Đăng ký Đăng nhập
Trang chủ Nghiên cứu chiếu xạ thanh long trên thiết bị gia tốc điện tử uerl 10 15s2 ...

Tài liệu Nghiên cứu chiếu xạ thanh long trên thiết bị gia tốc điện tử uerl 10 15s2

.PDF
83
1
104

Mô tả:

THƯ VIỆN BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Nguyệt Lệ NGHIÊN CỨU CHIẾU XẠ THANH LONG TRÊN THIẾT BỊ GIA TỐC ĐIỆN TỬ UERL-10-15S2 Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao Mã số: 604405 LUẬN VĂN THẠC SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. TRẦN VĂN HÙNG Thành phố Hồ Chí Minh - 2010 LỜI CÁM ƠN Trong quá trình học tập tại trường Đại học Sư phạm Thành phố Hồ Chí Minh, tôi đã được Quý Thầy Cô cung cấp cho tôi những kiến thức chuyên sâu, giúp tôi trưởng thành trong học tập và nghiên cứu khoa học. Tôi xin gửi lời biết ơn đến tất cả Quý Thầy Cô đã tận tình giảng dạy tôi trong suốt thời gian học tại trường. Tôi xin gửi lời biết ơn sâu sắc đến TS. Trần Văn Hùng, Nghiên cứu viên chính Trung tâm nghiên cứu và triển khai công nghệ bức xạ - Viện Năng lượng Nguyên tử Việt Nam đã định hình cho tôi lựa chọn đề tài này và tận tình hướng dẫn tôi trong suốt thời gian thực hiện luận văn. Đặc biệt, tôi đã được học ở Thầy phương pháp làm việc khoa học và những bài học có được từ thực tiễn, từ vốn sống, từ sự am hiểu thấu đáo của riêng Thầy mà khó có quyển sách nào có thể diễn đạt hết được những điều đó. Tôi cũng chân thành cám ơn Ths. Trần Khắc Ân, Giám đốc Trung tâm nghiên cứu và triển khai công nghệ bức xạ - Viện Năng lượng Nguyên tử Việt Nam đã tạo điều kiện rất tốt cho tôi trong suốt quá trình thực hiện đề tài này. Xin được phép gửi lời cám ơn đến Quý Thầy trong Hội đồng Bảo vệ Luận văn Thạc sĩ đã đọc, đóng góp ý kiến, nhận xét và đánh giá luận văn. Tôi cũng gửi lời cám ơn Cử nhân Nguyễn Anh Tuấn và cử nhân Cao Văn Chung - Phòng vật lý Trung tâm nghiên cứu và triển khai công nghệ bức xạ - đã có những ý kiến đóng góp quý báu và dành cho tôi nhiều sự hỗ trợ nhiệt tình trong quá trình thực hiện luận văn. Tôi cũng xin được phép gửi lời cám ơn đến Sở Giáo dục – Đào tạo TP Hồ Chí Minh, Ban Giám Hiệu trường THPT Bùi Thị Xuân và các đồng nghiệp đã tạo nhiều điều kiện thuận lợi và giúp đỡ tôi trong quá trình học tập, thực hiện luận văn. Cuối cùng, xin khắc sâu công ơn Cha Mẹ, người thân, bạn bè luôn ủng hộ, động viên và giúp đỡ tôi trong suốt khóa học. DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT Các ký hiệu D1 : Liều chiếu từ đầu quét 1 D2 : Liều chiếu từ đầu quét 2 DT : Liều chiếu tổng Các chữ viết tắt ACTL : Activation Library ADN : Acid Deoxyribonucleic APHIS : Animal Plant Health Inspection Service ARN : Axít ribonucleic EB : Electron beam EDB : Ethylene dibromide EtO : Ethylene oxi ENDF : Evaluated Nuclear Data File ENDL : Evaluated Nuclear Data Library IAEA : International Atomic Energy Agency LET : Linear energy transfer MCNP : Monte Carlo N-Particle NFI : National Fisheries Institute NFPA : National Food Processors Association EUREP : Euro-Retailer Produce Working Group- EUREP). GAP : Good Agricultural Practice R. Dose : Relative Dose WHO : World Health Organization MỞ ĐẦU Chiếu xạ thực phẩm và rau quả là sử dụng bức xạ ion hóa, chẳng hạn như chùm điện tử, tia gamma hoặc tia X để giảm hoặc ngăn cản sự sinh trưởng hoặc tiêu diệt những vi sinh vật có hại trong vật phẩm. Qua nhiều thập kỷ nghiên cứu đã khẳng định chiếu xạ có rất nhiều ứng dụng hữu ích, ví dụ tiêu diệt các côn trùng trên hoa quả và hạt ngũ cốc, chống nảy mầm khoai tây, hành tây, làm chậm chín các loại quả tươi và rau củ, cũng như gia tăng tính an toàn và khử trùng các sản phẩm thịt tươi đông lạnh, hải sản và trứng sữa.v.v. Lịch sử của chiếu xạ thực phẩm có thể bắt đầu từ khi khám phá ra tia X bởi Roentgen 1895 và chất phóng xạ bởi Becquerel 1896. Theo sau những khám phá này đã có rất nhiều nghiên cứu ảnh hưởng của bức xạ lên các cơ quan sinh học. Đầu thế kỷ 20, các nghiên cứu cho thấy bức xạ ion hóa rất hữu ích trong ứng dụng chiếu xạ thực phẩm. Nguồn bức xạ đầu tiên được sử dụng là máy gia tốc hạt, tạo ra chùm điện tử tới năng lượng 24 MeV, vào cuối những năm 40 của thế kỷ 20, các đồng vị phóng xạ nhân tạo như Co60 và Cs137 (phát bức xạ gamma) đã được ứng dụng trong chiếu xạ công nghiệp một cách phổ biến. Tuy nhiên, các thiết bị gia tốc điện tử ngày nay vẫn có những tính chất ưu việt mà các thiết bị sử dụng nguồn Co60 hoặc Cs137 không có được. Chẳng hạn như nó không để lại chất thải phóng xạ (vì nguồn Co60 hoặc Cs137 khi hoạt độ quá thấp không sử dụng trong ứng dụng chiếu xạ phải chôn cất như là một chất thải phóng xạ), chỉ khi hoạt động nó mới phát bức xạ ion hóa, còn khi không sử dụng, tắt nguồn điện, thì chùm bức xạ ion hóa cũng tắt.v.v.. Chính vì vậy, ngày nay trên thế giới có khoảng hơn 200 thiết bị gia tốc điện tử đang hoạt động, phục vụ cho chiếu xạ khử trùng thực phẩm, dụng cụ y tế, nghiên cứu chế tạo vật liệu mới.v.v.. Ở Việt Nam, hiện nay tại công ty Sơn Sơn (Bình Chánh) đã sử dụng chùm tia X từ máy gia tốc điện tử 5 MeV để xử lý thực phẩm. Chùm tia X này được tạo ra từ chùm điện tử 5 MeV đập lên bia W. Vào cuối năm nay (2010), tại Trung tâm Nghiên cứu và Triển khai Công nghệ Bức xạ sẽ đưa vào vận hành thiết bị chiếu xạ dùng trực tiếp chùm điện tử 10 MeV từ máy gia tốc để xử lý hoa quả, thực phẩm đông lạnh phục vụ xuất khẩu và khử trùng dụng cụ y tế. Cũng cần nói thêm, một tình hình có tính chất rất thời sự trong việc xuất khẩu trái cây của Việt Nam là: Mới đây Hoa Kỳ đã chấp nhận cho phép nhập khẩu trái Thanh long của Việt Nam. Tuy nhiên, một yêu cầu bắt buộc từ phía Hoa Kỳ là Thanh long phải qua chiếu xạ để đảm bảo kiểm dịch côn trùng. Chính vì vậy, tác giả lựa chọn đề tài “Nghiên cứu chiếu xạ Thanh long trên thiết bị gia tốc điện tử UERL- 10-15S2” nhằm góp phần giải quyết vấn đề chiếu xạ trái Thanh Long xuất khẩu của Việt Nam khi thiết bị gia tốc điện tử UERL- 10-15S2 đi vào hoạt động. Mục đích của đề tài xuất phát từ đặc điểm về khả năng xuyên sâu của chùm điện tử thấp hơn tia X và tia gamma nên trong khuôn khổ của luận văn chủ yếu tập trung nghiên cứu phân bố liều trên trái Thanh long nhằm tiêu diệt các côn trùng, các ấu trùng và các trứng của côn trùng, sâu bệnh trên trái Thanh long, đảm bảo yêu cầu kiểm dịch. Chính vì vậy, luận văn mang một ý nghĩa thực tế rất cao, nhằm đáp ứng xuất khẩu trái Thanh long vào thị trường Mỹ, Châu Âu cũng như các nước khác, góp phần nâng cao giá trị xuất khẩu của trái Thanh long Việt Nam. Để đạt được những mục tiêu trên, luận văn có những nhiệm vụ cơ bản sau: - Tìm hiểu kích cỡ trái Thanh long, cách đóng gói xuất khẩu. - Tính toán phân bố liều trên bề mặt trái Thanh long. - Tính toán phân bố liều ở bên trong trái Thanh long. - Độ bất đồng đều về liều. - Các giải pháp giảm hệ số bất đồng đều liều, đặc biệt biên độ bất đồng đều về liều trên bề mặt trái Thanh long nhằm đáp ứng tiêu diệt côn trùng trên bề mặt. - Đánh giá năng suất xử lý của thiết bị. Để thực hiện luận văn, chúng tôi dùng chương trình MCNP, một phần mềm vận chuyển bức xạ đa năng dựa trên phương pháp Monte-Carlo đã được xây dựng ở phòng thí nghiệm quốc gia LosAlamos, Mỹ. Đây là một công cụ tính toán mạnh, có thể mô phỏng vận chuyển nơtron, photon và electron, và giải pháp bài toán vận chuyển bức xạ 3 chiều dùng trong nhiều lĩnh vực tính toán của Vật lý hạt nhân. Trong đề tài này MCNP được sử dụng để tính toán phân bố liều trong xử lý trái Thanh long. Luận văn được sắp xếp thành ba chương theo cấu trúc như sau: CHƯƠNG 1: HÓA BỨC XẠ, HIỆU ỨNG CỦA BỨC XẠ LÊN CƠ QUAN SINH HỌC VÀ THÀNH PHẦN THỰC PHẨM 1.1 Tương tác của hạt tích điện với vật chất. 1.2 Cơ sở hóa bức xạ. 1.3 Định nghĩa liều, đơn vị về liều. 1.4 Hiệu ứng của bức xạ lên cơ quan sinh học. 1.4.1 Các cơ quan vi sinh. 1.4.2 Hiệu ứng của bức xạ ion hóa. 1.5 Hiệu ứng của bức xạ lên thành phần thực phẩm. 1.6 Ứng dụng của chiếu xạ thực phẩm. CHƯƠNG 2: THIẾT BỊ GIA TỐC ĐIỆN TỬ UERL 1015S VÀ CODE MCNP 2.1 Sơ bộ về sử dụng máy gia tốc điện tử trong chiếu xạ. 2.2 Phân bố chùm tia và liều bên trong vật chất chiếu xạ.. 2.3 Thiết bị gia tốc điện tử UERL-10-15S2. 2.4 Code MCNP. CHƯƠNG 3: TÍNH TOÁN PHÂN BỐ LIỀU CHIẾU XẠ THANH LONG 3.1 Một số nhìn nhận chung. 3.2 Phân bố liều bề mặt. 3.3 Phân bố liều theo độ sâu. 3.4 Hệ số bất đồng đều. 3.5 Các kỹ thuật làm giảm độ bất đồng đều. 3.6 Đánh giá năng suất của thiết bị. CHƯƠNG 1 HÓA BỨC XẠ, HIỆU ỨNG CỦA BỨC XẠ LÊN CƠ QUAN SINH HỌC VÀ THÀNH PHẦN THỰC PHẨM Bức xạ là những dạng năng lượng phát ra trong quá trình vận động và biến đổi của vật chất. Về mặt vật lý nó được thể hiện dưới dạng sóng, hạt hoặc sóng hạt. Mỗi dạng bức xạ được đặc trưng bởi một dải năng lượng hay tương ứng với nó, một dải bước sóng xác định. Mối tương quan giữa năng lượng E và bước sóng λ của bức xa được mô tả bởi biểu thức: E  h  c 2 (1.1) Trong đó h - hằng số Planck; c- vận tốc ánh sáng trong chân không. Hiện nay, các dạng bức xạ phổ biến được áp dụng là bức xạ electron, tia gamma, bức xạ hãm, bức xạ tử ngoại, chùm ion, bức xạ nơtron. Còn các nguồn bức xạ thông dụng bao gồm các nguồn bức xạ thụ động (nguồn đồng vị phóng xạ như Co60, Cs137…) và các nguồn bức xạ chủ động ( máy gia tốc, thiết bị phát chùm tia) [4]. Để đi sâu nghiên cứu quá trình truyền năng lượng của bức xạ cho vật chất chúng ta xem xét các đặc trưng sau đây: 1.1 . Tương tác của hạt tích điện với vật chất [5],[13] Các hạt mang điện bao gồm các hạt nhẹ mang điện (electron, positron) và các hạt nặng mang điện (proton, hạt  , mảnh vỡ hạt nhân...). Các hạt mang điện này khi đi vào môi trường chúng có thể tham gia các loại tương tác khác nhau với nguyên tử như một toàn bộ, với các electron riêng lẻ của vỏ nguyên tử hay với hạt nhân nguyên tử và truyền năng lượng cho nguyên tử, cho electron hay cho hạt nhân đó. Các tương tác đó có thể là: - Tán xạ đàn hồi với nguyên tử như một toàn bộ, electron không mất năng lượng, chỉ đổi hướng chuyển động. - Va chạm không đàn hồi với các electron của vỏ nguyên tử: + Kích thích: bức xạ mất năng lượng + Ion hóa: bức xạ mất năng lượng. - Tán xạ trên nhân + Tán xạ đàn hồi: bức xạ không mất năng lượng, chỉ đổi hướng bay. + Tán xạ không đàn hồi: bức xạ mất năng lượng và phát bức xạ hãm. - Gây ra phản ứng hạt nhân. Tùy theo loại bức xạ (nặng hay nhẹ) và tùy thuộc vào năng lượng của bức xạ vào môi trường mà xác xuất xảy ra các quá trình trên là lớn hay bé. Các tương tác khả dĩ của hạt mang điện với nguyên tử của môi trường được minh họa trong hình 1.1. Hình 1.1 Các tương tác khả dĩ của hạt mang điện với nguyên tử của môi trường Đối với ứng dụng trong chiếu xạ thực phẩm và rau quả, bức xạ được quan tâm chủ yếu là điện tử. Phạm vi nghiên cứu của luận văn là dùng trực tiếp chùm điện tử 10 MeV từ thiết bị gia tốc để xử lý hoa quả, cụ thể là trái thanh long, vì vậy chúng tôi xin được đi sâu vào khảo sát tương tác của điện tử với vật chất. Khi các điện tử nhanh (điện tử năng lượng cao) đi qua vật chất, chúng bị va chạm Coulomb với các điện tử và hạt nhân nguyên tử, mỗi va chạm đều có thể gây ra nhiều kiểu mất mát năng lượng và góc lệch điện tử. Đối với những điện tử tới có năng lượng trong khoảng 1 -10 MeV, khối lượng tương đối tính rất lớn hơn khối lượng điện tử nguyên tử, nhưng rất nhỏ so với khối lượng hạt nhân nguyên tử. Vì vậy, nếu chỉ xét thuần túy động học, một va chạm tán xạ với một hạt nhân nặng sẽ không dẫn đến truyền năng lượng, nhưng sẽ làm thay đổi đáng kể đường đi của điện tử (sự hãm điện tử một cách đột ngột) có thể làm phát sinh tia X. Ngược lại, các va chạm với các điện tử nguyên tử có thể dẫn đến truyền năng lượng đáng kể, bứt các điện tử ấy ra khỏi quỹ đạo của chúng ( sự ion hóa). Đến lượt mình, các điện tử thứ cấp nhanh này cũng có thể bị va chạm Coulomb, sinh ra các điện tử tam cấp, tứ cấp… cho tới khi động năng do điện tử tới bị hấp thụ gần hết. Xét về phương diện biến thiên năng lượng theo chiều sâu tương tác giữa điện tử với vật chất có thể xảy ra các quá trình vật lý sau đây: - Tán xạ không đàn hồi trên các điện tử của nguyên tử. - Phát xạ điện tử thứ cấp. - Sự va chạm (tán xạ) đàn hồi với hạt nhân làm mở rộng chùm tia theo chiều ngang. - Phát bức xạ hãm( tia X) chủ yếu là do các va chạm hạt nhân. 1.1.1. Tán xạ không đàn hồi trên các điện tử của nguyên tử Sơ đồ tương tác trên hình 1.2 cho thấy một điện tử nhanh đi tới với vận tốc v làm chuyển động một điện tử nguyên tử. Khoảng cách gần nhất giữa các hạt được gọi là thông số va chạm, được kí hiệu là b . Hình 1.2 Sơ đồ va chạm giữa điên tử tới và một điện tử nguyên tử Độ biến đổi vi phân trong momen dp chuyển đến điện tử nguyên tử trong thời gian dt bằng lực điện trường F giữa các hạt được xác định theo phương trình: F dp e 2  2 (đơn vị cgs) dt r (1.2) r : khoảng cách tức thời giữa các điện tử. Nếu giả thuyết rằng năng lượng được truyền E , là một phần tương đối nhỏ của năng lượng điện tử tới E và rằng hướng của điện tử tới thay đổi không đáng kể khi va chạm, tổng biến thiên momen p của nguyên tử điện tử thu được bằng cách lấy tích phân theo thời gian của thành phần vuông góc. Vì dt  dx nên p được xác định theo công thức: v p  ( e2 dx 2e2 )  cos  ( 2 )  v r bv (1.3) Điện tử tới bị mất năng lượng E . Mà E được xác định bằng công thức: E  (p)2 2m (1.4) với m là khối lượng nghỉ của điện tử. Thay (1.3) vào (1.4) ta được: E  2e 4 mv 2b2 (1.5) Nếu gọi N là mật độ của các nguyên tử có nguyên tử số Z , khi đó sẽ có (2 bdb) NZ .s các điện tử nguyên tử trên gia số độ dài s có thông số va chạm nằm giữa b và b  db được biễu diễn trong hình 1.3. Do đó, sự mất mát năng lượng va chạm trung bình trên đơn vị chiều dài của điện tử tới ( E )coll , s được tính bằng cách lấy tích phân trên tất cả các giá trị của thông số va chạm, như công thức: (E / s )coll  4 NZ (e4 / mv 2 )  (db / b)  4 NZ (e4 / mv 2 )ln(bmax / bmin ) (1.6) Vì các hạt tới và các hạt bia đều là điện tử, nên năng lượng truyền cực đại là E / 2 ; thông số va chạm tối thiểu có thể tính từ phương trình (1.5). Giá trị cực đại này của thông số va chạm cần phải kể đến một thực tế là các điện tử nguyên tử không hoàn toàn tự do mà bị liên kết trong các trạng thái nguyên tử khác nhau. Hình 1.3 Một điện tử tới truyền năng lượng E cho mỗi điện tử trong thể tích hình trụ ( (2 bdb / s ) Dựa trên mô hình thống kê của nguyên tử có thể xác định năng lượng kích thích và ion hóa trung bình Iav ở dạng vi phân. ( dE e4 E )coll  4 NZ ( 2 )ln( ) (1.7) ds mv I av I av xấp xỉ với nguyên tử số của vật liệu, với hằng số tỷ lệ cùng bậc với năng lượng Rydberg 13.5 eV. Chú ý rằng ở các năng lượng điện tử phi tương đối tính, E  mv 2 và vì thế công suất hãm do va chạm giảm xấp xỉ 2 theo E 1 . Tuy nhiên, ở năng lượng tương đối tính thì vận tốc v gần bằng tốc độ ánh sáng và công suất hãm sẽ tăng logaric với năng lượng. 1.1.2. Phát xạ điện tử thứ cấp Phổ của điện tử thứ cấp, do các quá trình va chạm sinh ra, có thể thu được nếu chú ý rằng xác suất tương tác vi phân d cần phải tỷ lệ với 2 bdb . Việc lấy vi phân phương trình (1.5) cho thấy phổ năng lượng biến thiên như biểu thức d / d (E )  (E )2 (1.8) Vì thế, phổ này nặng về vùng năng lượng thấp hơn; đối với các điện tử có năng lượng thấp hơn 10 keV, thì năng lượng đó thường được xem như là bị suy giảm ngay tại chỗ. Còn các điện tử thứ cấp nhanh hơn thì sẽ rời xa khỏi chỗ va chạm và sẽ sinh ra các điện tử khác. Quá trình suy giảm năng lượng này gần như tức thời và những điện tử cuối cùng đạt đến năng lượng nhiệt và hoặc bị bắt giữ hoặc bị dẫn điện thoát đi. 1.1.3. Sự va chạm (tán xạ) đàn hồi với hạt nhân làm mở rộng chùm tia theo chiều ngang. Bây giờ chúng ta xét sự va chạm giữa một điện tử tương đối tính với một hạt nhân nặng có điện tích Ze, như hình 1.4. Hình 1.4 Sơ đồ minh họa va chạm giữa một điện tử tới và một hạt nhân nặng có điện tích Ze Tương tự với phương trình (1.3), sự biến thiên momen động lượng p của điện tử tới là 2.Ze2 . Góc bc tán xạ do tương tác này chính là   p / p  2 Ze2 /(bcp) (1.9) Khi chùm tia điện tử xuyên sâu vào vật chất, mỗi điện tử riêng lẻ sẽ chịu nhiều lần lệch hướng như thế, với kết quả tích lũy lại sẽ chính là sự trãi rộng bề ngang của chùm tia. Vì giá trị có xác suất nhất của góc tán xạ trung bình ấy phải là 0 (các va chạm đều là không có hướng ưu tiên), cho nên có thể sử dụng một hệ thức cho góc tán xạ trung bình bình phương <  2 > bằng cách lấy tích phân bình phương của phương trình (1.9) trên toàn bộ khoảng cho phép của các thông số va chạm. Nếu giả thuyết rằng những thay đổi của p là bé, tích phân này sẽ thành biểu thức  e4  ln(bmax / bmin ) 2 2  c p    2   8 xNZ 2  (1.10) Với x là độ xuyên sâu vào trong vật hấp thụ. Điện tích hiệu dụng trong công thức này thực sự phải là hàm của thông số va chạm b, vì các điện tử nguyên tử gây che chắn các điện tích hạt nhân. Điều đó thường được tính đến bằng việc lựa chọn chính xác giá trị bmax . Tuy nhiên, góc tán xạ trung bình bình phương thì không nhạy lắm với giá trị thực của thông số va chạm, dù là cực đại hay cực tiểu, vì chúng chỉ xuất hiện trong thừa số dạng hàm logarith. Vì cp là bằng hai lần động năng điện tử E, một phép tính xấp xỉ thô cho góc tán xạ bình phương trung bình sẽ là:   2  a ( Z / E )2 x (1.11) với a là một hằng số. Đối với nước một biểu thức gần đúng rất hữu ích sẽ   2  6 x(cm) /  E ( MeV )  2 (1.12) 1.1.4. Phát bức xạ hãm( tia X) chủ yếu là do các va chạm hạt nhân [2],[3] Khi hạt electron đi đến gần hạt nhân, lực hút Coulomb mạnh làm nó thay đổi đột ngột hướng bay ban đầu, tức là hạt electron có thể thu được một gia tốc lớn. Gia tốc của hạt electron thu được tỷ lệ với điện tích của hạt nhân và tỷ lệ nghịch với khối lượng của nó. Theo điện động lực cổ điển, khi một hạt tích điện nói chung hay hạt electron nói riêng chuyển động có gia tốc, thì nó sẽ phát ra bức xạ điện từ, được gọi là bức xạ hãm. Phổ bức xạ hãm là phổ liên tục, có năng lượng từ 0 đến giá trị cực đại E0 của động năng hạt electron vào. Sự mất mát năng lượng của hạt electron trong trường hợp này gọi là mất năng lượng do bức xạ. Độ mất mát năng lượng trên một đơn vị đường đi do electron phát bức xạ hãm được xác định theo công thức  (E / s )rad  4 NE0 Z 2 re 2   ln   2 E0 1   f (Z )  2 me c 3  (1.13) Trong đó N là số nguyên tử trong một đơn vị thể tích; E0 là năng lượng của electron;   1 là 137 hằng số cấu trúc tinh tế; Z là điện tích của hạt nhân; me là khối lượng nghỉ của electron; re là bán kính cổ điển của electron được xác định bởi công thức re  e2  2,82.1013 cm 2 mec (1.14) Ta thấy, độ mất mát năng lượng do phát bức xạ hãm tăng theo hàm lôgarit tự nhiên của năng lượng. Khi năng lượng tăng, độ mất mát năng lượng do phát bức xạ hãm tăng theo, trong khi đó độ mất mát năng lượng do ion hóa hầu như không đổi. Khi năng lượng của electron cỡ vài MeV trở lên, mối liên hệ giữa độ mất mát năng lượng do phát bức xạ hãm và do ion hóa được xác định theo công thức sau: (dE / dx)rad EZ  (dE / dx)col 800 (1.15) Ngoài ra, độ mất mát năng lượng trên một đơn vị đường đi phụ thuộc vào nguyên tử số của chất hấp thụ. Đối với một môi trường hấp thụ cho trước, khi năng lượng nhỏ độ mất mát năng lượng do ion hóa và kích thích môi trường chiếm ưu thế, tại đó, tỷ số giữa độ mất mát năng lượng do phát bức xạ hãm và do ion hóa nhỏ hơn đơn vị. Khi năng lượng tăng, tỷ số số này tăng dần, đến giá trị năng lượng của electron đạt giá trị năng lượng tới hạn Ecr , khi đó độ mất mát năng lượng do phát bức xạ hãm bằng độ mất mát năng lượng do ion hóa. Tại năng lượng tới hạn E  Ecr ta có phương trình  dE   dE   dx    dx    rad  col (1.16) Ta thấy năng lượng tới hạn phụ thuộc vào điện tích của hạt nhân hay chính xác phụ thuộc vào nguyên tử số của môi trường. Từ biểu thức (1.15) ta nhận thấy rằng: Nguyên tử số của môi trường càng lớn, năng lượng tới hạn càng giảm. Năng lượng tới hạn được xác định theo công thức Ecr  800MeV Z  1,2 (1.17) Khi năng lượng của electron lớn hơn nhiều năng lượng tới hạn, sự mất mát năng lượng của nó chủ yếu do phát bức xạ hãm. Khi đó năng lượng của electron giảm theo hàm số mũ khi đi xuyên qua vật chất được xác định theo công thức  E  E0 exp   x  (1.18)   lrad  Trong đó lrad là chiều dài bức xạ của môi trường. Nó được định nghĩa là khoảng cách mà năng lượng của electron giảm đi hệ số 1  0,367 do phát bức xạ hãm. E0 là năng lượng ban đầu của e electron. 1.2. Cơ sở hóa bức xạ [5],[6],[9] 1.2.1.Cơ sở lý thuyết của công nghệ xử lý thực phẩm bằng năng lượng ion hóa Ở trạng thái cơ bản, số electron quỹ đạo của nguyên tử trong phân tử là 2 hoặc 8, các electron kết cặp với nhau, hai electron trong một cặp có spin ngược chiều nhau. Ví dụ phân tử nước được biễu diễn: .. H:O:H .. Dấu “ : ” Biễu diễn số electron ngoài cùng của H (hai), O (tám). Khi vật chất bị gia nhiệt, chiếu với ánh sáng, năng lượng ion hóa hay tương tác với enzime thì các nguyên tử hay phân tử trong đó sẽ bị mất một hoặc vài electron hóa trị và trở thành dạng gốc tự do. Số lượng gốc tự do được tạo thành phụ thuộc vào năng lượng, cường độ của các tác nhân gây kích thích. Bây giờ, ta xét phân tử nước là thành phần chủ yếu của đa số sinh vật sống. Trong trường hợp này các gốc tự do sẽ được hình thành do sự thủy phân của nước dưới tác dụng của bức xạ. Đầu tiên là sự ion hóa H 2O  Ionizing _ energy  HOH   e : một cặp ion Sau quá trình này một số phản ứng có thể xảy ra: - Một là: Cặp ion có thể tái hợp lại để trở thành một phân tử bình thường. Khi đó không có tổn hại gì xảy ra. - Hai là: Electron có thể gắn vào một phân tử nước trung hòa và trở thành một loại ion thứ ba H 2O  e  HOH  - Ba là electron có thể được bao quanh bởi 5 đến 7 phân tử nước và hình thành nên eeq ( gọi là tương đương electron) Các ion HOH  và HOH  không bền vững lắm và có thể bị tách thành các phần tử nhỏ hơn HOH   H   OH * HOH   OH   H * OH * và H* được gọi là các gốc tự do. Thời gian hình thành các gốc tự do vào khoảng 1  s . Vậy kết quả của sự thủy phân do bức xạ là sự hình thành các ion H  , OH  và các gốc tự do . Tương đương electron e-eq OH* và H* và e eq cũng có tác dụng như một gốc tự do. Do đó OH * và H * và eeq được gọi chung là các gốc tự do sơ cấp. Các ion H  và OH  có thể tái hợp mà không gây tổn hại sinh học nào. Các loại ion này cũng thường xuất hiện trong nước. Các gốc tự do là những phân tử trung hòa có một electron không ghép cặp ở vỏ ngoài cùng nên chúng có hoạt tính hóa học rất mạnh. Chúng cũng không bền, thời gian sống vào khoảng 1  s . Tuy nhiên, trong khoảng thời gian ấy, chúng có thể khuếch tán và gây tương tác tại một chỗ xa trong tế bào ( khoảng nm). Các gốc tự do tương tác với các phân tử khác theo phản ứng oxy hóa – khử. Chúng có thể công phá phân tử ADN, bẽ gãy các liên kết của phân tử đó và do đó gây ra một tổn thương điểm ở một nơi xa điểm hình thành gốc tự do. Các gốc tự do cũng có thể tạo ra hydrogen peroxide, H 2O2 , rất độc đối với tế bào và có thể được hình thành bằng nhiều cách. Với bức xạ có LET(năng suất truyền năng lượng tuyến tính) cao, do mật độ gốc tự do cao, hai gốc tự do OH * có thể có kết hợp lại để hình thành H 2O2 . OH *  OH *  H 2O2 Hay trong trường hợp có nhiều Oxy, hydrogen peroxide được hình thành theo chuỗi sau H *  O2  HO*2 Các gốc tự do Hydroperoxyl HO*2 không bền, có thể kết hợp với nhau hay với H * để tạo thành hydrogen peroxide: 2HO*2  H 2O2  O2 HO*2  H *  H 2O2 H 2O2 , OH * , H * và e -eq được xem là sản phẩm gây hại chính của quá trình xạ phân, nó là chất độc của tế bào. Ngoài ra, hai loại gốc tự do khác cũng có thể được hình thành. Một số phân tử hữu cơ khác, ký hiệu RH, có thể trở thành các gốc tự do RH  Ionizing _ energy  RH *  H *  R* Khi có oxy, một loại gốc tự do khác cũng hình thành : R*  O2  RO2 Như vậy, một cơ thể sống là một thể thống nhất có khả năng tự điều khiển họat động và bảo vệ các tác nhân gây hại bên ngoài, chúng có khả năng tự phục hồi khi bị tổn thương. Khi tác nhân gây hại đủ lớn, ngoài khả năng tự phục hồi của một cơ thể sống thì nó sẽ chết đi. Đây là cơ sở của việc điều khiển giá trị năng lượng ion hóa làm tác nhân tiêu diệt vi khuẩn, ký sinh trùng trong xử lý thực phẩm. Với liều lượng đủ lớn, năng lượng ion hóa có thể tiêu diệt các sinh vật từ dạng đơn bào đến phức tạp. 1.2.2. Tổn thương do bức xạ ion hóa 1.2.2.1 Tổn thương ở mức độ phân tử Các tổn thương ở phân tử hữu cơ nhưng quan trọng nhất là các đại phân tử hữu cơ là cơ sở đầu tiên gây nên tổn thương ở mức độ tế bào, mô và toàn cơ thể. Năng lượng của chùm tia được truyền trực tiếp hay gián tiếp cho các phân tử hữu cơ tại chỗ chiếu hay lan ra xung quanh. Như trên đã nói, bức xạ ion hóa có thể kích thích hoặc ion hóa các nguyên tử cấu tạo nên phân tử từ đó phá vỡ các mối liên kết, phân ly các phân tử, tạo ra các sản phẩm hóa học mới gây nên tổn thương lớn hơn và lan rộng hơn. Biểu hiện của tổn thương phân tử do chiếu xạ là:  Giảm hàm lượng của một hợp chất hữu cơ nhất định nào đó sau chiếu xạ so với lúc trước chiếu xạ. Trong thực tế, người ta thường theo dõi các men sinh học (enzym), các protein đặc hiệu, các axít nhân… trong đó các nhóm chức hóa học như gốc amin( NH2), cacboxy (COOH), gốc SH bị tách lìa khỏi cấu trúc của các phân tử hữu cơ. Sở dĩ hàm lượng của chúng bị giảm đi vì quá trình tổng hợp và sản xuất có thể bị kìm hãm, cũng có thể sự phân hủy và chuyển hóa của các chất đó đã tăng lên do chiếu xạ.  Hoạt tính sinh học của các phân tử hữu cơ bị suy giảm hoặc mất hẳn do cấu trúc phân tử bị tổn thương hoặc bị phá vỡ. Ta đã biết mỗi phân tử hữu cơ có một cấu trúc nhất định, cấu trúc đó quyết định chức năng hoạt động của nó. Bức xạ ion hóa tách rời hoặc phá vỡ các nhóm chức hóa học khỏi cấu trúc phân tử làm cho chúng không còn hoạt động sinh học đặc biệt nữa.  Tăng hàm lượng một số chất có sẵn hoặc xuất hiện những chất lạ trong tổ chức sinh học. Thông thường đó là những chất có hại, độc cho tổ chức sinh học. Chúng là sản phẩm mới của sự phân ly các phân tử hữu cơ hoặc của các phản ứng hóa học mới xảy ra do chiếu xạ. Điển hình là H 2O2 , histamin, v.v. Một trong các tổn thương phân tử ảnh hưởng đến chức năng sinh học quan trọng là tổn thương phân tử ADN và ARN. Các tổn thương đó có thể ảnh hưởng trực tiếp đến hoạt động di truyền của tế bào. 1.2.2.2. Tổn thương ở mức độ tế bào Tế bào là đơn vị sống cơ bản. Về cấu tạo, tế bào gồm một nhân tế bào (nuclear) ở giữa, một chất lỏng bao quanh gọi là bào tương (cytoplasma). Bọc quanh bào tương là một màng gọi là màng tế bào (membrane).(Hình 1.5). Mỗi bộ phận thực hiện những chức năng riêng rẽ. Hình 1.5 Cấu tạo tế bào Màng tế bào làm nhiệm vụ trao đổi chất với môi trường ngoài. Bào tương là nơi xảy ra các phản ứng hóa học, bẻ gãy các phân tử phức tạp thành các phân tử đơn giản và lấy năng lượng nhiệt tỏa ra (dị hóa:catabolis) tổng hợp các phân tử cần thiết cho tế bào (anabolism). Còn nhân là nơi điều khiển quá trình tổng hợp đó. Trong nhân có ADN là một đại phân tử hữu cơ chứa các thông tin quan trọng để thực hiện sự tổng hợp các chất. Trong hình (1.6) là mô hình cấu tạo của phân tử ADN. Các tế bào có thời gian sống nhất định. Các tế bào khác nhau có thời gian sống khác nhau. Khi các phân tử cấu tạo nên tế bào bị tổn thương do bức xạ thì hoạt động chức năng và đời sống tế bào cũng bị ảnh hưởng. Nhìn chung, rối loạn chức năng tế bào xảy ra với những liều lớn (hàng trăm Gray). Hình 1.6 Mô hình cấu tạo của phân tử ADN Một trong những chức năng quan trọng của tế bào là chức năng sinh sản. Đó là chức năng phân chia tế bào để tạo ra các tế bào mới cho thế hệ sau. ADN chứa các thông tin cần thiết để điều khiển việc phân chia tế bào. Khả năng đó có thể bị mất tạm thời (hồi phục được) hoặc vĩnh viễn dưới tác dụng của bức xạ ion hóa. Thông thường, những tác dụng sinh học của bức xạ lên phân tử là do sự phá hỏng ADN của tế bào. Các tổn thương ở mức độ tế bào có thể là:  Sự phân bào bị chậm trễ: thường chỉ là tạm thời xuất hiện khi liều hấp thụ khoảng vài phần trăm Gray.  Tế bào chết (mất khả năng phân bào, có thể xảy ra ở ngay tế bào chiếu xạ hoặc ở một thế hệ sau) với liều từ 1  2 Gray 1.2.3. Cơ chế diệt khuẩn Cơ chế diệt vi sinh, côn trùng, nấm mốc gây hại cho con người khi sử dụng thực phẩm dựa trên tính chất ion hóa các nguyên tử, phân tử cấu thành nên các cơ thể sống, đặc biệt là các phân tử ADN của tế bào vi sinh gây bệnh. Khi các phân tử ADN bị ion hóa, các liên kết giữa chúng bị đứt gãy. Nếu chiếu xạ ở một liều vừa đủ thì việc phục hồi các đứt gãy trong cấu trúc ADN sẽ không thực hiện được và khi đó tế bào sẽ bị chết trong quá trình phân bào và vi sinh gây bệnh không thể phát triển được. 1.2.3.1. Khử trùng ( hay tiệt trùng Sterilization) Khử trùng bức xạ là một quá trình vật lý nhằm bất hoạt các vi sinh vật trong sinh vật nhờ các hiệu ứng ion hóa của các tia bức xạ. Quá trình này được thực hiện bởi các thiết bị chuyên dụng phát ra các loại bức xạ ion hóa như : tia gamma, chùm tia điện tử, tia X… So với phương pháp khử trùng bằng nhiệt và hóa học, khử trùng bức xạ được xem là công nghệ sạch, hiệu quả và an toàn hơn vì khử trùng bức xạ khắc phục được nhiều nhược điểm của các phương pháp khác, độ đâm xuyên của bức xạ sâu cho phép xử lý một khối lượng sản phẩm lớn mà không phải tháo bao gói, tác dụng của bức xạ lên sản phẩm sinh nhiệt yếu nên không làm chín, làm hỏng sản phẩm. Ngoài ra bức xạ không để lại các sản phẩm tồn dư. 1.2.3.2. Thanh trùng Thanh trùng là việc sử dụng tia bức xạ của nguồn phóng xạ hoặc máy phát tia bức xạ để bảo quản và ngăn ngừa sự biến chất của thực phẩm gây ra do vi sinh vật gây bệnh hoặc có hại. 1.3. Định nghĩa liều, đơn vị về liều [5],[6] Trong ứng dụng chiếu xạ thực phẩm và rau quả, người ta thường quan tâm đến tác dụng sinh học của bức xạ. Những nghiên cứu sinh học bức xạ cho thấy tác dụng sinh học này phụ thuộc vào nhiều yếu tố, nhưng yếu tố quan trọng nhất là năng lượng mà bức xạ bỏ ra trong một đơn vị vật chất. Đại lượng này được gọi là liều hấp thụ. Liều hấp thụ có giá trị tùy thuộc loại bức xạ, năng lượng của nó, thời gian chiếu cũng như các tính chất của vật được chiếu. Đo và tính liều hấp thụ là nhiệm vụ trọng tâm trong các ứng dụng của chúng ta. 1.3.1. Liều hấp thụ 1.3.1.1. Định nghĩa Liều hấp thụ (D) là lượng năng lượng được hấp thụ trong một đơn vị khối lượng của đối tượng vật chất bị chiếu xạ. D E E  m V (1.19) Trong đó: E là naêng löôïng của bức xạ mất đi do sự ion hóa trong đối tượng bị chiếu xạ; m khoái löôïng cuûa đối tượng bị chiếu xạ. Định nghĩa trên có thể áp dụng cho mọi loại vật chất hấp thụ và mọi loại tia bức xạ, có năng lượng tùy ý. 1.3.1.2. Đơn vị Đơn vị của liều hấp thụ trong hệ SI là Gray (Gy) 1 Gray =1 J/kg Trong thực tế, người ta còn sử dụng đơn vị rad 1 Gy = 100 rad 1.3.1.3. Tính chất Giá trị liều hấp thụ bức xạ phụ thuộc vào loại vật chất được chiếu và tính chất của bức xạ. Với cùng một liều chiếu, các loại vật liệu khác nhau sẽ hấp thụ những lượng năng lượng khác nhau. Do đó, khi đưa ra liều hấp thụ bao giờ người ta cũng cho biết loại vật chất đã hấp thụ lượng năng lượng đó. Ngoài ra, sự hấp thụ năng lượng của môi trường đối với tia bức xạ là do tương tác của bức xạ với electron của nguyên tử vật chất. Do đó, năng lượng hấp thụ trong một đơn vị khối lượng phụ thuộc vào năng lượng liên kết của các electron với hạt nhân nguyên tử và vào số nguyên tử có trong một đơn vị khối lượng của môi trường vật chất hấp thụ, nó không phụ thuộc vào trạng thái kết tụ của vật chất. Đối với chiếu xạ thực phẩm, rau quả ta lại có mối quan hệ sau: Đơn vị liều là Gy hoặc là kGy 1kGy = 1kJ/kg Còn kW thì tỉ lệ với số phân rã phóng xạ/s/g. Như vậy, nếu ta thay kW bởi kJ/s thì liều sẽ tỉ lệ với số phân rã phóng xạ hay với số ADN bị bẽ gãy. 1.3.2. Suất liều hấp thụ Suất liều hấp thụ (Pht) là liều hấp thụ tính trong một đơn vị thời gian. Pht  Dht t (1.20) Trong đó Dht là liều hấp thụ trong khoảng thời gian t . Đơn vị: W/kg hoặc rad/s hoặc Gy/s. Nếu suất liều hấp thụ là một hàm của thời gian, khi đó liều hấp thụ được tính thông qua công thức t Dht   Pht .dt (1.21) 0 1.4. Hiệu ứng của bức xạ lên cơ quan sinh học [5],[13] 1.4.1. Các cơ quan vi sinh Các cá thể sinh vật đầu tiên liên quan trực tiếp đến sự giữ gìn và bảo quản thực phẩm bao gồm: vi khuẩn; men giấm và nấm mốc; vi rút và các ký sinh trùng khác và các loại sâu bọ. - Vi khuẩn là các tổ chức đơn bào. Nhìn chung, chúng tồn tại dưới dạng tế bào sinh dưỡng, sinh trưởng và nhân bản điều kiện bên ngoài cho phép. Một vài vi khuẩn còn có dạng bào tử. Về cơ bản, chúng gồm các lớp che chắn bảo vệ, cho phép các cơ quan nằm bên trong dưới trạng thái tiềm sinh và chúng có thể chịu đựng được điều kiện môi trường vô cùng khắc nghiệt. Dưới góc độ bảo quản thực phẩm, vi khuẩn được chia thành 3 loại: (1) vi khuẩn có lợi là các vi khuẩn có khả năng tạo ra một số loại đường thông qua quá trình lên men. (2) Vi khuẩn có hại là loại vi khuẩn làm biến đổi mùi vị, màu sắc, thành phần và hình dạng của thực phẩm. (3) Vi khuẩn gây bệnh là chủng loại vi khuẩn có khả năng phá vỡ trạng thái nội tại của thực phẩm, gây ra bệnh tật cho động vật tiêu thụ. Các vi khuẩn gần đây bao gồm: vi khuẩn làm thực phẩm thành độc, vài loại vi khuẩn lạ và e.coli (hình 1.7). Vi khuẩn gây độc có thể gây bệnh theo 3 cách: xâm nhập, đầu độc và làm nhiễm độc. Một ví dụ về sự xâm nhập của vi khuẩn nhiễm độc là Salmonella typhimurian, với độ nhiễm độc phụ thuộc vào mức độ hấp thụ của thực phẩm bẩn. Các cơ quan này bị tổn thương dọc theo ruột non gây ra bệnh tiêu chảy. Sự đầu độc là kết quả của các thực phẩm có chứa vi khuẩn sản sinh chất độc. Những chất độc phải kể đến là khuẩn cầu chùm Clostridium botulinum. Hình 1.7 Một số loại vi khuẩn có hại Trong trường hợp đặc biệt, cơ quan sau cùng có thể gây nhiễm độc neurotoxin cho thực phẩm và là nguyên nhân sinh ra botulism. Sự nhiễm độc là kết quả của quả trình đưa các thực phẩm có chứa vi khuẩn gây độc vào cơ thể. Một ví dụ về cơ quan bị nhiễm độc là Clostridium perfringens, những tế bào được gắn vào thành ruột nơi mà chúng hình thành bào tử. Vỏ bào tử được cho rằng chúng là tác nhân gây độc. - Các loại men còn có cấu trúc đơn bào, mặc dù chúng có thể tập hợp thông tin qua chỉ nhị và được gọi là “sợi nấm”. Khác với các vi khuẩn tái sinh thông qua việc phân chia tế bào, các loại men tái sinh bằng sự cấy ghép. - Các nấm mốc cũng có thể có cấu trúc đơn bào hay đa bào, chúng xuất hiện trong quá trình phân hủy các vật chất. Các loại men và nấm mốc có thể là mầm mống của các bệnh tật do các chất độc mà chúng gây ra. - Virus không phải là các tế bào thực, nhưng chúng là những ký sinh sẽ nhân bản khi xâm nhập vào vật chất di truyền trong tế bào chủ, chẳng hạn như các tế bào dọc theo thành ruột. Các virus không phát triển trong thực phẩm nhưng chúng có thể gây ảnh hưởng đến các vi khuẩn chủ. Bệnh viêm gan truyền nhiễm virus và bệnh bại liệt truyền nhiễm virus có thể lây nhiễm qua sữa
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất