bằng phương pháp TDR cho cáp 2.11. 41 ngầm sử dụng các cảm biến HFCT 3.1. Sơ đồ cấu tạo cáp ngầm XLPE (3 lõi) 48 Các đường lan truyền cơ bản từ nguồn PD đến vị trí đặt sensor đối 3.2. 50 với MBA (thiết bị thử DUT) 3.3. Các thành phần tín hiệu PD theo đường lan truyền 51 3.4. Nguyên lý định vị nguồn PD bằng phương pháp âm thanh 51 Sơ đồ thể hiện thời gian tuyệt đối và tương đối từ nguồn PD đến 3.5. 52 sensor Sơ đồ đo và định vị nguồn PD sử dụng thiết bị PDL 650 kết hợp 3.6. 52 MPD 600 Tín hiệu PD đo được bằng phương pháp điện với giá trị điện tích 3.7. 53 biểu kiến QWTD = 3.970 nC 3.8. Tín hiệu PD khi chưa dịch chuyển sensor 54 3.9. Vị trí đặt cảm biến 54 3.10. Kết quả vị trí phóng điện cục bộ thứ 1 (Trigger bằng cảm biến xanh) 55 3.11. Kết quả vị trí phóng điện cục bộ thứ 1 (Trigger bằng MPD 600) 3.12. Tín hiệu PD khi chưa dịch chuyển sensor 3.13. Vị trí đặt cảm biến 55 56 56 3.14. Kết quả vị trí phóng điện cục bộ thứ 2 (Trigger bằng cảm biến vàng) 57 3.15. 3.16. 3.17. 3.18. 3.19. Kết quả vị trí phóng điện cục bộ thứ 2 (Trigger bằng MPD 600) Sơ đồ nguyên lý phép đo end to end (Short – circuit) Sơ đồ đấu nối phép đo end to end (Short – circuit) Sơ đồ nguyên lý phép đo UST (đo CHL) Sơ đồ đo thực tế phép đo UST (đo CHL) 57 58 59 64 64 1 MỞ ĐẦU 1. ĐẶT VẤN ĐỀ Công ty Cổ phần Điện lực Khánh Hòa (KHPC) đang trong giai đoạn phát triển toàn diện với hàng loạt các chương trình hành động trọng điểm như chương trình an ninh năng lượng, chương trình ngầm hóa lưới điện, chương trình nâng cao độ tin cậy cung cấp điện cho giai đoạn 2015-2020, đáp ứng tiêu chí N-1 (chế độ làm việc của lưới điện vẫn bảo đảm sau sự cố 1 nguồn cung cấp điện và không bị cắt hay giảm tải), đảm bảo an toàn mỹ quan HTĐ,…Để triển khai thực hiện tốt các chương trình trên, các vấn đề quản lý và kiểm soát chất lượng, tình trạng vật tư thiết bị đang vận hành đóng vai trò hết sức quan trọng. Công tác này liên quan trực tiếp tới năng lực của bộ phận thí nghiệm. Hiện nay, ngoài các công tác thí nghiệm thông thường như thí nghiệm nghiệm thu, thí nghiệm định kỳ, thí nghiệm sau sửa chữa, bảo trì, bảo dưỡng…thì các công nghệ thí nghiệm chẩn đoán cũng đang dần được áp dụng rộng rãi và cho thấy một số hiệu quả nhất định. Thí nghiệm chẩn đoán là các thí nghiệm không phá hủy có thể tiến hành trực tiếp hoặc gián tiếp trên các thiết bị đang mang điện (on-line) hoặc không mang điện (off-line) và mang tính chất dự báo. Nếu như các phương pháp thí nghiệm thông thường chỉ cho phép kết luận thiết bị đủ hoặc không đủ điều kiện đóng điện vận hành, thì các phương pháp thí nghiệm chẩn đoán sẽ cho phép đánh giá thiết bị một cách chi tiết hơn, tổng quan hơn về tình trạng vận hành, mức độ già hóa của cách điện, giúp phát hiện và dò tìm điểm yếu trên thiết bị để từ đó đề ra các phương thức vận hành, kế hoạch sửa chữa, bảo trì, bảo dưỡng hợp lý góp phần ngăn ngừa sự cố một cách hiệu quả. 2. LÝ DO CHỌN ĐỀ TÀI Trong xã hội hiện đại, điện được coi là nguồn năng lượng quan trọng nhất không thể thiếu trong hầu hết các lĩnh vực hoạt động thường ngày. Để duy trì các hoạt động này, chất lượng điện từ lưới điện cần phải ổn định nhất có thể để đáp ứng các yêu cầu của khách hàng sử dụng điện. Đặc biệt ngày nay có rất nhiều nhà máy và tòa nhà cần nguồn cung cấp năng lượng liên tục, ổn định và chi phí thiệt hại nếu xảy ra sự cố mất điện là rất lớn. Vì vậy, việc giám sát và bảo vệ HTĐ là một trong những vấn đề quan trọng cần được đặc biệt quan tâm. Hiện nay, trên lưới điện tỉnh Khánh Hòa có hơn 11 trạm biến áp (TBA) 110kV, gần 20 MBA 110kV với tổng dung lượng 592MVA, hơn 228km chiều dài đường dây cáp ngầm trung thế, cùng nhiều thiết bị điện quan trọng khác. Cùng với việc đẩy mạnh chương trình nâng cao độ tin cậy cung cấp điện để đáp ứng tiêu chí N-1 thì việc đầu tư nguồn lưới điện, hoàn thiện sơ đồ, lắp đặt thêm nhiều thiết bị điện, ngầm hóa lưới điện sẽ không ngừng tăng lên. Số lượng MBA và cáp ngầm trung thế trên địa bàn tỉnh Khánh Hòa không những được lắp đặt phần lớn ở các khu vực đô thị mà còn lắp đặt tại 2 nhiều khu vực có tính chất hết sức nhạy cảm liên quan đến vấn đề an ninh quốc phòng, sản xuất kinh doanh, dịch vụ du lịch có sản lượng điện tiêu thụ lớn, đòi hỏi cao về độ tin cậy và ổn định cung cấp điện như: khu căn cứ quân sự Cam Ranh, khu du lịch Vinpearl Nha Trang, Nhà máy đóng tàu Hyundai Vinashin, Công ty Cổ phần Dệt may Nha Trang,.v.v… Mặt khác, khi tiến hành công tác cải tạo, nâng cấp điện áp, một số MBA và cáp ngầm lâu năm do chuyển cấp điện áp vận hành từ 15kV lên 22kV cũng tiềm ẩn nguy cơ gây sự cố. Vì vậy, việc quản lý, kiểm soát chất lượng các MBA và cáp ngầm đang vận hành trên lưới điện càng trở nên phức tạp. Các hạng mục thí nghiệm MBA, cáp ngầm như kiểm tra tình trạng bên ngoài, đo cách điện là không đủ để đánh giá tình trạng vận hành, thậm chí còn có thể gây ảnh hưởng xấu như trong trường hợp thí nghiệm điện áp một chiều tăng cao (DC) đối với các MBA và cáp ngầm đã vận hành lâu năm. Để có cơ sở chẩn đoán, đánh giá tình trạng cách điện của các MBA và cáp ngầm mà không phải cắt điện gây ảnh hưởng đến độ tin cậy cung cấp điện thì việc thí nghiệm đo PD-online đối với các thiết bị trên là rất cần thiết nhằm mục đích đảm bảo thiết bị điện hoạt động lâu dài, an toàn và tin cậy trong HTĐ. Chính vì lẽ đó tôi thực hiện đề tài: “Nghiên cứu giám sát phóng điện cục bộ trực tuyến đối với MBA và cáp ngầm trên lưới điện tỉnh Khánh Hòa” 3. MỤC TIÊU VÀ NHIỆM VỤ NGHIÊN CỨU CỦA ĐỀ TÀI 3.1. Mục tiêu của đề tài Mục tiêu của đề tài là đánh giá về đo lường, giải thích thuật toán và các ứng dụng PD hiện có để theo dõi trực tuyến MBA 110kV và cáp ngầm trung thế từ góc độ lý thuyết và thực tiễn. Từ đó đề ra các phương thức vận hành, kế hoạch sửa chữa, bảo trì hợp lý, góp phần ngăn ngừa sự cố một cách hiệu quả. 3.2. Nhiệm vụ nghiên cứu Tìm hiểu tổng quan về thí nghiệm chẩn đoán sự cố các phần tử trên HTĐ, tập trung vào công nghệ đo PD-online MBA 110kV và cáp ngầm trung thế. 4. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU 4.1. Đối tượng nghiên cứu Nghiên cứu được tiến hành trên đối tượng là cáp ngầm trung thế và MBA 110kV thuộc lưới điện KHPC hiện đang QLVH. 4.2. Phạm vi nghiên cứu Nghiên cứu lý thuyết về PD-online đối với MBA và cáp ngầm. Ứng dụng thực tế công nghệ OMICRON vào việc đo và phân tích đánh giá hiện tượng PD MBA 110kV tại TBA 110kV Bình Tân trên lưới điện KHPC QLVH. 5. PHƯƠNG PHÁP NGHIÊN CỨU - Thu thập thông tin tổng quan về MBA 110kV, cáp ngầm trung thế và hiện trạng vận hành, cung cấp điện thuộc KHPC. - Tìm hiểu lý thuyết về phương pháp xác định hiện tượng PD: 3 + Phương pháp truyền thống theo tiêu chuẩn IEC 60270 [4], hay phương pháp đo điện cho phép đo PD một cách trực tiếp; + Phương pháp phi truyền thống xác định sự xuất hiện của PD một cách gián tiếp thông qua các tín hiệu phát sinh từ hiện tượng PD như âm thanh (acoustic), ánh sáng (optic), phản ứng hoá học (chemical), điện từ trường (HF/VHF/UHF). - Ứng dụng công nghệ đo của hãng OMICRON để chẩn đoán phóng điện bên trong MBA 110kV tại TBA 110kV Bình Tân do KHPC hiện đang quản lý vận hành (QLVH). Từ đó đưa ra các nhận xét, đánh giá và kiến nghị. 6. KẾT CẤU CỦA LUẬN VĂN Luận văn gồm 03 chương: Chương 1: Lý thuyết về PD và các phương pháp đo PD. Chương 2: Giám sát PD đối với MBA và cáp ngầm trên HTĐ. Chương 3: Tổng quan về thực trạng MBA 110kV và cáp ngầm trung thế tại KHPC. Ứng dụng thực tế công nghệ đo PD và thiết bị hỗ trợ của hãng OMICRON trong chẩn đoán PD MBA 110kV tại TBA Bình Tân thuộc KHPC. KẾT LUẬN VÀ KIẾN NGHỊ 4 CHƯƠNG 1 LÝ THUYẾT VỀ PD VÀ CÁC PHƯƠNG PHÁP ĐO PD 1.1. LÝ THUYẾT VỀ PD 1.1.1. Khái niệm về PD Theo IEC 60270 [4], PD là hiện tượng phóng điện đánh thủng điện môi cục bộ (bọc khí trong hệ thống cách điện rắn hoặc lỏng) dưới tác dụng của ứng suất điện áp cao, nó chỉ cầu cục bộ, nối tắt một phần giữa các điện cực. PD thường xảy ra tại các vị trí khiếm khuyết (bọc khí, nứt, gãy…) trong môi trường cách điện khi điện trường đạt tới một giá trị nhất định. Mặc dù PD chỉ diễn ra trong một phạm vi hẹp (cục bộ) với một cường độ yếu, nhưng khi đã phát sinh sẽ dần phát triển và có thể dẫn tới phá hủy toàn bộ cách điện. Với điện dung a tượng trưng cho phần cách điện tốt (the healthy part of the insulation), b tượng trưng cho điện dung của điện môi mắc nối tiếp với điện dung của của bọc khí (hoặc lỗ trống) c trong cách điện. Va: điện áp đặt trên toàn bộ cách điện. Hình 1.1a. Mô hình mô phỏng mạch tương đương của PD Với sơ đồ mô phỏng như Hình 1.1a, dạng sóng của PD như Hình 1.1b. q i(t )dt Hình 1.1b. Dạng sóng của điện áp và dòng điện của PD Hình 1.1. Mô hình mô phỏng mạch tương đương và dạng sóng của PD (1.1) 5 Mô tả: Khi điện áp Va tăng, nếu giả thiết chưa có phóng điện trong bọc khí thì điện áp Vc sẽ đi theo dạng sóng sin (đường nét đứt). Tuy nhiên, trong thực tế khi điện áp Vc tăng đạt đến ngưỡng điện áp đánh thủng bọc khí (U+) thì xảy ra phóng điện. Khi đó, điện áp giáng trên bọc khí giảm xuống đến giá trị V+ thì kênh phóng điện tắt. Xuất phát tại vị trí này, Vc sẽ tiếp tục đi theo dạng sóng sin và tiếp quá trình phóng điện ở bán kỳ âm. Thông số đặc tính của PD thông thường được xác định bằng điện tích biểu kiến (apparent charge) với đơn vị được tính là picô-Culong (pC), dòng PD (PD current) hoặc dạng năng lượng PD (PD energy). Bản chất PD là các xung tần số cao, thiết bị đo theo công thức (1.1) trong miền thời gian cần có phổ tần số rộng (MHz). Còn nếu để đo trong miền tần số, biến đổi Fourier của i(t): F{i(t )}= i(t ).e Khi cho = 0: F (0)= i(t ).e j t dt j dt F( ) F( ) q (1.2) (1.3) Đối với các thiết bị điện cao áp thì lớp cách điện có một vai trò vô cùng quan trọng. Phần lớn sự cố thiết bị đều có nguồn gốc từ lớp cách điện bị suy yếu hoặc hư hỏng, mà nguyên nhân sâu xa bắt nguồn từ hiện tượng PD xảy ra trong thời gian dài. Do không thể chế tạo được các vật liệu cách điện 100% tinh khiết, thêm vào đó là các yếu tố khó kiểm soát như tay nghề thi công, ảnh hưởng của môi trường làm việc... nên hiện tượng PD luôn tồn tại, gắn liền đến hết vòng đời của thiết bị điện và không thể bị loại trừ hoàn toàn ra khỏi hệ thống. Chính vì vậy, việc phát hiện và giám sát hiện tượng này đóng vai trò hết sức quan trọng trong công tác dự báo, phòng ngừa sự cố. Các dạng PD cơ bản bao gồm phóng điện bên trong cách điện, phóng điện bề mặt, phóng điện vầng quang và hiện tượng cây điện. a - phóng điện bên trong; c- phóng điện vầng quang; b- phóng điện bề mặt; d- hiện tượng cây điện. Hình 1.2. Các dạng PD 6 Hình 1.3. Những hình ảnh về PD trong vật liệu cách điện 1.1.2. Ảnh hưởng của PD trong hệ thống cách điện Ảnh hưởng của PD bên trong thiết bị điện nói chung và trong cáp điện nói riêng là rất nghiêm trọng, có thể dẫn đến phá hủy hoàn toàn hệ thống cách điện hay thiết bị điện. Ngoài ra, ảnh hưởng của PD trong điện môi rắn là hình thành nên nhiều nhánh phóng điện dẫn đến việc xuất hiện những kênh phóng điện, quá trình này gọi là cây điện. Quá trình phóng điện lặp đi lặp lại sẽ dẫn đến sự hư hỏng về cơ khí và phá hủy tính chất hóa học của vật liệu cách điện. Hư hỏng được gây ra bởi năng lượng bị tiêu tán do những điện tích và ion năng lượng cao. Sự biến đổi hóa học của điện môi cũng có khuynh hướng làm gia tăng tính dẫn điện của điện môi. Sự gia tăng ứng suất điện trong các khe hở càng làm đẩy nhanh hơn tiến trình phá hủy cách điện. 1.2. CÁC PHƯƠNG PHÁP ĐO PD 1.2.1. Giới thiệu Hình 1.4. Phá hủy cách điện do PD 7 Điện năng ngày càng chiếm vai trò quan trọng trong xã hội hiện đại. Để các thiết bị sử dụng điện làm việc hiệu quả, độ tin cậy và chất lượng điện lưới cần được đảm bảo nhằm đáp ứng các nhu cầu của thiết bị. Do đó việc sử dụng các hệ thống giám sát và bảo vệ phù hợp là một trong những vấn đề cần quan tâm nhất. So với các phương pháp bảo vệ trong HTĐ, phân tích PD là một trong những giải pháp triển vọng trong giám sát và phát hiện các sự cố tiềm ẩn trong hệ thống trước khi nó xảy ra. Nhờ vào sự phát triển của các lĩnh vực kỹ thuật khác như điện tử viễn thông, khoa học máy tính và xử lý tín hiệu, bảo vệ hệ thống ngày càng dễ tiếp cận hơn, hiệu quả hơn và có độ nhạy cao. Phân tích PD có khả năng tìm ra các dấu hiệu tiềm tàng của sự cố trong hệ thống bằng cách cơ bản và đơn giản nhất. Với tiêu chuẩn IEC 60270 (High voltage test techniques - Partial discharge measurements: Phương pháp thí nghiệm cao áp-đo PD) và các tiêu chuẩn liên quan đến PD khác, phương pháp đo PD và hiệu chuẩn được thiết lập với hướng dẫn chi tiết. Do không thể đo trực tiếp PD, phương pháp truyền thống (conventional) được sử dụng với tên gọi đo điện tích biểu kiến (apparent charge). Trong khi phương pháp cổ điển chỉ đo sau mỗi lần sự cố hoặc giám sát định kỳ riêng rẽ, phương pháp hiện đại phụ thuộc phần lớn vào sự thay đổi tương đối của các thông số quan trọng trong dải thời gian hoặc tần số. Do đó, việc bảo dưỡng thiết bị theo tình trạng thực tế thiết bị (Condition Based Maintenance - CBM) được coi là một công cụ hữu ích cho giám sát theo thời gian thực các thành phần trong HTĐ. Để thực hiện giám sát on-line PD, hệ số nhiễu tín hiệu là thông số quyết định có xảy ra PD hay không. Đó là lý do các phương pháp phi truyền thống (unconventional) để phát hiện hiện tượng điện từ nhờ vào HF (High Frequency), VHF (Very High Frequency), UHF (Ultra High Frequency) và sóng âm (AE: Acoustic Emission) được phát triển để giám sát on-site (tại hiện trường) và on-line (trực tuyến) PD được quy định bởi tiêu chuẩn IEC 62478 (2016)[5]. 1.2.2. Hệ thống đo PD truyền thống (conventional) (IEC 60270) Đo PD truyền thống đề cập tới phương pháp đo PD theo tiêu chuẩn IEC 60270 [4], tức là đo điện tích biểu kiến cảm ứng trong mạch đo. Điện tích biểu kiến q của xung PD là điện tích nếu đưa vào trong một thời gian ngắn giữa các điểm nối của thiết bị được thí nghiệm trong một mạch đo cụ thể, sẽ cho cùng một giá trị đọc trên thiết bị đo như xung dòng điện PD của bản thân nó. Đơn vị đo thường là pC. Do không thể đo PD trực tiếp, phương pháp này sử dụng các mạch đo tương đương. Mặc dù điện tích biểu kiến đo được bởi tổng trở đo (measuring impedance) khó có quan hệ chính xác tuyệt đối với phóng điện thực bên trong đối tượng thử, sự tăng tuyến tính của điện tích biểu kiến đồng nghĩa với xảy ra PD với biên độ cao hơn, từ đó đánh giá được mức độ nguy hiểm của hiện tượng PD. Tiêu chuẩn IEC 60270 cũng đề cập tới xác định mạch đo, các đại lượng đo, quy định hiệu chuẩn. Phương pháp này đã được sử dụng rộng rãi tại on-site, trong phòng thí nghiệm. 8 Cơ sở lý thuyết của phép đo điện tích biểu kiến: Để hiểu rõ về cơ chế đo theo IEC 60270, cơ sở vật lý của hệ thống đo cần được phân tích trước. Như đã đề cập, việc đo trực tiếp giá trị điện tích PD là không thể thực hiện được do không thể tiếp cận đến nguồn PD bên trong thiết bị được thử. Do đó, chỉ có điện áp quá độ rơi trên đầu cực thiết bị được thử là có thể phát hiện được. Sơ đồ đơn giản tương đương gồm các tụ được gọi là mô hình a-b-c và mạch đo thể hiện trên hình sau: Ca: Điện dung của thiết bị được thử không bị ảnh hưởng bởi PD. Cb: Điện dung rò (stray capacitance) của nguồn PD. Cc: Điện dung trong (internal capacitance) của nguồn PD. Hình 1.5. Mô hình tụ a-b-c và cơ chế đo Như quan sát trên sơ đồ, ba giá trị điện dung đại diện cho điện dung của hệ thống cách điện, điện dung nối tiếp của PD xảy ra, và điện dung của PD tương ứng. Thông thường, Cb< - Xem thêm -