Đăng ký Đăng nhập
Trang chủ Khảo sát sự tự hấp thụ gamma trong phép đo mẫu môi trường sử dụng hệ phổ kế hpge...

Tài liệu Khảo sát sự tự hấp thụ gamma trong phép đo mẫu môi trường sử dụng hệ phổ kế hpge

.PDF
92
1
57

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Võ Thị Ngọc Lý KHẢO SÁT SỰ TỰ HẤP THỤ GAMMA TRONG PHÉP ĐO MẪU MÔI TRƯỜNG SỬ DỤNG HỆ PHỔ KẾ HPGe LUẬN VĂN THẠC SĨ VẬT LÍ Thành Phố Hồ Chí Minh – 2013 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Võ Thị Ngọc Lý KHẢO SÁT SỰ TỰ HẤP THỤ GAMMA TRONG PHÉP ĐO MẪU MÔI TRƯỜNG SỬ DỤNG HỆ PHỔ KẾ HPGe Chuyên ngành: Vật lí nguyên tử Mã số: 60 44 01 06 LUẬN VĂN THẠC SĨ VẬT LÍ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. Trương Thị Hồng Loan Thành Phố Hồ Chí Minh – 2013 LỜI CẢM ƠN Để hoàn thành chương trình cao học và viết luận văn, tôi đã nhận được rất nhiều sự giúp đỡ chân thành của quý thầy cô, gia đình và bạn bè. Nhân đây, tôi xin gửi lời tri ân sâu sắc đến: - TS. Trương Thị Hồng Loan, người cô đáng kính. Trong suốt thời gian làm luận văn, cô đã nhiệt tình chỉ bảo phương pháp nghiên cứu, cung cấp tài liệu, tạo mọi điều kiện tốt nhất cho tôi làm các thí nghiệm và đóng góp nhiều ý kiến quý báu cho luận văn. - PGS.TS. Châu Văn Tạo, người thầy đã tạo điều kiện cho tôi thực hiện luận văn tại Bộ môn Vật lý của trường Đại Học Khoa học Tự nhiên. - Các thầy cô trong Bộ môn Vật lý hạt nhân của trường Đại học Khoa học Tự nhiên Tp.HCM đã giúp đỡ nhiệt tình và đóng góp nhiều ý kiến quý báu trong quá trình thực hiện luận văn. - Các bạn trong nhóm MCNP đã truyền đạt nhiều kinh nghiệm quý báu trong quá trình tiến hành các thí nghiệm và xử lý phổ gamma. - Hội đồng bảo vệ luận văn trường Đại học Sư Phạm TP.HCM đã dành nhiều thời gian đọc và đóng góp ý kiến quý báu cho luận văn. - Các thầy cô trong Bộ môn Vật lý hạt nhân của trường Đại học Sư Phạm TP.HCM đã tạo điều kiện cho tôi học tập, nghiên cứu và bảo vệ luận văn. - Cuối cùng, tôi xin khắc sâu công ơn của Cha mẹ, em gái, bạn bè trong khoá K22 đã giúp đỡ và động viên tôi rất nhiều trong quá trình học tập và làm luận văn. TP.HCM, ngày 20 tháng 9 năm 2013 Võ Thị Ngọc Lý MỤC LỤC LỜI CẢM ƠN T 0 MỤC LỤC T 0 DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT T 0 DANH MỤC CÁC BẢNG T 0 DANH MỤC CÁC HÌNH T 0 MỞ ĐẦU .....................................................................................................................1 T 0 0T Chương 1. TỔNG QUAN ...........................................................................................3 T 0 1.1. Tình hình nghiên cứu sự tự hấp thụ trên thế giới và trong nước .....................3 T 0 T 0 1.1.1. Tình hình nghiên cứu sự tự hấp thụ trên thế giới ......................................3 T 0 T 0 1.1.2. Tình hình nghiên cứu sự tự hấp thụ trong nước ........................................6 T 0 T 0 1.2. Giới thiệu hệ phổ kế gamma HPGe và các đặc trưng ......................................7 T 0 T 0 1.2.1. Cấu tạo của hệ phổ kế gamma HPGe ........................................................8 T 0 T 0 1.2.2. Các đặc trưng cơ bản của hệ phổ kế gamma HPGe ................................11 T 0 T 0 1.3. Kết luận chương 1 ..........................................................................................22 T 0 0T Chương 2. TƯƠNG TÁC CỦA BỨC XẠ GAMMA VỚI VẬT CHẤT VÀ CÁC T 0 PHƯƠNG PHÁP KHẢO SÁT SỰ TỰ HẤP THỤ ..................................................23 2.1. Tương tác của bức xạ gamma với vật chất ....................................................23 T 0 T 0 2.1.1. Khái quát về bức xạ gamma ....................................................................23 T 0 T 0 2.1.2. Tương tác của bức xạ gamma với vật chất .............................................23 T 0 T 0 2.2. Các phương pháp khảo sát sự tự hấp thụ trong phép đo mẫu môi trường .....29 T 0 T 0 2.2.1. Phương pháp khảo sát sự tự hấp thụ trong phép đo mẫu môi trường dùng T 0 phương pháp mô phỏng với chương trình MCNP ............................................31 T 0 2.2.2. Phương pháp khảo sát sự tự hấp thụ trong phép đo mẫu môi trường bằng T 0 thực nghiệm .......................................................................................................32 0T 2.3. Kết luận chương 2 ..........................................................................................34 T 0 0T Chương 3. THỰC NGHIỆM KHẢO SÁT SỰ TỰ HẤP THỤ GAMMA TRONG T 0 PHÉP ĐO MẪU MÔI TRƯỜNG .............................................................................36 3.1. Chuẩn bị mẫu khảo sát ...................................................................................36 T 0 0T 3.1.1. Lí do chọn mẫu........................................................................................36 T 0 0T 3.1.2. Chuẩn bị mẫu ..........................................................................................37 T 0 0T 3.2. Chuẩn năng lượng trước khi đo .....................................................................37 T 0 T 0 3.3. Bố trí thí nghiệm ............................................................................................38 T 0 0T 3.3.1. Các bước tiến hành thí nghiệm ...............................................................40 T 0 T 0 3.3.2. Phương pháp xác định hệ số hiệu chỉnh sự tự hấp thụ............................40 T 0 T 0 3.4. Kết quả thí nghiệm.........................................................................................42 T 0 0T 3.4.1. Tốc độ đếm ..............................................................................................42 T 0 0T 3.4.2. Hệ số hấp thụ tuyến tính .........................................................................43 T 0 T 0 3.4.3. Hệ số tự hấp thụ ......................................................................................46 T 0 0T 3.4.4. Hệ số hiệu chỉnh sự tự hấp thụ ................................................................50 T 0 T 0 3.4.5. Xây dựng biểu thức giải tích cho hệ số hiệu chỉnh sự tự hấp thụ ...........54 T 0 T 0 3.5.1. Mẫu RG - Th1 .........................................................................................57 T 0 0T 3.5.2. Mẫu RG - U1 ...........................................................................................59 T 0 0T 3.5.3. Kết luận ...................................................................................................61 T 0 0T 3.6. Kết luận chương 3 ..........................................................................................61 T 0 0T KẾT LUẬN CHUNG ................................................................................................63 T 0 0T KIẾN NGHỊ ..............................................................................................................64 T 0 0T TÀI LIỆU THAM KHẢO .........................................................................................65 T 0 0T DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ .........................................................68 T 0 T 0 PHỤ LỤC ..................................................................................................................69 T 0 0T DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT  Các ký hiệu A hoạt độ riêng của nguồn phóng xạ. c vận tốc ánh sáng trong chân không. Ee năng lượng của quang electron. Eγ năng lượng của tia gamma tới. E’ năng lượng của tia gamma sau tán xạ. R R P P E lk R năng lượng liên kết của electron với nguyên tử. R f hệ số hiệu chỉnh sự tự hấp thụ. F(E) hệ số tự hấp thụ theo năng lượng. I0 R cường độ ban đầu của tia gamma. R cường độ lúc sau của tia gamma. I me khối lượng nghỉ của electron. n tốc độ đếm của tia gamma khi qua hộp có mẫu. R n0 R R tốc độ đếm của tia gamma khi qua hộp rỗng. R N diện tích đỉnh. r tỉ số đỉnh – toàn phần. R độ phân giải năng lượng. R(E) tốc độ phát bức xạ. thời gian đo mẫu. t T 1/2 R R chu kỳ bán rã. y xác suất phát gamma. γ gamma. µ hệ số hấp thụ tuyến tính. µρ hệ số hấp thụ khối. ρ mật độ. ε hiệu suất. εabs hiệu suất tuyệt đối. εint hiệu suất nội. εp hiệu suất đỉnh. εp hiệu suất tương đối. θ góc tán xạ của tia gamma. σ sai số tuyệt đối. σa tiết diện hấp thụ quang điện. σc tiết diện tán xạ Compton.  Chữ viết tắt bộ biến đổi tương tự số. ADC Analog – to Digital Converter Bq Becquerel FWHM Full Width Half Maximum bề rộng ở một nửa giá trị cực đại. HPGe Hight Pure Germanium Germanium siêu tinh khiết. IAEA International Atomic Energy Cơ quan năng lượng nguyên tử Agency quốc tế. MCA Multi Chanel Analyzer bộ phân tích đa kênh. ThS Thạc sĩ. TP.HCM Thành Phố Hồ Chí Minh. TS Tiến sĩ. DANH MỤC CÁC BẢNG STT Bảng 1 3.1 2 3.2 3 3.3 4 3.4 5 3.5 6 3.6 7 3.7 8 3.8 Nội dung Tốc độ đếm khi tia gamma xuyên qua hộp rỗng và khi qua hộp chứa mẫu xi măng. Hệ số hấp thụ tuyến tính của mẫu xi măng. Hệ số hấp thụ tuyến tính theo năng lượng với các mật độ khác nhau. Hệ số tự hấp thụ theo năng lượng của mẫu xi măng. Hệ số tự hấp thụ với các mật độ và năng lượng khác nhau. Hệ số hiệu chỉnh sự tự hấp thụ của mẫu xi măng. Hệ số hiệu chỉnh sự tự hấp thụ theo mật độ ở các mức năng lượng khác nhau. Giá trị a, b và hệ số tương quan R2. 9 3.9 Hiệu suất ghi của mẫu nước theo năng lượng. 58 10 3.10 Các giá trị a, b theo năng lượng của mẫu RG – Th1. 58 11 3.11 12 3.12 13 3.13 14 3.14 15 3.15 16 3.16 17 P.1 Các giá trị f, ε0 , ε tính toán được đối với mẫu RG - U1. Hoạt độ các đồng vị trong mẫu RG - U1. So sánh hoạt độ tính toán được với hoạt độ do IAEA cung cấp. Tốc độ đếm khi xuyên qua hộp chứa mẫu bột nghệ. 18 P.2 Tốc độ đếm khi xuyên qua hộp chứa mẫu bột gạo. 69 19 P.3 Tốc độ đếm khi xuyên qua hộp chứa mẫu mì tinh. 70 20 P.4 Tốc độ đếm khi xuyên qua hộp chứa mẫu cà phê. 70 21 P.5 Tốc độ đếm khi xuyên qua hộp chứa mẫu nước cất. 71 22 P.6 Tốc độ đếm khi xuyên qua hộp chứa mẫu đất. 71 23 P.7 Hệ số hấp thụ tuyến tính của mẫu bột nghệ. 72 P P Kết quả tính f, ε0 , ε tại một số vạch năng lượng khảo sát của mẫu chuẩn RG – Th1 . Kết quả tính toán hoạt độ các đồng vị trong mẫu RG – Th1. Các giá trị a, b theo năng lượng của mẫu RG - U1. Trang 42 44 45 46 47 50 51 55 59 59 60 60 60 61 69 24 P.8 Hệ số hấp thụ tuyến tính của mẫu bột gạo. 72 25 P.9 Hệ số hấp thụ tuyến tính của mẫu mì tinh. 73 26 P.10 Hệ số hấp thụ tuyến tính của mẫu cà phê. 73 27 P.11 Hệ số hấp thụ tuyến tính của mẫu nước cất. 74 28 P.12 Hệ số hấp thụ tuyến tính của mẫu đất. 74 29 P.13 Hệ số tự hấp thụ theo năng lượng của mẫu bột nghệ. 75 30 P.14 Hệ số tự hấp thụ theo năng lượng của mẫu bột gạo 75 31 P.15 Hệ số tự hấp thụ theo năng lượng của mẫu mì tinh. 76 32 P.16 Hệ số tự hấp thụ theo năng lượng của mẫu cà phê. 76 33 P.17 Hệ số tự hấp thụ theo năng lượng của mẫu nước cất. 77 34 P.18 Hệ số tự hấp thụ theo năng lượng của mẫu đất. 77 35 P.19 Hệ số hiệu chỉnh sự tự hấp thụ của mẫu bột nghệ. 78 36 P.20 Hệ số hiệu chỉnh sự tự hấp thụ của mẫu bột gạo. 78 37 P.21 Hệ số hiệu chỉnh sự tự hấp thụ của mẫu mì tinh. 79 38 P.22 Hệ số hiệu chỉnh sự tự hấp thụ của mẫu cà phê. 79 39 P.23 Hệ số hiệu chỉnh sự tự hấp thụ của mẫu đất. 80 DANH MỤC CÁC HÌNH STT Hình 1 1.1 2 1.2 Nội dung Hệ phổ kế gamma đầu dò HPGe (ký hiệu GC2018) tại phòng thí nghiệm Chuyên đề Bộ môn Vật lý hạt nhân. Sơ đồ khối của hệ phổ kế gamma. Trang 3 1.3 Cấu trúc của đầu dò. 9 4 1.4 Cấu trúc của buồng chì 11 5 1.5 Định nghĩa độ phân giải của đầu dò. 13 8 8 6 1.6 7 1.7 8 1.8 Các hàm đáp ứng khác nhau đối với những đầu dò có độ phân giải năng lượng tương đối tốt và xấu. Nguồn phóng xạ thường dùng trong xây dựng đường cong hiệu suất đỉnh bằng thực nghiệm. Sự phụ thuộc năng lượng của hiệu suất đỉnh. 9 1.9 Sự hình thành đỉnh tổng phổ gamma của 60Co. 20 10 2.1 Cơ chế của hiệu ứng quang điện. 24 11 2.2 26 12 2.3 27 13 3.1 Tán xạ Compton. Góc tán xạ của photon ứng với một vài giá trị năng lượng tiêu biểu từ 1 keV đến 10 MeV. Các mẫu khảo sát dùng trong thí nghiệm. 14 3.2 Bề dày các mẫu khảo sát dùng trong thí nghiệm 37 15 3.3 38 16 3.4 17 3.5 18 3.6 19 3.7 20 3.8 21 3.9 Sơ đồ bố trí hệ đo sự tự hấp thụ. Nguồn điểm và chuẩn trực bằng chì đường kính 12 mm. Hệ đo được đặt trong buồng chì của hệ phổ kế gamma HPGe. Đồ thị sự phụ thuộc của hệ số hấp thụ tuyến tính vào năng lượng của mẫu xi măng. Đồ thị sự phụ thuộc của hệ số tự hấp thụ vào mật độ ở các mức năng lượng khác nhau. Đồ thị sự phụ thuộc của hệ số tự hấp thụ vào năng lượng. Đồ thị sự phụ thuộc của hệ số hiệu chỉnh sự tự hấp thụ vào mật độ ở năng lượng 81 keV. P P 14 17 19 36 39 39 44 48 49 52 22 3.10 23 3.11 24 3.12 25 3.13 Đồ thị sự phụ thuộc của hệ số hiệu chỉnh sự tự hấp thụ vào mật độ ở năng lượng 121 keV. Đồ thị sự phụ thuộc của hệ số hiệu chỉnh sự tự hấp thụ vào mật độ ở các mức năng lượng khác nhau. Đồ thị sự phụ thuộc của hệ số hiệu chỉnh sự tự hấp thụ vào năng lượng. Giao diện chính của phần mềm KhanhAi.exe. 52 53 53 57 1 MỞ ĐẦU Hệ phổ kế gamma là một thiết bị dùng trong phép đo và phân tích phổ gamma đặc trưng của các đồng vị phóng xạ, các mẫu môi trường và các phép phân tích khác dựa trên việc xác định năng lượng của tia gamma mà mẫu hoặc đồng vị đó phát ra. Khi ứng dụng hệ phổ kế gamma trong phân tích mẫu môi trường, thường có những khó khăn trong việc tạo mẫu chuẩn sao cho thành phần hoá học cũng như mật độ và nhiều yếu tố khác phải giống với mẫu cần đo. Bởi các mẫu môi trường rất đa dạng về thành phần hoá học và mật độ mẫu. Do đó, hiệu suất ghi thực của hệ phổ kế đối với mẫu cần đo rất khác so với hiệu suất ghi đã được xác định thông qua mẫu chuẩn. Hiệu suất ghi của hệ phổ kế bị ảnh hưởng bởi nhiều yếu tố như cấu hình đo, năng lượng của tia gamma tới, hệ điện tử, sự tự hấp thụ…Trong luận văn này, chúng tôi quan tâm đến vấn đề tự hấp thụ tia gamma trong mẫu bởi vì các mẫu môi trường thường có thể tích lớn, ảnh hưởng của sự tự hấp thụ là quan trọng. Mục tiêu của luận văn là xây dựng quy trình hiệu chỉnh sự tự hấp thụ gamma trong các mẫu môi trường dạng trụ có mật độ khác nhau bao gồm xác định hệ số hấp thụ tuyến tính, hệ số tự hấp thụ và hệ số hiệu chỉnh sự tự hấp thụ, giúp hiệu chỉnh nhanh sự tự hấp thụ mà không cần phải thực hiện nhiều phép tính phức tạp. Với những ưu điểm nổi bật của phương pháp thực nghiệm này là không cần biết chính xác thành phần hoá học của mẫu nên luận văn đã chọn phương pháp thực nghiệm để xây dựng quy trình hiệu chỉnh sự tự hấp thụ. Căn cứ vào mục tiêu đã đặt ra, nội dung của luận văn được trình bày trong ba chương gồm: - CHƯƠNG 1: Tổng quan. Chương này giới thiệu tổng quan về tình hình nghiên cứu trong và ngoài nước, cấu tạo của hệ phổ kế gamma và các đặc trưng cơ bản như phông nền phóng xạ môi trường, độ phân giải, hiệu suất ghi….. CHƯƠNG 2: Tương tác của bức xạ gamma với vật chất và các phương pháp khảo sát sự tự hấp thụ. Chương này trình bày các hiệu ứng cơ bản khi gamma tương tác với vật chất, cũng như các phương pháp đánh giá hiệu ứng tự hấp thụ. 2 CHƯƠNG 3: Thực nghiệm khảo sát sự tự hấp thụ gamma trong phép đo mẫu môi trường. Chương này trình bày thực nghiệm đánh giá sự tự hấp thụ gamma trong mẫu môi trường bao gồm cách bố trí thí nghiệm, đo đạc, xử lý kết quả. Từ đó, xây dựng biểu thức cho hệ số hiệu chỉnh và áp dụng tính hoạt độ các mẫu chuẩn của IAEA. 3 Chương 1 TỔNG QUAN 1.1. Tình hình nghiên cứu sự tự hấp thụ trên thế giới và trong nước Các mẫu môi trường thường có hoạt độ phóng xạ rất thấp. Do đó, để tăng khả năng phát hiện hoạt độ của các đồng vị phóng xạ trong mẫu thì phải tăng thể tích mẫu. Việc tăng thể tích mẫu sẽ dẫn đến hiện tượng một số tia gamma mất bớt năng lượng khi đến được đầu dò nên hiệu suất ghi của đầu dò sẽ khác hiệu suất ghi thật sự của mẫu. Vì thế, cần phải hiệu chỉnh lại hiệu suất ghi của đầu dò. Hệ số hiệu chỉnh này liên quan đến hiệu ứng tự hấp thụ trong các mẫu có thể tích lớn và là một hệ số quan trọng không thể bỏ qua khi tính chính xác hoạt độ các đồng vị trong mẫu. Vì lí do này nên đã có không ít các công trình trong nước và trên thế giới nghiên cứu vấn đề này. Dưới đây trích lược một số công trình tiêu biểu: 1.1.1. Tình hình nghiên cứu sự tự hấp thụ trên thế giới - Năm 1983, N.H. Cutshall tính toán hoạt độ của đồng vị 210 P Pb trong mẫu P trầm tích có sử dụng hệ số hiệu chỉnh sự tự hấp thụ. Trong công trình này, tác giả đã dùng phương pháp đo phổ gamma truyền qua để tính hệ số suy giảm tuyến tính 𝜇 và chứng minh được giá trị của µ phụ thuộc vào năng lượng [12]. - Năm 1991, Michael E. Kitto đã tính toán hệ số hiệu chỉnh sự tự hấp thụ trong mẫu đất có mật độ từ 0,7 - 1,8 g/cm3 cho dãy năng lượng từ 46 - 1764 keV P P bằng cách lần lượt trộn 1,4g 238U hoạt độ khoảng 3,8 nCi vào 24 mẫu đất có mật độ P P khác nhau rồi nén chặt lại bằng máy cho tất cả các mẫu đều có cùng thể tích 50 mL, cao 4,4 cm. Mỗi mẫu được đo với cùng một đầu dò có cùng cấu hình trong vòng 24h để tính toán hoạt độ của mẫu. Kết quả tính toán được so sánh với hoạt độ ban đầu của mẫu chuẩn đã biết. Từ kết quả tỉ số hoạt độ tính toán được và hoạt độ đã biết, tác giả đã kết luận rằng hệ số hiệu chỉnh cho sự tự hấp thụ phụ thuộc vào mật độ theo hàm mũ. Cuối cùng, so sánh hệ số hiệu chỉnh tính được với kết quả của hai phương pháp: đo đạc trực tiếp và truyền qua. Các kết quả so sánh cho thấy rằng với các mẫu đất khi sử dụng cấu hình 50 mL để đo đạc thì phương pháp truyền qua cho 4 kết quả không chính xác về hoạt độ tại các mức năng lượng nhỏ hơn 100 keV (hệ số hiệu chỉnh lớn). Nhưng với các mẫu khác (không phải là mẫu đất) thì phương pháp truyền qua lại cho một hệ số hiệu chỉnh tốt hơn [12]. - Năm 1997, O. Sima và C. Dovlete đã khảo sát ảnh hưởng của matrix khi tính toán hoạt độ của mẫu môi trường bằng phương pháp kết hợp đồng thời giữa mô phỏng Monte Carlo và các công thức giải tích, thông qua đó nhóm tác giả đã tính hệ số hiệu chỉnh cho sự tự hấp thụ. Các kết quả khảo sát cho thấy rằng những ảnh hưởng của matrix là quan trọng khi phân tích các mẫu môi trường bằng phổ gamma. Nếu bỏ qua ảnh hưởng của matrix thì kết quả sẽ sai khác nhiều, đặc biệt là vùng năng lượng thấp. Độ chính xác của hệ số hiệu chỉnh sự tự hấp thụ ứng với mỗi cấu hình đo thường trên 5% cho vùng năng lượng trên 50 keV và trên 1% cho vùng năng lượng trên 100 keV. Phương pháp này đã được nhóm tác giả phát triển và tích hợp trong phần mềm phân tích phổ gamma tại phòng thí nghiệm ERL (Enviromental Radioactivity Laboratory) tại Bucharest, cho phép tự động tính toán ảnh hưởng của matrix vào hiệu suất ghi đối với các mẫu thể tích khi tính toán hoạt độ của các mẫu môi trường. Hệ số hiệu chỉnh sự tự hấp thụ cũng được tính toán nhanh và chính xác nhờ chương trình này [20]. - Năm 2001, F.L. Melquiades và C.R. Appoloni đã hiệu chỉnh sự tự hấp thụ gamma trong mẫu sữa bột dạng Marinelli (cấu hình 3π ) khi tính hoạt độ phóng xạ tại đỉnh 1460,8 keV của 40K và đỉnh 2614,47 keV của 208Tl. Năm mẫu sữa được nén P P P P chặt theo những cách khác nhau để có mật độ khác nhau, sau đó được tiến hành đo với hệ phổ kế HPGe để khảo sát sự phụ thuộc của hiệu suất vào mật độ. Kết quả cho thấy: hiệu suất giảm tuyến tính theo mật độ. Dựa trên kết quả đã khảo sát về hiệu suất, nhóm tác giả tính hệ số tự hấp thụ cho các mẫu sữa có mật độ từ 0,534 g/cm3 P đến 0,569 g/cm3. Ở đây, nhóm tác giả chọn mẫu có mật độ 0,553 g/cm3 làm mẫu P P P P chuẩn (có hệ số tự hấp thụ bằng 1). Kết quả tính toán được như sau: + Đối với đỉnh 1460,8 keV của tính vào mật độ với sai số là 9%. 40 P K, hệ số tự hấp thụ phụ thuộc tuyến P P 5 + Đối với đỉnh 2614,47 keV của 208 P Tl, hệ số tự hấp thụ phụ thuộc tuyến P tính vào mật độ với sai số là 19%. Nhóm tác giả đã kết luận rằng: sự tự hấp thụ trong mẫu là quan trọng. Sự khác nhau về mật độ trong các mẫu môi trường hoặc mẫu thực phẩm so với mẫu chuẩn cần phải được quan tâm khi tính toán hoạt độ phóng xạ trong mẫu [10]. - Năm 2002, M. Jurado Vargas, A. Fernández Timón, N. Cornejo Díaz, Pérez Sánchez đã sử dụng phương pháp Monte Carlo với chương trình DETEFF để hiệu chỉnh sự tự hấp thụ của các mẫu môi trường có dạng hình trụ trên hệ phổ kế HPGe trong vùng năng lượng từ 60 keV đến 2000 keV. Ba loại đầu dò HPGe đồng trục loại n và loại p được sử dụng có hiệu suất tương đối từ 20 – 45% và giả thuyết rằng các vật liệu tự nhiên đều có cùng hệ số suy giảm khối với nước. Kết quả khảo sát được cho thấy hệ số hiệu chỉnh sự tự hấp thụ chỉ phụ thuộc vào năng lượng, mật độ của mẫu mà không phụ thuộc vào thành phần hoá học và loại đầu dò nào được sử dụng [14]. - Năm 2004, C.A. McMahon và cộng sự đã dùng phương pháp truyền qua để tính hệ số hiệu chỉnh sự tự hấp thụ trong mẫu môi trường có dạng trụ ở thể rắn và mẫu chuẩn được chọn ở thể lỏng. Kết quả tìm thấy sự phụ thuộc của hệ số hiệu chỉnh vào mật độ theo hàm mũ: Cf = A.e − Bρ (1.1) với A, B là hệ số phụ thuộc vào năng lượng [9]. - Năm 2006, M. Mostajaboddavati và cộng sự đã tìm ra sự phụ thuộc của hệ số tự hấp thụ để tính hoạt độ của các đồng vị phóng xạ thuộc họ Cs, 40K có trong mẫu đất cấu hình dạng 3π vào mật độ của mẫu. 238 232 137 P P P U, P Th, P P P P Trong nghiên cứu này, bảy mẫu đất có mật độ thay đổi từ 1,090 g/cm3 đến 1,603 P P g/cm3 được khảo sát và đều có kết quả là hệ số tự hấp thụ và mật độ phụ thuộc P P tuyến tính với nhau [13]. - Năm 2010, Necati Celik, Ugur Cevik đã dùng phương pháp mô phỏng Monte Carlo để xác định ảnh hưởng của nồng độ nước trong mẫu đất lên hiệu ứng tự hấp thụ. Hệ số hiệu chỉnh sự tự hấp thụ phụ thuộc vào năng lượng tia gamma tới và nồng độ của nước. Cụ thể là khi nồng độ nước ở trong mẫu càng cao thì hệ số 6 hiệu chỉnh càng nhỏ. Và khi năng lượng gamma nhỏ hơn 500 keV, hệ số hiệu chỉnh tăng nhanh theo năng lượng; khi năng lượng lớn hơn 500 keV, hệ số hiệu chỉnh thay đổi không đáng kể [15]. 1.1.2. Tình hình nghiên cứu sự tự hấp thụ trong nước Tại Việt Nam có nhiều nhóm tác giả nghiên cứu sự tự hấp thụ trong các mẫu môi trường như: - Năm 2004, Ngô Quang Huy và Trần Văn Luyến đã nghiên cứu sự tự hấp thụ trong mẫu để tính hoạt độ phóng xạ của U tại đỉnh 63,3 keV trong mẫu đất 238 P P dạng trụ bằng hệ phổ kế gamma HPGe. Nhóm tác giả đã tìm được sự phụ thuộc tuyến tính của hệ số suy giảm vào mật độ (từ 0,9 - 1,6 g/cm3) cho các mẫu đất. Từ P P đó, tính được hoạt độ của 238U trong các mẫu đất với sai số khoảng 10% [16]. P P - Năm 2009, Trương Thị Hồng Loan, Đặng Nguyên Phương, Đỗ Phạm Hữu Phong, Trần Ái Khanh đã khảo sát ảnh hưởng của matrix và mật độ lên hiệu suất của hệ phổ kế gamma HPGe bằng chương trình MCNP4C2. Một số công thức giải tích đã được xây dựng để hiệu chỉnh tự hấp thụ cho các mẫu đất dạng Marinelli. Từ đó, áp dụng để tính hoạt độ của các đồng vị trong mẫu chuẩn Soil- IAEA- 375. Các kết quả khảo sát cho thấy: + Đối với mật độ mẫu môi trường thông thường (từ 0,5 - 2 g/cm3) có thể P P bỏ qua ảnh hưởng của matrix khi khảo sát các tia gamma có năng lượng lớn hơn 100 keV. + Hệ số hiệu chỉnh tự hấp thụ phụ thuộc tuyến tính vào mật độ mẫu. + Hoạt độ của các đồng vị trong mẫu chuẩn khi có hiệu chỉnh tự hấp thụ phù hợp với các số liệu hoạt độ cung cấp bởi IAEA. Sự phù hợp giữa kết quả khảo sát hoạt độ trong mẫu chuẩn với số liệu cung cấp bởi IAEA là một minh chứng cho tính chính xác của chương trình [19]. - Năm 2010, Nguyễn Thị Cẩm Thu, Đặng Nguyên Phương, Trương Thị Hồng Loan, Trần Ái Khanh, Mai Văn Nhơn nghiên cứu tối ưu hoá hình học mẫu dạng Marinelli trong phép đo phóng xạ các mẫu môi trường. Trong công trình này, một phương pháp xác định cấu hình đo tối ưu của mẫu thể tích dạng Marinelli dựa 7 vào các phương trình giải tích của đường cong hiệu suất được xây dựng dựa trên mô phỏng Monte Carlo. Việc tối ưu hoá hình học được thực hiện với mẫu thể tích từ 10 ml - 450 ml và năng lượng tia gamma từ 60 keV - 2 MeV. Phương pháp luận và các kết quả đạt được trong công trình này góp phần cải thiện các hạn chế trong các phép đo có hoạt độ thấp, giúp các nhà thực nghiệm có thể tính toán được lượng mẫu tối ưu nhất trong đo đạc phóng xạ gamma của mẫu môi trường [18]. - Năm 2012, Ngô Quang Huy và cộng sự sử dụng chương trình MCNP5 nghiên cứu hiệu ứng tự hấp thụ để xác định hoạt độ phóng xạ tại đỉnh 63,3 keV của U trong các mẫu đất phù sa, đất đỏ, và mẫu đất chuẩn IAEA…Kết quả tính 238 P P hiệu suất ghi bằng chương trình MCNP5 phù hợp khá tốt với thực nghiệm, độ sai lệch không quá 5 % [17]. 1.2. Giới thiệu hệ phổ kế gamma HPGe và các đặc trưng Hệ phổ kế gamma có khả năng ghi nhận trực tiếp các tia gamma do các đồng vị phóng xạ trong mẫu phát ra mà không cần tách chiết các nhân phóng xạ ra khỏi chất nền của mẫu, giúp ta phân tích một cách định tính và định lượng các nhân phóng xạ trong mẫu. Đối tượng của phương pháp phân tích này là các mẫu môi trường hoặc mẫu sinh học như: đất, nước, không khí, các mẫu trầm tích và các loại rau…Việc nắm rõ các đặc trưng của phổ gamma, cách thức xử lý phổ và tính toán hoạt độ nguồn là điều cần thiết đối với bất cứ người làm thực nghiệm nào liên quan đến việc đo đạc bằng hệ phổ kế gamma [7]. Hiện nay, việc đo phổ gamma chủ yếu sử dụng các hệ phổ kế gamma đa kênh với đầu dò nhấp nháy NaI hoặc đầu dò bán dẫn. Tuy có nhiều loại đầu dò khác nhau nhưng tất cả đều dựa trên cùng một nguyên tắc là chuyển một phần hay toàn bộ năng lượng bức xạ trong đầu dò thành xung điện. Việc sử dụng các đầu dò bán dẫn đã giúp tạo nên các kết quả chính xác hơn cho việc ghi nhận các bức xạ gamma của đầu dò với các năng lượng khác nhau. Trong luận văn này, đầu dò germanium siêu tinh khiết HPGe (Hight Pure Germanium detector) thuộc Phòng thí nghiệm chuyên đề Bộ môn vật lý hạt nhân, trường Đại học khoa học tự nhiên được sử dụng. 8 Đây là loại đầu dò ghi nhận tia gamma có độ phân giải năng lượng cao nhất hiện nay, nó được sử dụng rộng rãi trong cả nghiên cứu cơ bản lẫn vật lý ứng dụng. Hình 1.1. Hệ phổ kế gamma đầu dò HPGe (ký hiệu GC2018) tại Phòng thí nghiệm Chuyên đề Bộ môn Vật lý hạt nhân 1.2.1. Cấu tạo của hệ phổ kế gamma HPGe Hệ phổ kế gamma HPG gồm các phần chính sau: Đầu dò HPGe GC2018 với các thiết bị kèm theo gồm nguồn nuôi cao thế cho đầu dò, tiền khuếch đại, khuếch đại, bộ biến đổi tương tự thành số và khối phân tích đa kênh, nguồn phóng xạ, buồng chì. Bộ biến Đầu dò Tiền Khuếch khuếch đại đổi tương tự thành số Nguồn nuôi cao thế Hình 1.2. Sơ đồ khối hệ phổ kế gamma [5] MCA
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất