Đăng ký Đăng nhập
Trang chủ Mô phỏng phân bố và xác định chất thải phóng xạ trong thùng thải bằng phần mềm g...

Tài liệu Mô phỏng phân bố và xác định chất thải phóng xạ trong thùng thải bằng phần mềm geant4

.PDF
58
1
110

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Bùi Thị Vui MÔ PHỎNG PHÂN BỐ VÀ XÁC ĐỊNH CHẤT THẢI PHÓNG XẠ TRONG THÙNG THẢI BẰNG PHẦN MỀM GEANT4 LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT Thành phố Hồ Chí Minh – 2015 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Bùi Thị Vui MÔ PHỎNG PHÂN BỐ VÀ XÁC ĐỊNH CHẤT THẢI PHÓNG XẠ TRONG THÙNG THẢI BẰNG PHẦN MỀM GEANT4 Chuyên ngành: Vật lí nguyên tử Mã số: 60 44 01 06 LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. LÊ BẢO TRÂN Thành phố Hồ Chí Minh – 2015 LỜI CẢM ƠN Trong suốt quá trình thực hiện luận văn em đã trải qua những tháng ngày học tập và làm việc vất vả cùng với sự hướng dẫn giúp đỡ nhiệt tình của các thầy cô và bạn bè. Đến nay, luận văn đã được hoàn thành em xin được gửi lời cảm ơn chân thành nhất đến: • TS. Lê Bảo Trân – người hướng dẫn khoa học, Cô đã rất tận tình giảng dạy giúp đỡ tạo điều kiện và theo dõi sát sao trong suốt quá trình để em hoàn thành luận văn một cách tốt nhất. • TS. Trần Thiện Thanh, Thầy là người đã hướng dẫn em chi tiết, Thầy nhiệt tình giúp đỡ em giải quyết những vấn đề khó khăn và luôn bên cạnh động viên em làm luận văn thật tốt. • Bộ môn Vật lý Hạt nhân đã tạo các điều kiện cơ sở vật chất, trang thiết bị cần thiết để em thực hiện luận văn. • Quý Thầy Cô trong hội đồng bảo vệ luận văn đã đọc, nhận xét và đóng góp ý kiến giúp luận văn hoàn thiện tốt nhất. • Bạn Mã Thúy Quang, anh Thái Văn Ton, anh Vũ Tuấn Minh, chị Hứa Tuyết Lê, bạn Lê Thúy Ngân đã giúp đỡ và hỗ trợ nhiệt tình trong quá trình em làm luận văn. Cuối cùng xin gửi lời cảm ơn đặc biệt nhất tới Bố, Mẹ, tới Chồng và Con Trai đã luôn ở bên cạnh yêu thương, động viên, sẻ chia tạo điều kiện thuận lợi nhất, để cho em hoàn thành luận văn này. Thành phố Hồ Chí Minh, tháng 09 năm 2015 BÙI THỊ VUI ii MỤC LỤC Lời cảm ơn .................................................................................................................. i Mục lục....................................................................................................................... ii Danh mục các kí hiệu, chữ viết tắt ............................................................................ iv Danh mục các bảng .................................................................................................... v Danh mục các hình vẽ, đồ thị .................................................................................... vi MỞ ĐẦU ................................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN ....................................................................................... 3 1.1. Tình hình nghiên cứu trong và ngoài nước ......................................................... 3 1.1.1. Ngoài nước.................................................................................................... 3 1.1.2. Trong nước.................................................................................................... 4 1.2. Kỹ thuật quét gamma phân đoạn......................................................................... 6 1.3. Đánh giá sai số hệ thống ..................................................................................... 8 1.4. Tương tác của gamma với vật chất ................................................................... 10 1.4.1. Hiệu ứng quang điện .................................................................................. 11 1.4.2. Hiệu ứng Compton...................................................................................... 12 1.4.3. Hiệu ứng tạo cặp ......................................................................................... 14 1.5. Nhận xét chương 1 ............................................................................................ 16 CHƯƠNG 2. THIẾT BỊ VÀ PHƯƠNG PHÁP NGHIÊN CỨU ........................... 17 2.1. Giới thiệu chung ................................................................................................ 17 2.2. Hệ đo thực nghiệm ........................................................................................... 17 2.2.1. Nguồn và thùng thải.................................................................................... 17 2.2.1.1. Nguồn ................................................................................................. 17 2.2.1.2. Thùng thải ........................................................................................... 18 2.2.2. Thiết bị ghi nhận ......................................................................................... 19 2.2.2.1. Đầu dò NaI(Tl) ................................................................................... 19 2.2.2.2. Chương trình hiển thị và phân tích phổ .............................................. 21 2.2.3. Thiết bị dịch chuyển thùng ......................................................................... 21 2.2.3.1. Mâm quay thùng thải .......................................................................... 22 2.2.3.2. Hệ dịch chuyển đầu dò ....................................................................... 22 iii 2.3. Chương trình mô phỏng Geant4 ....................................................................... 23 2.3.1. Giới thiệu .................................................................................................... 23 2.3.2. Chức năng chính ......................................................................................... 24 2.3.3. Ưu nhược điểm ........................................................................................... 24 2.3.4. Cấu trúc chương trình ................................................................................. 24 2.3.4.1. Các lớp khởi tạo và thực thi ............................................................... 25 2.3.4.2. Tạo sự giãn nở Gauss cho phổ mô phỏng ......................................... 27 2.4. Nhận xét chương 2 ............................................................................................ 28 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN............................................................ 29 3.1. Xác định vị trí phân bố nguồn và tên đồng vị phóng xạ ................................... 29 3.1.1. Các bước tiến hành thực nghiệm ................................................................ 29 3.1.2. Thùng chứa một nguồn phóng xạ ............................................................... 29 3.1.2.1. Xác định tên đồng vị phóng xạ ........................................................... 30 3.1.2.2. Vị trí phân bố nguồn ........................................................................... 30 3.2. Kết quả mô phỏng bằng chương trình Geant4 .................................................. 33 3.2.1. Nguồn 137Cs ................................................................................................ 34 3.2.1.1. Số đếm ghi nhận theo phân đoạn........................................................ 34 3.2.1.2. Số đếm ghi nhận theo góc quay.......................................................... 36 3.2.2. Nguồn 60Co ................................................................................................. 37 3.2.2.1. Số đếm ghi nhận theo phân đoạn........................................................ 38 3.2.2.2. Số đếm ghi nhận theo góc quay.......................................................... 39 3.2.3. Nguồn 153Eu. ............................................................................................... 40 3.2.3.1. Số đếm ghi nhận theo phân đoạn........................................................ 41 3.2.3.2. Số đếm ghi nhận theo góc quay.......................................................... 42 3.2.4. Phổ so sánh từ thực nghiệm và mô phỏng trong thùng chất độn là cát ...... 43 3.3. Nhận xét chương 3 ............................................................................................ 45 KẾT LUẬN VÀ KIẾN NGHỊ ............................................................................... 46 DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ..................................................... 47 TÀI LIỆU THAM KHẢO ..................................................................................... 48 iv DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT Chữ viết tắt Tiếng Anh Tiếng Việt SGS Segmented Gamma Scanning Kỹ thuật quét gamma phân đoạn NDA Non – Destructive Assay Phương pháp phân tích không hủy mẫu GEANT Geometry And Tracking Cấu trúc hình học và vết MCA Multi Channel Analyzer Bộ phân tích đa kênh HVPS High – Voltage Power Supply Nguồn cao áp FWHM Full Width at Half Maximum Bề rộng một nửa của đỉnh toàn phần Ký hiệu: h: hằng số Planck (h = 6,626.10-34J.s) c: vận tốc ánh sáng trong chân không (c = 3.108m/s). ϕ : góc bay ra của electron Compton ν: tần số của gamma tới (Hz) ν ' : tần số của gamma tán xạ (Hz) E : năng lượng gamma tới (MeV) E ' : năng lượng gamma tán xạ (MeV) m 0 : khối lượng của electron (m e = 9,1.10-31kg) σ f (E) : tiết diện hấp thụ σe : tiết diện tán xạ compton. M nuc : khối lượng nguyên tử. v DANH MỤC CÁC BẢNG STT Bảng Nội dung 1 2.1 Thông tin các nguồn được sử dụng 18 2 3.1 Sự phân bố số đếm theo phân đoạn của 60Co 31 3 3.2 4 3.3 5 3.4 6 3.5 7 3.6 8 3.7 9 3.8 Trang Sự phân bố số đếm theo góc quay tại phân đoạn 6 của 60Co Số đếm đỉnh trên vị trí từng phân đoạn so với đáy thùng Sự phân bố số đếm đỉnh theo góc quay tại phân đoạn 6. Số đếm tổng hai đỉnh trên vị trí từng phân đoạn so với đáy thùng. Số đếm tổng của 60Co theo góc quay trong thùng không có chất độn Số đếm đỉnh trên vị trí từng phân đoạn so với đáy thùng Số đếm đỉnh của không chất độn 32 35 36 38 39 42 152 Eu theo góc quay trong thùng 43 vi DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ STT Hình Nội dung 1 1.1 Bố trí hình học của kỹ thuật quét gamma phân đoạn 6 2 1.2 Mặt cắt ngang của một phân đoạn 9 3 1.3 Hiệu ứng quang điện 11 4 1.4 Hiệu ứng Compton 13 5 1.5 Hiệu ứng tạo cặp 15 6 2.1 Bố trí hệ đo thực nghiệm 17 7 2.2 Các nguồn chuẩn sử dụng trong quá trình đo 18 8 2.3 Vị trí các ống bên trong thùng thải 19 9 2.4 Đầu dò NaI(Tl) 19 10 2.5 Khối Osprey 20 11 2.6 Ống chuẩn trực dạng hình hộp 20 12 2.7 Bố trí ống chuẩn trực chì trong hệ đo 21 13 2.8 Giao diện chương trình Genie2000 21 14 2.9 Mâm quay thùng thải 22 15 2.10 Hệ dịch chuyển đầu dò 23 16 3.1 17 3.2 18 3.3 19 3.4 Cấu hình hệ đo hiển thị bằng chương trình Geant4 34 20 3.5 Đồ thị biểu diển phổ mô phỏng trong không khí của 137Cs 34 21 3.6 22 3.7 Đồ thị biểu diễn phổ năng lượng của nguồn phóng xạ tại phân đoạn 6 Đồ thị biểu diễn sự phân bố số đếm theo phân đoạn của 60Co trong thùng thải với chất độn là cát Đồ thị biểu diễn sự phân bố số đếm theo góc quay của 60Co trong thùng thải với chất độn là cát Đồ thị biểu diễn số đếm đỉnh theo vị trí từng phân đoạn của 137Cs. Đồ thị biểu diễn sự phân bố số đếm đỉnh theo góc quay Trang 30 31 33 35 36 vii của 137Cs. 23 3.8 24 3.9 Đồ thị so sánh phổ thực nghiệm và mô phỏng trong không khí của 60Co. Đồ thị biểu diễn số đếm tổng hai đỉnh theo vị trí từng phân đoạn của 60Co. 37 38 Đồ thị biểu diễn sự so sánh số đếm theo góc quay 25 3.10 của Co trong thùng không chất độn giữa thực nghiệm 60 40 và mô phỏng 26 3.11 27 3.12 Đồ thị so sánh phổ thực nghiệm và mô phỏng trong không khí của 152Eu Đồ thị biểu diễn số đếm đỉnh theo vị trí từng phân đoạn của 152Eu 41 42 Đồ thị biểu diễn sự so sánh số đếm theo góc quay 28 3.13 của Eu trong thùng không chất độn giữa thực nghiệm 152 43 và mô phỏng 29 3.14 30 3.15 31 3.16 Đồ thị so sánh phổ thực nghiệm và mô phỏng trong cát của 137Cs Đồ thị so sánh phổ thực nghiệm và mô phỏng trong cát của 60Co. Đồ thị so sánh phổ thực nghiệm và mô phỏng trong cát của 152Eu. 44 44 45 MỞ ĐẦU Năng lượng nguyên tử hạt nhân sẽ là một phần quan trọng trong tương lai của một thế giới không sử dụng nhiên liệu hóa thạch. Tuy nhiên câu hỏi lớn đặt ra là chúng ta sẽ xử lý thế nào với lượng chất thải được tạo ra? Các quốc gia phát triển và đang phát triển đều theo đuổi những dự án nhà máy điện hạt nhân nhằm đáp ứng nhu cầu ngày càng cao về năng lượng. Nhưng việc phát triển công nghệ điện hạt nhân lại đồng nghĩa với nỗi lo về xử lý các chất thải hạt nhân, vì chất thải hạt nhân phát ra phóng xạ nên nó là một hiểm họa đối với cuộc sống của con người, chính vì thế chất thải hạt nhân phải được xử lý và cất giữ một cách chắc chắn tách biệt khỏi con người và động vật hàng trăm nghìn năm. Đây là một thách thức lớn đối với chúng ta. Hầu hết mọi quốc gia trên thế giới đều có chất thải hạt nhân, một số loại vẫn còn tính phóng xạ hàng nghìn năm. Do đó nhằm đảm bảo các qui định về an toàn phóng xạ, chất thải phóng xạ không thể thải trực tiếp ra môi trường mà cần phải xác định các đồng vị phóng xạ có trong chất thải và phân loại chúng theo hoạt độ để có thể xử lý một cách phù hợp. Ngày nay, trong nước cũng như trên thế giới có nhiều công trình khoa học đề cập đến vấn đề khảo sát hoạt độ phóng xạ trong thùng rác thải. Mục đích của việc khảo sát là nhận biết được các gamma đặc trưng của các đồng vị phóng xạ, xác định hoạt độ phóng xạ và thực hiện đo đạc càng nhanh càng tốt. Hiện nay, đã có rất nhiều kỹ thuật, phần mềm phân tích hoạt độ phóng xạ trong thùng rác thải. Trong đó, kỹ thuật quét gamma phân đoạn là một trong những phương pháp xác định có độ tin cậy cao. Chính vì các lí do trên mà tôi chọn đề tài “Mô phỏng phân bố và xác định chất thải phóng xạ trong thùng thải bằng phần mềm Geant4”. Mục tiêu của luận văn là xác định tên và vị trí của đồng vị phóng xạ có trong thùng thải bằng kỹ thuật quét gamma phân đoạn, so sánh kết quả thực nghiệm và mô phỏng bằng phần mềm Geant4 để tăng độ tin cậy của phương pháp đo. 2 Đối tượng nghiên cứu trong luận văn là hệ thùng thải giả lập, mô phỏng hệ bằng phần mềm Geant4. Sau đó xác định tên và vị trí đồng vị phóng xạ chứa trong thùng bằng phương pháp quét gamma phân đoạn. Nội dung của luận văn được trình bày trong 3 chương Chương 1: Tổng quan tình hình nghiên cứu ở trong và ngoài nước về hệ đo thùng thải chất phóng xạ. Trình bày về nội dung lý thuyết của kỹ thuật quét gamma phân đoạn, tương tác của gamma với vật chất. Chương 2: Trình bày về các thiết bị của hệ đo thùng thải chất phóng xạ. Giới thiệu về cấu tạo và công dụng của các thiết bị trong hệ đo bao gồm: thùng thải, đầu dò, hệ xe nâng đầu dò, hệ quay thùng thải, Osprey, và các chương trình ghi nhận và xử lý phổ, giới thiệu về chương trình Geant4. Chương 3: Trình bày kết quả và thảo luận. Ý nghĩa khoa học là xây dựng chương trình mô phỏng hệ thí nghiệm đo hoạt độ phóng xạ trong thùng thải bằng phần mềm Geant4.9.6. Kết quả cho thấy có sự phù hợp giữa thực nghiệm và mô phỏng với độ sai biệt nhỏ hơn 10% trong trường hợp nguồn phóng xạ là đơn năng hoặc đa năng, trường hợp có và không có chất độn trong thùng. Ý nghĩa thực tiễn là chương trình mô phỏng được xây dựng có độ tin cậy cao, có thể được sử dụng và phát triển để tính toán hiệu suất ghi nhận bức xạ trong thùng thải từ đó xác định hoạt độ phóng xạ trong thùng. 3 Chương 1 TỔNG QUAN 1.1. Tình hình nghiên cứu trong và ngoài nước 1.1.1. Ngoài nước Năm 1993, Cesana và cộng sự [8] đã đưa ra phương pháp xác định nguồn có kích thước lớn trong thùng thải có chứa chất thải phóng xạ khô và chất thải phóng xạ hữu cơ. Trong kĩ thuật này các tác giả đã sử dụng hai đầu dò bán dẫn Ge (Gemanium) đặt đồng trục và có khoảng cách bằng nhau với thùng thải. Kết quả đạt được là đã xác định được chính xác hoạt độ của các nguồn, nhưng chỉ giới hạn trong một số nguồn có dãy năng lượng phù hợp như 137 Cs, 134 Cs, 54 Mn, Co, và còn phụ thuộc vào mật độ 60 của vật liệu trong thùng. Vật liệu trong nghiên cứu này có mật độ thấp và hệ số suy giảm tuyến tính trong khoảng từ 0,01 - 0,03cm-1. Phương pháp này so với phương pháp chỉ sử dụng một đầu dò đặt đồng trục với thùng thải thì chính xác hơn. Tuy nhiên sự phân bố hoạt độ trong thùng chưa xác định được và độ chính xác của phương pháp này còn phụ thuộc vào vị trí của nguồn trong thùng. Năm 1995, Filb [12] đã xây dựng các công thức để tính hoạt độ trong thùng thải từ tốc độ phát tia gamma, khoảng cách từ đầu dò đến bề mặt thùng, mật độ của chất độn, loại chất độn và năng lượng tia gamma phát ra. Số đếm được ghi nhận bởi đầu dò bán dẫn siêu tinh khiết HPGe không che chắn, hiệu suất hệ đo được chuẩn theo khoảng cách giữa đầu dò và bề mặt thùng, tính đồng nhất của thùng là điều kiện tiên quyết. Kết quả thu được có thể chấp nhận được. Năm 2009, Bai và cộng sự [7] đưa ra phương pháp tính hoạt độ của thùng thải chứa các đồng vị phân bố không đồng nhất bằng phương pháp quét gamma phân đoạn. Phương pháp này sử dụng biểu thức giải tích số xây dựng theo hình học của hệ đo và phương pháp chi bình phương χ để xử lý số liệu thực nghiệm thu được bằng phương 2 pháp quét gamma phân đoạn, hai nguồn 60Co và Cs được xem như phân bố không 137 đồng nhất trong thùng, cần nghiên cứu thêm hiệu ứng đa nguồn khi tiến hành đo bằng phương pháp quét gamma phân đoạn. 4 Năm 2009, Stanga và cộng sự [16] đã đưa ra nghiên cứu về việc tính hiệu suất đỉnh cho đầu dò HPGe (Hyper Pure Germanium) sử dụng trong hệ đo thùng thải chất phóng xạ. Các tác giả đã đưa ra một mô hình tính toán mới cho hiệu suất đỉnh cho đầu dò HPGe. Trong nghiên cứu này các tác giả sử dụng chương trình Matlab để tính toán cho dãi năng lượng từ 60 - 1500keV với khoảng cách từ đầu dò đến thùng thải là 10cm. Kết quả thu được là độ sai biệt hơn 10% so với lý thuyết đối với vật liệu chứa trong thùng có mật độ cao 2,3 g/cm3. Phương pháp mới cũng cho kết quả tương tự khi so sánh giữa kết quả thực nghiệm và phương pháp mô phỏng Monte-Carlo. Năm 2012, Stanga và Gurau [14] đã đưa ra một phương pháp mới trong kỹ thuật quét gamma đối với thùng thải chứa chất phóng xạ. Các tác giả đã tiến hành thực nghiệm sử dụng hai nguồn 137Cs và 60Co chứa trong thùng thải với từng vật liệu có mật độ khác nhau. Kết quả thu được của phương pháp mới này là đã xác định chính xác hoạt độ của một nguồn phóng xạ khi vật liệu trong thùng là tương đối đồng nhất. Khi vật liệu trong thùng là không đồng nhất có khối lượng riêng lớn vào khoảng 2,1g/cm3 cũng xác định được phân bố hoạt độ của hai nguồn phóng xạ là 137Cs và 60Co. 1.1.2. Trong nước Năm 2012, Trần Quốc Dũng và cộng sự [10] đã đưa ra phương pháp có thể làm giảm sai số hệ thống trong việc kiểm tra thùng thải bằng kỹ thuật gamma. Ý tưởng của phương pháp là kết hợp hai kỹ thuật đo quét gamma phân đoạn SGS dùng một đầu dò và dùng hai đầu dò đồng nhất gọi là phương pháp kết hợp. Trong phương pháp mới này hai đầu dò 1 và 2 được đặt cố định và đồng trục với thùng thải ở một khoảng cách nhất định, đầu dò thứ 3 sẽ quét qua các phân đoạn của thùng khi thùng quay. Các tác giả đã tiến hành thực nghiệm trên thùng thải có thể tích 210 lít, đường kính 29cm, chiều cao 86cm, kích thước từ đầu dò đến thùng là 150cm và với hệ số suy giảm tuyến tính nằm trong khoảng 0,01cm-1 đến 0,12cm-1. Sai số của phương pháp kết hợp này nhỏ hơn kỹ thuật sử dụng một đầu dò và thấp hơn sai số lớn nhất của kỹ thuật sử dụng hai đầu dò. Ngoài ra phương pháp kết hợp còn đáp ứng tốt việc xác định hoạt độ của các chất thải phóng xạ trong các thùng chứa các chất độn có mật độ thấp như túi, giày, găng tay, quần áo bảo hộ…. 5 Năm 2012, Trương Trường Sơn và Trần Quốc Dũng [11] đã tiến hành nghiên cứu những hạn chế của phương pháp quét gamma phân đoạn đồng thời đưa ra một phương pháp bổ sung để xác định hoạt độ của các thùng chất thải. Giả thuyết của kỹ thuật được đưa ra là hoạt độ của chất thải tập trung như một nguồn điểm trong chất độn đồng nhất đối với một phân đoạn đo của thùng. Các kết quả tính toán cho thấy rằng độ chính xác của kỹ thuật này tốt hơn so với kỹ thuật quét gamma phân đoạn truyền thống trong hầu hết các trường hợp khi hỗn hợp chất phóng xạ và chất độn là không đồng nhất. Năm 2012, luận văn thạc sĩ của Lê Anh Đức [1] đã nghiên cứu sự ảnh hưởng của phân bố nguồn trong một phân đoạn đến sai số hệ thống của phép đo bằng phương pháp SGS. Trong công trình này, tác giả đã tiến hành xây dựng được hệ đo SGS để đo đạc và tính toán thực nghiệm bằng phương pháp cho các nguồn phóng xạ vào thùng ngẫu nhiên, đo đạc thực nghiệm với nguồn Cs137 cho vào một phân đoạn, khảo sát định lượng sai số của kỹ thuật SGS do sự phân bố của nguồn theo khoảng cách với chất độn là cát đồng nhất. Kết quả thực nghiệm thu được khá phù hợp với kết quả tính toán lý thuyết. Ngoài ra tác giả còn tiến hành khảo sát định tính khả năng quét của hệ đo bằng phương pháp SGS đối với chất độn không đồng nhất. Năm 2013, Huỳnh Thị Yến Hồng cùng cộng sự [2] đã áp dụng kĩ thuật quét gamma phân đoạn để xác định vị trí một nguồn bất kì trong thùng thải phóng xạ. Cơ sở của việc xác định vị trí tương đối của nguồn là tiến hành xây dựng đường chuẩn hiệu suất theo năng lượng ứng với các khoảng cách của nguồn tới đầu dò là 10cm; 10,9cm; 20,9cm; 30,9cm; 40,9cm. Từ đó xây dựng đường chuẩn hiệu suất theo khoảng cách ứng với từng đỉnh năng lượng. Năm 2013, luận văn thạc sĩ của Trương Nhật Huy [3] đã khảo sát sự thay đổi số đếm của nguồn theo các khoảng cách từ nguồn đến đầu dò khác nhau để xác định vị trí của một nguồn bất kỳ có trong thùng thải chất phóng xạ với các chất độn khác nhau theo chiều cao và chiều ngang của thùng. Năm 2014, luận văn thạc sĩ của Nguyễn Thị Thu Thủy [5] đã tập trung phát triển hệ đo tiến hành xác định tên, vị trí các đồng vị phóng xạ trên hệ đo mới này bằng phương pháp quét gamma phân đoạn. Ngoài ra tác giả còn dùng chương trình MCNP5 6 để xây dựng đường chuẩn hiệu suất năng lượng khi chất độn trong thùng thải khác nhau, so sánh sự hấp thụ của phổ 137Cs và 60Co trong hai trường hợp là không có chất độn và chất độn là bê tông. Năm 2014, luận văn thạc sĩ của Lâm Thu Văn [6] đã tính toán phân bố của đồng vị phóng xạ trong thùng thải bằng phương pháp quét gamma phân đoạn khảo sát trong trường hợp một nguồn và hai nguồn phóng xạ, dùng chương trình PENELOPE để xây dựng đường chuẩn hiệu suất theo năng lượng tính toán hoạt độ của các đồng vị trong thùng thải trong trường hợp không có chất độn và chất độn là cát. 1.2. Kỹ thuật quét gamma phân đoạn Kỹ thuật quét gamma phân đoạn (SGS) là một kỹ thuật quan trọng để đo đạc và phân tích hoạt độ của chất thải phóng xạ. Nguyên tắc hoạt động của kỹ thuật này là phân chia thùng thải phóng xạ thành các phân đoạn nằm ngang nhỏ hơn rất nhiều so với chiều cao của thùng, giả thiết rằng các nguồn phóng xạ và chất độn trong thùng thải là phân bố đồng nhất, sử dụng đầu dò gắn ống chuẩn trực để phân tích mỗi phân đoạn bằng phương pháp đo gamma thông thường. Khi tất cả các phân đoạn được đo hoàn thành, kết quả số đếm cả thùng sẽ được tính bằng cách lấy tổng của tất cả các kết quả đo trên từng phân đoạn. Để giảm thiểu tối đa sai số gây ra do sự phân bố không đồng đều của nguồn và chất độn không đồng nhất trong mỗi phân đoạn thì thùng sẽ được quay trong quá trình đo. Kỹ thuật này gây sai số lớn vì thực tế nguồn và chất độn không bao giờ phân bố đồng nhất [9]. Hình 1.1. Bố trí hình học của kỹ thuật quét gamma phân đoạn. 7 Bố trí hình học của kỹ thuật quét gamma phân đoạn SGS được trình bày trong hình 1.1. Thùng được chia thành nhiều phân đoạn, i = 1, 2, 3…n là số thứ tự đánh dấu của từng phân đoạn, mỗi phân đoạn lần lượt được đo bởi đầu dò. Số đếm thô CR i trên mỗi phân đoạn được xác định bởi đầu dò. Số đếm hiệu chỉnh C i được tính bằng công thức: Ci = CR i .CFi (1.1) Trong đó CF i là hệ số suy giảm do chất độn bởi phân đoạn thứ i, có thể được tính bằng công thức [9]: 1 - e-0,823.μ .d 0,823.μ i .d i CFi = (1.2) Trong đó: μ i : hệ số suy giảm tuyến tính trung bình(cm-1) d: đường kính thùng rác thải (m) Nếu hệ số suy giảm tuyến tính trung bình chưa biết, ta có thể sử dụng một nguồn ngoài để tính hệ số suy giảm tuyến tính. Cách giải quyết này được sử dụng rộng rãi để xác định CF i trong phương pháp SGS vì hệ số hấp thụ tuyến tính có thể thay đổi từ phân đoạn này sang phân đoạn khác do chất độn phân bố không đồng nhất trong thùng. Số đếm tổng cộng của thùng sẽ là: CT = n ∑ Ci (1.3) i=1 Kết quả cuối cùng của phép đo là hoạt độ của các loại đồng vị mà ta quan tâm: t 0,693. d C .e I= T t.Iγ .ε Tγ (1.4) Trong đó: t d : Thời gian phân rã tính từ lúc nguồn được sản xuất đến lúc đo (ngày). t: Thời gian đo (giây). T γ : chu kì bán rã của các đồng vị phóng xạ(ngày). Y: hiệu suất tia gamma. 8 I γ : xác xuất phát gamma. ε: Hiệu suất ghi của đầu dò. Các phương trình trên đều dựa trên hai giả thuyết là khoảng cách từ mẫu trong phân đoạn đến đầu dò là vô hạn và mẫu là đồng nhất.  Hệ số hình học: Vì các nguồn phóng xạ trong thùng trải rộng và phân bố không đều nên số đếm C i phụ thuộc vào vị trí của các mẫu trong thùng, điều này có thể dẫn đến các sai số lớn, việc gia tăng khoảng cách từ đầu dò đến thùng có thể giảm thiểu sai số này và phải đo trong thời gian lâu do sự suy giảm số đếm. Do vậy thùng được xoay để giảm thiểu sai số gây ra bởi sự phân bố không đồng đều trong thùng. Sự lựa chọn khoảng cách từ thùng đến đầu dò sao cho có sự cân bằng giữa tối thiểu hóa sai số và có được số đếm chính xác tối đa. Độ biến thiên số đếm tối đa theo vị trí là nhỏ hơn 10% nếu khoảng cách từ tâm thùng đến đầu dò là bằng hoặc lớn hơn ba lần độ lớn của bán kính thùng và mẫu được xoay [8]. 1.3. Đánh giá sai số hệ thống Dựa trên mô phỏng toán học của phương pháp quét gamma phân đoạn SGS những thông số ảnh hưởng đến sai số phép đo: • Sự phân bố không đồng đều của chất thải phóng xạ trong thùng có chất độn đồng nhất. • Khoảng cách từ đầu dò đến tâm thùng liên quan đến việc điều chỉnh sai số của phép đo với sự suy giảm số đếm mà đầu dò ghi nhận. Mô hình thùng chất thải phóng xạ thường được sử dụng trong thực tế và mô phỏng với thể tích 220 lít, đường kính 60cm và chiều cao 88cm. Phép đo gamma được thực hiện ở năng lượng của các đồng vị sản phẩm phân hạch, từ 140keV đến 1400keV. Với khoảng năng lượng gamma đã cho, các hệ số hấp thụ tuyến tính trung bình của chất độn trong khoảng 0,01cm-1 đến 0,14cm-1. Ta xét trường hợp các nguồn điểm trong chất độn đồng nhất. Giả thiết có một nguồn điểm hoạt độ thực là I d trong một phân đoạn. Thì số đếm thực của nguồn đó sẽ được tính như sau: 9 Id .α n - µ .L e j C= 2 n ∑ j=1 H j (1.5) Trong đó: L j : độ dài quãng đường tia gamma trong thùng (cm). H j : khoảng cách từ nguồn đến đầu dò(cm). L j , H j phụ thuộc vào góc θ j , khoảng cách từ nguồn đến tâm thùng r, khoảng cách từ đầu dò đến tâm thùng K, và bán kính thùng R. n: số góc θ j khác nhau cho mỗi số đếm. µ: hệ số suy giảm tuyến tính (cm-1). α: hệ số phụ thuộc vào năng lượng của tia gamma và hiệu suất của đầu dò. r R •L j Hj θj Đầu dò K Hình 1.2. Mặt cắt ngang của một phân đoạn. H j = K 2 + r 2 - 2.K.r.cosθ j (1.6) R 2 .H 2j - K 2 .r 2 .sin 2θ j - (K.cosθ j - r).r Lj = Hj (1.7) Ở đây L j , H j tính cho trường hợp phân đoạn được chia có bề dày rất nhỏ so với khoảng cách từ tâm thùng đến đầu dò, khi đó chúng ta có thể không tính tới bề dày của một phân đoạn. Kết quả sẽ chính xác hơn khi tính đến bề dày z của các phân đoạn, lúc này ta phải hiệu chỉnh lại L j , Hj . Giả sử thùng với chiều cao 88 cm được chia làm 10 phân đoạn, với bề dày của mỗi phân đoạn là 8,8 cm, khi đó L j , Hj sẽ được hiệu chỉnh là: H'j = H 2j + z 2 (1.8) 10 L' j = L2j + z 2 (1.9) Với 0< z < 8,8 cm. Mối liên hệ giữa số đếm thực và hoạt độ I s của nguồn đo bởi kĩ thuật SGS được cho bởi công thức [6]: C= Is .α .CFi K2 (1.10) So sánh kết quả của I d và I s được tính toán từ các công thức (1.5) và (1.10) ta có thể rút ra được sai số tương đối của phép đo SGS. Hiện nay phương pháp này được ứng dụng phổ biến nhất để xác định các đồng vị phóng xạ và hoạt độ của chúng trong thùng thải. Ngoài ra còn hai phương pháp nữa là kỹ thuật dùng hai đầu dò đồng nhất và kỹ thuật chụp cắt lớp gamma để khảo sát hoạt độ của các chất phóng xạ trong thùng thải. Luận văn này chỉ nghiên cứu về kỹ thuật quét gamma phân đoạn. 1.4. Tương tác của gamma với vật chất Bức xạ gamma là sóng điện từ có bước sóng nhỏ hơn khoảng cách giữa các nguyên tử (có giá trị vào khoảng 10-8cm), bức xạ này ngoài tính chất sóng còn được hình dung như dòng hạt nên gọi là lượng tử gamma. Giới hạn năng lượng thấp nhất của lượng tử gamma là 10keV. Công thức liên hệ giữa năng lượng và bước sóng của lượng tử gamma có dạng: E= hc λ (1.11) Với: λ: là bước sóng của bức xạ gamma (m). h: là hằng số Planck (h = 6,626.10-34J.s). c: là vận tốc ánh sáng trong chân không (c = 3.108m/s). Tương tác của lượng tử gamma với vật chất không gây hiện tượng ion hóa trực tiếp như hạt tích điện. Khi tương tác với electron và nguyên tử của môi trường, lượng tử gamma hoặc mất tất cả năng lượng của mình (hấp thụ) hoặc mất phần lớn năng lượng (tán xạ). Sự suy giảm của bức xạ gamma trong môi trường vật chất là do ba quá trình 11 sau đây: bứt electron quỹ đạo ra khỏi nguyên tử (hiệu ứng quang điện), sự tán xạ của lượng tử gamma lên electron tự do (tán xạ Compton) và sự tạo cặp trong trường hạt nhân sinh ra electron – positron (hiệu ứng tạo cặp). 1.4.1. Hiệu ứng quang điện Hiệu ứng quang điện là quá trình khi bức xạ gamma tương tác với electron quỹ đạo của nguyên tử, sau tương tác gamma truyền toàn bộ năng lượng cho electron, kết quả là gamma biến mất electron nhận năng lượng bứt ra khỏi nguyên tử, electron này được gọi là quang electron (minh họa trong hình 1.3). Quang electron nhận động năng T e được xác định bởi hệ thức: T e = E γ - E lk (1.12) Trong đó: E γ = hυ là năng lượng gamma tới E lk là năng lượng liên kết của electron Năng lương liên kết ở các lớp K, L, M của electron theo thứ tự E K > E L >E M Từ công thức (1.12) ta thấy hiệu ứng quang điện chỉ xảy ra khi E γ > E lk . Nếu E K > E γ thì hiệu ứng quang điện chỉ xảy ra ở lớp L,M…Nếu E K < E γ thì hiệu ứng quang điện xảy ra ở lớp K. Các tính toán tiết diện của hiệu ứng quang điện chỉ ra là hiệu ứng quang điện xảy ra chủ yếu ở lớp K (khoảng 80%). Hình 1.3. Hiệu ứng quang điện. Đối với năng lượng photon hν ≈ mc2, xác suất của hiệu ứng quang điện phụ thuộc rất mạnh vào điện tích của môi trường σphot ~ Z5. Điều này là do sự khác biệt về năng
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất