Đăng ký Đăng nhập
Trang chủ Luận văn thạc sĩ khoa học giáo dục bài toán điều khiển đảm bảo gái trị cho lớp h...

Tài liệu Luận văn thạc sĩ khoa học giáo dục bài toán điều khiển đảm bảo gái trị cho lớp hệ 2 d rời rạc trong mô hình roessr

.PDF
40
18
104

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 ====== VŨ ANH TOÀN BÀI TOÁN ĐIỀU KHIỂN ĐẢM BẢO GIÁ TRỊ CHO LỚP HỆ 2-D RỜI RẠC TRONG MÔ HÌNH ROESSER LUẬN VĂN THẠC SĨ TOÁN HỌC HÀ NỘI - 2018 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 ====== VŨ ANH TOÀN BÀI TOÁN ĐIỀU KHIỂN ĐẢM BẢO GIÁ TRỊ CHO LỚP HỆ 2-D RỜI RẠC TRONG MÔ HÌNH ROESSER Chuyên ngành: Toán Giải tích Mã số: 8 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: PGS. TS. LÊ VĂN HIỆN HÀ NỘI - 2018 MỤC LỤC Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Một số ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chương 1. Một số kết quả sơ bộ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1. Ví dụ về mô hình hệ 2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2. Một số mô hình hệ 2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3. Một số kiến thức bổ trợ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chương 2. Tính ổn định và ổn định hóa của hệ Roesser rời rạc . . . . . . 14 2.1. Tính ổn định của một số lớp hệ 2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2. Bài toán ổn định hóa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3. Ví dụ minh họa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Kết luận chương 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chương 3. Bài toán điều khiển đảm bảo giá trị đối với hệ 2-D rời rạc dạng Roesser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1. Phát biểu bài toán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. Ước lượng hàm giá của hệ đóng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3. Thiết kế điều khiển . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4. Vấn đề dưới tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5. Ví dụ minh họa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Kết luận chương 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Kết luận chung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1 MỞ ĐẦU 1. Lý do chọn đề tài Hệ hai chiều (Two-dimensional systems) nảy sinh trong nhiều mô hình vật lí và kỹ thuật, ở đó sự lan truyền thông tin trạng thái xảy ra theo hai hướng độc lập. Các hệ hai chiều đã được ứng dụng trong mô tả và phân tích tính chất của nhiều mô hình hệ động lực trong thực tiễn kỹ thuật như các hệ viễn thông, xử lí ảnh, xử lí và truyền tín hiệu hay trong các bộ lọc tín hiệu số đa chiều [2,10]. Trong việc mô tả các mô hình thực tiễn đó, các hệ hai chiều thường được biễu diễn thông qua các phương trình trạng thái (state-space model). Một số lớp mô hình trạng thái thường được sử dụng như mô hình Roesser, mô hình Fornasini-Marchesini (FM) thứ nhất và thứ hai, mô hình Attasi hay mô hình Kurek [10]. Do cấu trúc đặc biệt, mô hình Roesser được sử dụng nhiều trong việc mô tả động lực các hệ trong thực tiễn kĩ thuật [1, 7–9]. Mặt khác, trong lí thuyết điều khiển, bài toán điều khiển đảm bảo giá trị (guaranteed cost control, viết tắt là GCC) là một bài toán quan trọng. Mục tiêu chính của bài toán điều khiển GCC là thiết kế một điều khiển phản hồi theo trạng thái (state feedback controller) sao cho hệ đóng (tích hợp điều khiển) tương ứng là ổn định tiệm cận và hàm giá của hệ đóng không vượt quá một ngưỡng xác định nào đó [3]. Gần đây, bài toán này nhận được nhiều sự quan tâm nghiên cứu của tác giả đối với các hệ 2-D rời rạc. Nói riêng, trong bài báo [4] các tác giả nghiên cứu bài toán điều khiển GCC cho lớp hệ 2-D rời rạc trong mô hình Roesser chứa tham số không chắc chắn với điều kiện chặn chuẩn. Dựa trên lược đồ của phương pháp hàm Lyapunov đối với các hệ 2-D, các điều kiện thiết kế điều khiển được thiết lập dưới dạng các bất đẳng thức ma trận tuyến tính (linear matrix inequalities LMIs). Với mong muốn được tìm hiểu sâu hơn về chủ đề này, chúng tôi chọn đề tài nghiên cứu “Bài toán điều khiển đảm bảo 2 giá trị cho lớp hệ 2-D rời rạc trong mô hình Roesser” dựa trên bài báo [4]. 2. Mục đích nghiên cứu Mục đích của luận văn là trình bày một số kết quả nghiên cứu về tính ổn định, ổn định hóa và bài toán điều khiển GCC cho một lớp hệ 2-D rời rạc trong mô hình Roesser dựa trên tài liệu [4]. 3. Nội dung nghiên cứu Các nội dung được nghiên cứu trong luận văn bao gồm: a) Giới thiệu một số mô hình hệ 2-D rời rạc, đặc biệt là các hệ trong các mô hình thực tiễn. b) Bài toán ổn định hóa và điều khiển GCC đối với hệ 2-D rời rạc dạng Roesser. c) Nghiên cứu và trình bày các kết quả trong [4] về bài toán điều khiển GCC đối với lớp 2-D dạng Roesser chứa tham số không chắc chắn. 4. Đối tượng và phạm vi nghiên cứu Xét lớp hệ 2-D dạng Roesser sau đây    xh (i + 1, j)  xv (i, j + 1) xh (i, j)  = (A + ∆A)  xv (i, j)   + (B + ∆B)u(i, j), (0.1) ở đó xh ∈ Rnh , xv ∈ Rnv và u ∈ Rnu tương ứng là vectơ trạng thái ngang, vectơ trạng thái dọc và điều khiển đầu vào của hệ, A ∈ Rn×n (n = nh + nv ), B ∈ Rn×nu là các ma trận thực cho trước, ∆A, ∆B biểu thị các tham số không chắc chắn của h i h i hệ với cấu trúc ∆A ∆B = LF (i, j) M1 M2 , ở đó L, M1 , M2 là các ma trận biết trước và F (i, j) là ma trận không biết với điều kiện chặn chuẩn kF (i, j)k ≤ 1. Cùng với hệ (0.1), ta xét hàm giá của điều khiển ∞ X ∞ h X i u> (i, j)Ru(i, j) + x> (i, j)W1 x(i, j) , J= i=0 j=0 3 (0.2) ở đó x> (i, j) = h xh> (i, j) xv> (i, j) i + , R ∈ S+ nu và W1 ∈ Sn là các ma trận cho trước. a) Đối tượng nghiên cứu là lớp hệ 2-D dạng (0.1) và các dạng đặc biệt của nó, chẳng hạn lớp hệ 2-D dạng Roesser không có nhiễu. b) Phạm vi nghiên cứu bao gồm: • Phân tích tính ổn định và ổn định hóa theo điều khiển phản hồi cho lớp hệ dương dạng (0.1). • Tìm điều kiện để thiết kế điều khiển phản hồi sao cho hệ đóng tương ứng là ổn định và đảm bảo hàm giá không vượt quá một ngưỡng J∗ nào đó, tức là J ≤ J∗ . 5. Phương pháp nghiên cứu Luận văn sử dụng phương pháp hàm Lyapunov, giải tích ma trận và phương pháp thiết kế điều khiển phản hồi tuyến tính để tìm các điều kiện ổn định và ổn định hóa với giá trị hàm giá được đảm bảo bởi một ngưỡng nào đó thông quan nghiệm của các bất đẳng thức ma trận tuyến tính. 6. Bố cục của luận văn Ngoài phần mở đầu, kết luận và danh mục các tài liệu tham khảo, luận văn được chia thành ba chương. Chương 1 giới thiệu sơ bộ về mô hình Roesser và một số kiến bổ trợ. Chương 2 phân tích tính ổn định và ổn định hóa theo điều khiển phản hồi cho lớp hệ 2-D dạng Roesser không chứa đại lượng không chắc chắc. Chương 3 trình bày về bài toán điều khiển đảm bảo giá trị GCC cho lớp hệ 2-D rời rạc dạng Roesser chứa tham số dạng nhiễu có cấu trúc. 4 MỘT SỐ KÝ HIỆU R+ Tập tất cả các số thực không âm Rn Không gian Euclide n−chiều với tích vô hướng P  12 n > 2 hx, yi = x y và chuẩn vectơ kxk = i=1 xi Rm×n Tập các ma trận cỡ m × n A> Ma trận chuyển vị của ma trận A In Ma trận đơn vị trong Rn×n λ(A) Tập hợp các giá trị riêng của A λmax (A) = max{Reλj (A) : λj (A) ∈ λ(A)} λmin (A) = min{Reλj (A) : λj (A) ∈ λ(A)} A>0 Ma trận A đối xứng xác định dương, tức là A = A> , x> Ax > 0 với mọi x ∈ Rn , x 6= 0 A≥0 Ma trận A đối xứng nửa xác định dương, tức là A = A> , x> Ax ≥ 0, ∀x ∈ Rn A>B Ma trận A − B đối xứng xác định dương S+ n Tập các ma trận đối xứng xác định dương n × n chiều LMIs Bất đẳng thức ma trận tuyến tính. 5 Chương 1 MỘT SỐ KẾT QUẢ BỔ TRỢ Trong chương này, chúng tôi giới thiệu sơ lược về lớp hệ 2-D trong mô hình Roesser và một số kết quả bổ trợ cho việc trình bày nội dung các chương sau. 1.1. Ví dụ về mô hình hệ 2-D Xét hệ điều khiển mô tả bởi phương trình đạo hàm riêng cấp 1 sau đây:    ∂T (x,t) = − ∂T (x,t) − aT (x, t) + bu(x, t), ∂x ∂t (1.1)  y(x, t) = cT (x, t), ở đó T (x, t) là hàm ẩn (chẳng hạn hàm nhiệt độ) tại tọa độ x ∈ [0, xf ] và thời t ∈ [0, ∞), u(x, t) là hàm điều khiển và y(x, t) là tín hiệu đầu ra và a, b, c là các hằng số. Pipe ‫ݔ(ݑ‬, ‫)ݐ‬ ܶ(‫ݔ‬, ‫)ݐ‬ ‫ݔ(ݕ‬, ‫)ݐ‬ ‫ݔ‬ Steam (or water) Hình 1.1: Hệ điều khiển quá trình nhiệt Mô hình (1.1) được sử dụng trong một số quá trình nhiệt trong các phản ứng hóa học hay trong các ống nhiệt của lò hấp [10]. Trong thực tế, các tín hiệu 6 điều khiển thường được tổng hợp thông qua quá trình rời rạc hóa. Đặt T (i, j) = T (i∆x, j∆t), u(i, j) = u(i∆x, j∆t) T (i, j) − T (i − 1, j) ∂T (x, t) ≈ , ∂x ∆x ∂T (x, t) T (i, j + 1) − T (i, j) ≈ . ∂t ∆t Khi đó phương trình (1.1) có thể viết dưới dạng:   T (i, j + 1) = 1− ∆t ∆t − a∆t T (i, j) + T (i − 1, j) + b∆tu(i, j). ∆x ∆x (1.2) Hàm điều khiển theo tín hiệu đầu ra (output feedback control) được thiết kế dạng u(i, j) = ky(i, j) = kcT (i, j). Đặt xh (i, j) = T (i − 1, j) và xv (i, j) = T (i, j). Khi đó hệ đóng tương ứng của (1.1) có dạng    xh (i + 1, j)  xv (i, j + 1) = 0 1 ∆t ∆x 1− | ∆t ∆x   − a∆t + bkc∆t {z  xh (i, j) xv (i, j) , i, j ∈ N. (1.3) } A0 Hệ (1.3) diễn tả một mô hình hệ 2-D dạng Roesser.   T (i − 1, j) Mặt khác, từ (1.2) ta đặt x(i, j) =  T (i, j) , khi đó (1.2) trở thành (1.4) x(i + 1, j + 1) = A1 x(i, j + 1) + A2 x(i + 1, j), ở đó  0 A1 =  0  1 , 0  A2 =  0 ∆t ∆x 0 1− ∆t ∆x  . − a∆t + bkc∆t Hệ (1.4) mô tả hệ 2-D trong mô hình Fornasini-Marchesini thứ hai (FM-II).   xh (i, j) Trong hệ (1.3), vectơ trạng thái của hệ được xác định bởi x(i, j) =  xv (i, j) . Sự lan truyền thông tin của vectơ xh theo trục i (phương ngang) trong khi sự lan truyền của vectơ xv theo trục j (phương đứng). Các hệ động lực mà sự lan truyền thông tin theo hai phương độc lập được gọi chung là các hệ 2-D. Việc nghiên cứu định tính các hệ 2-D nói chung khó khăn hơn rất nhiều so với các hệ 1-D tương ứng dạng x(k + 1) = A0 x(k). Lí do chính là nhiều phương pháp và 7 công cụ nghiên cứu đã phát triển đối với hệ 1-D không còn phù hợp với hệ 2-D, chẳng hạn như công thức nghiệm cơ bản hay các ước lượng dựa trên quy nạp một thang theo thời gian k . 1.2. Một số mô hình hệ 2-D 1.2.1. Mô hình Roesser Trong các mô hình hệ hai chiều, mô hình Roesser (RM) được sử dụng một cách rộng rãi do cấu trúc tự nhiên và đơn giản. Mô hình 2-D Roesser được mô tả bởi hệ phương trình  xh (i + 1, j)  xv (i, j + 1)   = A11 A12 A21 A22 | h y(i, j) = C1 {z A0    + xh (i, j) xv (i, j) }   B1 B2   u(i, j), (1.5)  i xh (i, j)  + Du(i, j), C2  xv (i, j) ở đó i, j ∈ Z+ là các biến thời gian rời rạc theo tọa độ ngang và dọc, xh (i, j) ∈ Rn1 là vectơ trạng thái ngang, xv (i, j) ∈ Rn2 là vectơ trạng thái dọc, u(i, j) ∈ Rm là điều khiển đầu vào, y(i, j) ∈ Rp là vectơ đầu ra và A0 , B1 , B2 , C1 , C2 , D là các ma trận hằng với số chiều thích hợp. Điều kiện đầu đối với (1.5) được xác định bởi các dãy φh (j) và φv (i) xh (0, j) = φh (j), j ∈ N; xv (i, 0) = φv (i), i ∈ N. (1.6) Thông thường φh (.), φv (.) được giả thiết có giá hữu hạn, tức là tồn tại các số nguyên dương T1 , T2 sao cho φh (j) = 0, j ≥ T1 , φv (i) = 0, i ≥ T2 , hoặc tổng quát hơn các dãy φh , φv thuộc lớp c0 , tức là φh (k) → 0, φv (k) → 0 khi k → ∞. 8 1.2.2. Mô hình Attasi Mô hình Attasi (AM) có nhiều ứng dụng xử lí ảnh và tín hiệu số [10]. Nó được mô tả bởi phương trình sau x(i + 1, j + 1) = A1 x(i, j + 1) + A2 x(i + 1, j) − A2 A1 x(i, j) + B0 u(i, j), (1.7) y(i, j) = Cx(i, j), ở đó A1 A2 = A2 A1 . Mô hình Attasi (1.7) là trường hợp đặc biệt của mô hình Roesser (1.5). 1.2.3. Mô hình Fornasini-Marchesini (FM) Các mô hình FMs được ứng dụng rộng rãi và rất thành công trong lĩnh vực xử lí tín hiệu (signal processing) và điều khiển. Mô hình FM-I của hệ 2-D được mô tả bởi phương trình x(i + 1, j + 1) = A0 x(i, j) + A1 x(i, j + 1) + A2 x(i + 1, j) + Bu(i, j), (1.8) y(i, j) = Cx(i, j), và mô hình FM-II được cho bởi hệ x(i + 1, j + 1) = A1 x(i, j + 1) + A2 x(i + 1, j) + B1 u(i, j + 1) + B2 u(i + 1, j), (1.9) y(i, j) = Cx(i, j). Mô hình FM tổng quát được mô tả bởi x(i + 1, j + 1) = A0 x(i, j) + A1 x(i, j + 1) + A2 x(i + 1, j) + B0 u(i, j) + B1 u(i, j + 1) + B2 u(i + 1, j), (1.10) y(i, j) = Cx(i, j). 1.2.4. Mối liên hệ giữa các mô hình hệ 2-D Rõ ràng mô hình Attasi là trường hợp đặc biệt của mô hình FM-I khi A0 = −A1 A2 và B0 = B . Hơn nữa, sử dụng phép biến đổi xh (i, j) = x(i, j + 1) − A2 x(i, j), 9 xv (i, j) = x(i, j). (1.11) Từ (1.7) ta có xh (i + 1, j) = x(i + 1, j + 1) − A2 x(i + 1, j) = A1 x(i, j + 1) − A2 A1 x(i, j) + B0 u(i, j) = A1 (x(i, j + 1) − A2 x(i, j)) + B0 u(i, j) = A1 xh (i, j) + B0 u(i, j) và xv (i, j + 1) = x(i, j + 1) = xh (i, j) + A2 xv (i, j). Do đó (1.7) luôn viết được dưới dạng     xh (i + 1, j)  xv (i, j + 1) = A1 0n In A2 xh (i, j)  xv (i, j)  h y(i, j) = 0p×n   B0 + 0n×m   u(i, j), (1.12)  i xh (i, j)  C  xv (i, j) nên (1.7) là trường hợp đặc biệt của mô hình Roesser (1.5). Mặt khác, với phép biến đổi (1.11), hệ (1.8) được viết dưới dạng        xh (i + 1, j)  xv (i, j + 1) xh (i, j) A1 A0 + A1 A2 = In A2  y(i, j) = 0p×n B 0n×m  u(i, j), (1.13)   h xv (i, j) + i xh (i, j)  + Du(i, j). C  xv (i, j) Do đó, với phép biến đổi (1.11), mô hình FM-I có thể đưa về mô hình Roesser (1.5). Bây giờ ta đặt h i x̂(i, j) = x> (i, j) x> (i, j − 1) u> (i, j − 1) . 10 Khi đó hệ (1.8) trở thành  A2   x̂(i + 1, j + 1) =  In   02n 0n 0n×2n  (1.14)  02n×n +    B A1 A0   x̂(i, j + 1)  x̂(i + 1, j) +   02n 02n×m  u(i, j + 1) + 03n×m u(i, j + 1), In h i y(i, j) = C 0p×2n x̂(i, j). Vì vậy mô hình FM-I nhúng được vào lớp mô hình FM-II. h i> hT vT Xét mô hình Roesser (1.5). Kí hiệu vectơ x(i, j) = x (i, j) x (i, j) . Khi đó (1.5) viết được dưới dạng     A11 A12 0 0  x(i, j + 1) +  n1 ×n2 n2 ×n2  x(i + 1, j) x(i + 1, j + 1) =  0n2 ×n1 0n2 ×n2 A21 A22   B1 0n2 ×m   0n1 ×m  u(i, j + 1) +  B2   u(i + 1, j), y(i, j) = Cx(i, j), (1.15) h i ở đó C = C1 C2 . Do đó mô hình Roesser (1.5) có thể biểu diễn được bằng mô hình FM-II. Đối với các mô hình hệ 2-D cơ bản như trên, mô hình FM-II có dạng tổng quát hơn các mô hình khác. Mối liên hệ giữa các mô hình nói trên được minh họa như trong hình dưới đây. Đối với các lớp hệ 2-D có cấu trúc phức tạp hơn, chẳng hạn hệ 2-D có trễ hay nhiễu dạng tất định hoặc ngẫu nhiên, mô hình Roesser không biến đổi được về mô hình FM-II. Như đã đề cập phần trước, việc biến đổi mô hình thường dẫn đến các điều kiện ngặt hơn khi nghiên cứu định tính và điều khiển các lớp hệ đó. Vì vậy, mô hình Roesser và mô hình FM-II thường vẫn được nghiên cứu song song và được sử dụng rộng rãi trong các ứng dụng thực tiễn. 11 FM-I RM AM FM-II Hình 1.2: Mô hình hệ 2-D 1.3. Một số kiến thức bổ trợ 1.3.1. Giải tích ma trận Cho ma trận A = (aij ) ∈ Rn×m . Ma trận chuyển vị của A, kí hiệu bởi A> xác định bởi A> = (aji ) ∈ Rm×n . Các tính chất sau đúng với mọi ma trận A, B có số chiều phù hợp: (A+B)> = A> +B > , (cA)> = cA> , c ∈ R, (AB)> = B > A> , (A−1 )> = (A> )−1 . Ma trận A ∈ Rn là ma trận đối xứng nếu A = A> . Ma trận đối xứng A là nửa xác định dương, viết A ≥ 0, nếu x> Ax ≥ 0, ∀x ∈ Rn , và A là xác định dương, viết A > 0, nếu x> Ax > 0 với mọi x ∈ Rn , x 6= 0. Kí hiệu Sn , S+ n là tập các ma trận đối xứng và ma trận đối xứng xác định dương trong Rn×n . Chẳng hạn, xét 2   ma trận A = 1  1 2 2 −2 2   −2. Khi đó, A là ma trận đối xứng. Hơn nữa, với mọi  0 x = (x1 , x2 , x3 )> ∈ R3 , x> Ax = 2x21 + 2x22 + 2x1 x2 + 4x1 x3 − 4x2 x3 = (x1 + x2 )2 + (x1 − 2x3 )2 + (x2 − x3 )2 . Do đó x> Ax > 0, ∀x 6= 0 nên A ∈ S+ 3. Một số tính chất của ma trận đối xứng, xác định dương: 12 • Nếu A ∈ Sn thì λ(A) ⊂ R. Tức là mọi giá trị riêng của ma trận đối xứng đều thực. • Ma trận A ∈ S+ n khi và chỉ khi mọi giá trị riêng λj (A) > 0. • Ma trận A ∈ Sn xác định dương khi và chỉ khi mọi định thức con chính Dk (A) > 0, ở đó Dk là định thức con chính cấp k của A (điều kiện Sylvester). • Nếu A ∈ S+ n thì (bất đẳng thức Rayleigh) λmin (A)kxk2 ≤ x> Ax ≤ λmax kxk2 , ∀x ∈ Rn . > + • Nếu A ∈ S+ n thì tồn tại ma trận Q ∈ Sn sao cho Q Q = A. Ma trận Q gọi là 1 căn bậc hai của ma trận dương A, viết Q = A 2 . Bổ đề 1.3.1 (Bất đẳng thức Cauchy ma trận). Cho X ∈ Rn×n là ma trận đối xứng xác định dương. Khi đó với mọi x, y ∈ Rn ta có 2x> y ≤ x> Xx + y > X −1 y. 1 1 Chứng minh. Kí hiệu a = X 2 x, b = X − 2 y , ta có 0 ≤ ka − bk2 = ha − b, a − bi = kak2 + kbk2 − 2a> b. Từ đó có 2x> y ≤ x> Xx + y > X −1 y. Bổ đề 1.3.2 (Bổ đề Schur). Cho các ma trận X, Y, Z với số chiều thích hợp, X = X > và Z = Z > > 0. Khi đó,   X Y> Y −Z   < 0 ⇔ X + Y > Z −1 Y < 0. Chứng minh. Chứng minh của Bổ đề Schur dựa trên phân tích sau đây:       In −Y Z −1  0 In X  Y> Y Z In 0 −Z −1 Y > In  Từ đó suy ra điều phải chứng minh. 13 X − Y Z −1 Y > 0 0 Z = . Chương 2 TÍNH ỔN ĐỊNH VÀ ỔN ĐỊNH HÓA CỦA HỆ 2-D RỜI RẠC DẠNG ROESSER Trong chương này chúng tôi nghiên cứu tính ổn định và ổn định hóa bằng điều khiển phản hồi đối với hệ 2-D dạng Roesser sau đây     xh (i + 1, j)  xv (i, j + 1) xh (i, j)  = A xv (i, j)  + Bu(i, j), (2.1) ở đó, như đã giới thiệu ở Chương 1, xh ∈ Rnh và xv ∈ Rnv là các vectơ trạng thái theo phương ngang và dọc, u ∈ Rm là điều khiển đầu vào, A ∈ Rn×n (n = nh +nv ) và B ∈ Rn×nu là các ma trận thực cho trước. Dựa trên cách tiếp cận bằng phương pháp hàm Lyapunov, các điều kiện ổn định và ổn định hóa được đặt thông qua các bất đẳng thức ma trận tuyến tính. Điều kiện đầu của (2.1) được xác định bởi các dãy φh : N0 → Rnh và φv : N0 → Rnv như sau xh (0, j) = φh (j), j ∈ N0 , xv (i, 0) = φv (i), i ∈ N0 , ở đó φh , φv là các dãy trong l2 , tức là ∞  X 2 kφh (k)k + kφv (k)k 2  (2.2) < ∞. k=0 2.1. Tính ổn định của một số lớp hệ 2-D tuyến tính Trong mục này chúng tôi trình bày một số điều kiện ổn định cho một số lớp hệ 2-D trong mô hình Roesser và mô hình FM-II. Định nghĩa 2.1.1. Hệ (2.1) với điều khiển u(i, j) = 0 được gọi là ổn định tiệm cận nếu nghiệm bất kì x(i, j) của (2.1) với điều kiện đầu (2.2) thỏa mãn   lim χr , lim sup kx(i, j)k = 0. r→∞ r→∞ i+j=r 14 (2.3) Bây giờ ta xét lớp hệ tuyến tính rời rạc 2-D được mô tả bởi mô hình FM-II x(i + 1, j + 1) = A1 x(i, j + 1) + A2 x(i + 1, j), (2.4) ở đó x(i, j) ∈ Rn là vectơ trạng thái của hệ, A1 , A2 ∈ Rn×n là các ma trận cho trước. Tương tự mô hình (2.1), điều kiện đầu của (2.4) cũng được xác định bởi các dãy φh , φv ∈ l2 : x(0, j) = φh (j), i ≥ 0, x(i, 0) = φv (i), j ≥ 0. (2.5) Định nghĩa ổn định tiệm cận cho hệ (2.5) được phát biểu tương tự trong Định nghĩa 2.1.1. Đa thức đặc trưng của (2.4) được xác định bởi L(z1 , z2 ) = det (In − z1 A1 − z2 A2 ) , z1 , z2 ∈ C. (2.6) Kết quả dưới đây cho một tiêu chuẩn ổn định của hệ (2.4) dựa trên phương pháp đa thức đặc trưng. Mệnh đề 2.1.1 (xem [5]). Hệ (2.4) ổn định tiệm cận khi và chỉ khi L(z1 , z2 ) 6= 0 với mọi (z1 , z2 ) ∈ U , ở đó U là đĩa đóng đơn vị trong C2 xác định bới U =  (z1 , z2 ) ∈ C2 : |z1 | ≤ 1, |z2 | ≤ 1 . Nhận xét 2.1.1. Mệnh đề 2.1.1 cho điều kiện cần và đủ dạng tính chất phổ cho tính ổn định của hệ (2.4). Tuy nhiên, tiêu chuẩn này không khả dụng cho việc thiết kế điều khiển bởi vấn đề xác định tính chất tập phổ của ma trận không biết trước (chứa ẩn là ma trận đạt được của điều khiển). Vì vậy, từ tiêu chuẩn đặc trưng cho trong Mệnh đề 2.1.1 ta xây dựng một điều kiện ổn định dựa trên các tiếp cận bằng bất đẳng thức ma trận tuyến tính (LMIs) như trình bày trong định lí dưới đây. Định lí 2.1.1. Với các hằng số dương α, β cố định thỏa mãn α + β = 1, giả sử tồn tại một ma trận P ∈ S+ n thỏa mãn điều kiện LMI sau:   h i A>  1  P A1 A2 − I(α, β)P < 0, A> 2 15 (2.7) ở đó I(α, β) = diag(αIn , βIn ). Khi đó hệ (2.4) là ổn định tiệm cận. Chứng minh. Phản chứng, giả sử hệ (2.4) không ổn định tiệm cận. Theo Mệnh đề 2.1.1, tồn tại (z1 , z2 ) ∈ U sao cho det(In − z1 A1 − z2 A2 ) = 0. Khi đó, tồn tại vectơ x ∈ Rn×n , x 6= 0, sao cho (In − z1 A1 − z2 A2 )x = 0, và do đó   h i z1 In  x. x = A1 A2  z2 In h i Kí hiệu A = A1 A2 và Q = I(α, β)P − A> P A > 0. Gọi x∗ , z ∗ lần lượt là liên hợp phức của x và z = (z1 , z2 ). Ta có   z1 In  x∗ P x = x∗ z1∗ In z2∗ In A> P A  z2 In h i     αP 0 z I  − Q  1 n  x = x∗ z1∗ In z2∗ In  0 βP z2 In h i   z1 In x = (α|z1 |2 + β|z2 |2 )x∗ P x − x∗ z1∗ In z2∗ In Q  z2 In h i < (α|z1 |2 + β|z2 |2 )x∗ P x. Từ đó suy ra α|z1 |2 + β|z2 |2 > 1. Điều này mâu thuẫn với giả thiết (z1 , z2 ) ∈ U . Định lí được chứng minh. Nhận xét 2.1.2. Với bất kì α ∈ (0, 1), kí hiệu Q = αP > 0. Khi đó     I(α, β)P =  αP 0 0 (1 − α)P Q = Do đó (2.7) trở thành         A>  1  Q     P A1 A2 −  A> 2       0 0 P −Q  0  <0 0 P −Q Q − P < 0. 16 . (2.8) Nhận xét 2.1.3. Điều kiện (2.8) có thể thiết lập bằng việc mở rộng phương pháp hàm Lyapunov cho hệ 2-D. Cụ thể hơn, xét hàm Lyapunov 2-D sau V (i, j) = x> (i, j)P1 x(i, j) + x> (i, j)P2 x(i, j) | {z } V1 | {z V2 (2.9) } ở đó P1 , P2 là các ma trận đối xứng xác định dương. Sai phân của V (i, j) được xác định bởi ∆V (i, j) , ∂1 (V1 ) + ∂2 (V2 ) (2.10) = V1 (i + 1, j + 1) − V1 (i, j + 1) + V2 (i + 1, j + 1) − V2 (i + 1, j). Mệnh đề 2.1.2. Hệ (2.4) ổn định tiệm cận nếu sai phân ∆V (i, j) cho bởi (2.10) xác định âm. Chứng minh. Với mọi N1 , N2 ≥ 1, lấy tổng hai vế (2.10) lần lượt theo i, j ta được N2 X [V1 (N1 , j) − V1 (0, j)] + N1 X j=1 [V2 (i, N2 ) − V2 (i, 0)] = i=1 N 1 −1 N 2 −1 X X i=0 ∆V (i, j). j=0 Do giả thiết ∆V xác định âm và từ (2.9) suy ra tồn tại hằng số ρ > 0 sao   cho ∆V (i, j) ≤ − 12 ρ kx(i + 1, j)k2 + kx(i, j + 1)k2 . Cho N1 , N2 → ∞ ta được ∞ X ∞ X i=0 j=0 kx(i, j)k2 ≤  λmax (P1 ) + λmax (P2 ) kφh k2l2 + kφv k2l2 . ρ Từ đó suy ra limr→∞ χr = 0, tức là hệ (2.4) ổn định tiệm cận. Nhận xét 2.1.4. Kí hiệu A = [A1 A2 ] và ξ(i, j) = [x> (i, j + 1) x> (i + 1, j)]> . Khi đó (2.4) viết được dạng x(i + 1, j + 1) = Aξ(i, j). Từ (2.9) và (2.10) ta có ∆V (i, j) = x> (i + 1, j + 1)P1 x(i + 1, j + 1) − x> (i, j + 1)P1 x(i, j + 1) + x> (i + 1, j + 1)P2 x(i + 1, j + 1) − x> (i + 1, j)P2 x(i + 1, j) = ξ > (i, j)A> (P1 + P2 )Aχ(i, j) − χ> (i, j)diag(P1 , P2 )χ(i, j) = ξ > (i, j)Ψξ(i, j), ở đó  P1 0 0 P2 Ψ = A> (P1 + P2 )A −  17  . Từ đó ta có kết quả sau. Mệnh đề 2.1.3. Hệ (2.4) ổn định tiệm cận nếu tồn tại các ma trận P1 , P2 ∈ S+ n sao cho   A>  1 A> 2     A1 P1 0  < 0. (P1 + P2 )   −  A2 0 P2 (2.11) Nhận xét 2.1.5. Rõ ràng (2.11) suy ra (2.8) bằng cách chọn Q = P1 và P = P1 + P2 . Bây giờ ta trở lại xét hệ 2-D trong mô hình Roesser (2.1). Đa thức đặc trưng của (2.1) được cho bởi   Inh − z1 A11 −z1 A12 . C(z1 , z2 ) = det  −z2 A21 Inv − z2 A22 Vì hệ (2.1) có thể biến đổi về mô hình FM-II (2.4) nên C(z1 , z2 ) chính là đa h i h i thức đặc trưng L(z1 , z2 ) của (2.4) ứng với A1 = A11 A12 và A2 = A21 A22 . Do đó ta có kết quả sau. Định lí 2.1.2 (xem [10]). Hệ (2.1) ổn định tiệm cận khi và chỉ khi C(z1 , z2 ) 6= 0 với mọi (z1 , z2 ) ∈ U , ở đó U = {(z1 , z2 ) ∈ C2 : |z1 | ≤ 1, |z2 | ≤ 1}. Từ Định lí 2.1.2 ta có điều kiện ổn định sau. Định lí 2.1.3. Hệ mở của (2.1) (tức là u(i, j) = 0) là ổn định tiệm cận nếu tồn tại P = diag(P h , P v ) ∈ S+ n thỏa mãn điều kiện LMI sau: A> P A − P < 0. Chứng minh. Xét hàm Lyapunov sau V (i, j) = V h (i, j) + V v (i, j) ở đó V h (i, j) = xh> (i, j)P h xh (i, j) và V v (i, j) = xv> (i, j)P v xv (i, j). Sai phân ∆V (i, j) được định nghĩa như sau ∆V (i, j) = ∂1 (V h (i, j)) + ∂2 (V v (i, j)) 18 (2.12)
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất