Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Tin học Các vấn đề về điều chế ofdm...

Tài liệu Các vấn đề về điều chế ofdm

.PDF
142
187
79

Mô tả:

Các vấn đề về điều chế ofdm
Chương 1: Giới thiệu về kỹ thuật điều chế OFDM Chương 1 GIỚI THIỆU VỀ KỸ THUẬT ĐIỀU CHẾ OFDM 1.1 Lịch sử phát triển O FDM là một phương pháp truyền khá phức tạp trên kênh vật lý, nguyên lý cơ bản của phương pháp là sử dụng kỹ thuật đa sóng mang để truyền một lượng lớn ký tự tại cùng một thời điểm. Sử dụng kỹ thuật OFDM có rất nhiều ưu điểm, đó là hiệu quả sử dụng phổ rất cao, khả năng chống giao thoa đa đường tốt (đặc biệt trong hệ thống không dây) và rất dễ lọc bỏ nhiễu (nếu một kênh tần số bị nhiễu, các tần số lân cận sẽ bị bỏ qua, không sử dụng). Ngoài ra, tốc độ truyền Uplink và Downlink có thể thay đổi dễ dàng bằng việc thay đổi số lượng sóng mang sử dụng. Một ưu điểm quan trọng của hệ thống sử dụng đa sóng mang là các sóng mang riêng có thể hoạt động ở tốc độ bit nhỏ dẫn đến chu kỳ của ký tự tương ứng sẽ được kéo dài . Ví dụ, nếu muốn truyền với tốc độ là hàng triệu bit trên giây bằng một kênh đơn, chu kỳ của một bit phải nhỏ hơn 1 micro giây. Điều này sẽ gây ra khó khăn cho việc đồng bộ và loại bỏ giao thoa đa đường. Nếu cùng lượng thông tin trên được trải ra cho N sóng mang, chu kỳ của mỗi bit sẽ được tăng lên N lần, lúc đó việc xử lý vấn đề định thời, đa đường sẽ đơn giản hơn. Kỹ thuật OFDM do R.W Chang phát minh năm 1966 ở Mỹ. Trong những thập kỹ vừa qua nhiều công trình khoa học về kỹ thuật này đã được thực hiện ở khắp nơi trên thế giới. Đặc biệt là công trình khoa học của Weistein và Ebert đã chứng minh rằng phép điều chế OFDM có thể thực hiện được thông qua các phép biến đổi IDFT và phép giải điều chế OFDM có thể thực hiện được bằng phép biến đổi DFT. Vào đầu những năm 80, đội ngũ kỹ sư phòng thí nghiệm CCETT (Centre Commun d'Etudes en Télédiffusion et Télécommunication) dựa vào các lý thuyết Wienstein và Ebert đã đề xuất phương pháp điều chế số rất hiệu quả trong lĩnh vực phát thanh truyền hình số, đó là OFDM (Orthogonal Frequency Divionsion Multiplex). Phát minh này cùng với sự phát triển của kỹ thuật số làm cho kỹ thuật điều chế OFDM được sử dụng ngày càng trở nên rộng rãi. Thay vì sử dụng IDFT và DFT người ta có thể sử dụng phép biến đổi nhanh IFFT cho bộ điều chế OFDM, sử dụng FFT cho bộ giải điều chế OFDM. Ngày nay kỹ thuật OFDM còn kết hợp với các phương pháp mã kênh sử dụng trong thông tin vô tuyến. Các hệ thống này còn được gọi với khái niệm là COFDM (Coded OFDM). Trong các hệ thống này tín hiệu trước khi được điều chế OFDM sẽ được mã kênh với các loại mã khác nhau với mục đích chống lại các lỗi đường truyền. Do chất lượng kênh (độ fading và tỷ lệ tín hiệu trên tạp âm) của mỗi sóng mang phụ là khác 1 Chương 1: Giới thiệu về kỹ thuật điều chế OFDM nhau, người ta thực hiện điều chế tín hiệu trên mỗi sóng mang với các mức điều chế khác nhau. Hệ thống này mở ra khái niệm về hệ thống truyền dẫn sử dụng kỹ thuật OFDM với bộ điều chế tín hiệu thích ứng (adaptive modulation technique). Kỹ thuật này hiện đã được sử dụng trong hệ thống thông tin máy tính băng rộng HiperLAN/2 ở Châu Âu. Trên thế giới hệ thống này được chuẩn hóa theo tiêu chuẩn IEEE.802.11a. 1.2 Các ưu và nhược điểm Bên cạnh những ưu điểm kể trên của kỹ thuật OFDM, các hệ thống sử dụng kỹ thuật này còn có nhiều ưu điểm cơ bản khác liệt kê sau đây: * Hệ thống OFDM có thể loại bỏ hoàn toàn nhiễu liên ký tự (Intersymbol Interference- ISI) nếu độ dài chuỗi bảo vệ (Guard interval length) lớn hơn trễ truyền dẫn lớn nhất của kênh. * Phù hợp cho việc thiết kế hệ thống truyền dẫn băng rộng ( hệ thống có tốc độ truyền dẫn cao), do ảnh hưởng của sự phân tập về tần số (frequency selectivity) đối với chất lượng hệ thống được giảm nhiều so với hệ thống truyền dẫn đơn sóng mang. * Hệ thống có cấu trúc bộ thu đơn giản. Bên cạnh đó, kỹ thuật OFDM cũng có một vài nhược điểm cơ bản đó là: * Một trong những vấn đề của OFDM là nó có công suất đỉnh cao hơn so với công suất trung bình. Khi tín hiệu OFDM được điều chế RF, sự thay đổi này diễn ra tương tự đối với biên độ sóng mang, sau đó tín hiệu được truyền đi trên môi trường tuyến tính, tuy nhiên độ tuyến tính rất khó giữ khi điều chế ở công suất cao, do vậy méo dạng tín hiệu kiểu này hay diễn ra trên bộ khuyếch đại công suất của bộ phát. Bộ thu thiết kế không tốt có thể gây méo dạng trầm trọng hơn. Méo dạng gây ra hầu hết các vấn đề như trải phổ, gây ra nhiễu giữa các hệ thống khi truyền trên các tần số RF kề nhau. * Việc sử dụng chuỗi bảo vệ có thể tránh được nhiễu ISI nhưng lại làm giảm đi một phần hiệu suất đường truyền, do bản thân chuỗi bảo vệ không mang thông tin có ích. * Do yêu cầu về điều kiện trực giao giữa các sóng mang phụ, hệ thống OFDM rất nhạy cảm với hiệu ứng Doppler cũng như là sự dịch tần (frequency offset) và dịch thời gian (time offset) do sai số đồng bộ. - Ảnh hưởng của sự sai lệch thời gian đồng bộ: OFDM có khả năng chịu đựng tốt các sai số về thời gian nhờ các khoảng bảo vệ giữa các symbol. Với một kênh truyền không có delay do hiệu ứng đa đường, time offet có thể bằng khoảng bảo 2 Chương 1: Giới thiệu về kỹ thuật điều chế OFDM vệ mà không mất đi tính trực giao, chỉ gây ra sự xoay pha của các sóng mang con mà thôi. Nếu lỗi time offset lớn hơn khoảng bảo vệ thì hoạt động của hệ thống suy giảm nhanh chóng. Nguyên nhân là do các symbol trước khi đến bộ FFT sẽ bao gồm một phần nội dung của các symbol khác, dẫn đến ISI (Inter-Symbol Interference). - Ảnh hưởng của sự sai lệch đồng bộ tần số: Một trong những vấn đề lớn của OFDM là nó dễ bị ảnh hưởng bởi offset về tần số. Giải điều chế tín hiệu OFDM có thể gây ra sai về tốc độ bit. Điều này làm cho tính trực giao giữa các subcarrier bị mất đi (kết quả của ICI và sự xoay pha không sửa chữa được ở bộ thu). Sai số về tần số diễn ra chủ yếu theo 2 nguồn chính: lỗi của bộ dao động và hiệu ứng Doppler. Bất kỳ một sự bất đồng bộ nào giữa bộ phát và bộ thu đều có thể gây ra offset về tần số. Offset này có thể được bù bằng cách dùng bộ bám tần số, tuy nhiên chỉ khắc phục mà thôi, hoạt động của hệ thống vẫn bị ảnh hưởng. Sự di chuyển tương đối giữa bộ thu và bộ phát gây ra dịch chuyển Doppler của tín hiệu. Điều này có thể hiểu là sự offset tần số trong môi trường truyền tự do, nó có thể khắc phục bằng một bộ bù tại bộ dao động. Một vần đề quan trọng của hiệu ứng Doppler là trải Doppler, nó gây nên bởi sự di chuyển giữa bộ phát và bộ thu trong môi trường đa đường. Trải Doppler gây nên bởi vận tốc tương đối giữa các thành phần tín hiệu phản xạ lại, tạo ra quá trình "điều chế tần số" cho tín hiệu. Quá trình này diễn ra ngẫu nhiên trên các subcarrier do trong môi trường bình thường, một lượng lớn phản xạ đa đường xảy ra. Trải Doppler khó được bù và làm suy giảm chất lượng tín hiệu. Ngày nay OFDM đã được tiêu chuẩn hóa là phương pháp điều chế cho các hệ thống phát thanh số DAB và DRM, truyền hình mặt đất DVB-T, mạng máy tính không dây tốc độ cao HiperLAN/2... 1.3 Sự ứng dụng của kỹ thuật OFDM ở Việt Nam Có thể nói mạng internet băng rộng ADSL (Asymmetric Digital Subscriber Line) rất quen thuộc ở Việt Nam, nhưng ít người biết rằng sự nâng cao tốc độ đường truyền trong hệ thống ADSL chính là nhờ công nghệ OFDM. Nhờ kỹ thuật điều chế đa sóng mang và sự cho phép chồng phổ giữa các sóng mang mà tốc độ truyền dẫn trong hệ thống ADSL tăng lên một cách đáng kể so với các mạng cung cấp dịch vụ internet thông thường. Bên cạnh mạng cung cấp dịch vụ ADSL hiện đang được sử dụng rất rộng rãi ở Việt Nam hiện nay, các hệ thống thông tin vô tuyến như mạng truyền hình số mặt đất DVBT cũng đang được khai thác sử dụng. Các hệ thống phát thanh số như DAB và DRM chắc chắn sẽ được khai thác sử dụng trong một tương lai không xa. Các mạng về thông 3 Chương 1: Giới thiệu về kỹ thuật điều chế OFDM tin máy tính không dây như HiperLAN/2, IEEE 802.11a, g cũng sẽ được khai thác một cách rộng rãi ở Việt Nam. 1.4 Các hướng phát triển trong tương lai Kỹ thuật OFDM hiện được đề cử làm phương pháp điều chế sử dụng trong mạng thông tin thành thị băng rộng Wimax theo tiêu chuẩn IEEE 802.16a và hệ thống thông tin di động thế hệ thứ tư. Trong hệ thống thông tin di động thế hệ thứ tư, kỹ thuật OFDM còn có thể kết hợp với các kỹ thuật khác như kỹ thuật đa anten phát và thu (MIMO technique) nhằm nâng cao dung lượng kênh vô tuyến và kết hợp với công nghệ CDMA nhằm phục vụ dịch vụ đa truy cập của mạng. Một vài hướng nghiên cứu với mục đích thay đổi phép biến đổi FFT trong bộ điều chế OFDM bằng phép biến đổi Wavelet nhằm cải thiện sự nhạy cảm của hệ thống đối với hiệu ứng dịch tần do mất đồng bộ gây ra và giảm độ dài tối thiểu của chuỗi bảo vệ trong hệ thống OFDM. Tuy nhiên khả năng ứng dụng của công nghệ này cần phải được kiểm chứng cụ thể hơn nữa trong tương lai. 1.5 Các cột mốc và ứng dụng quan trọng của OFDM 1957: Kineplex, multi-carrier HF modem 1966: Chang, Bell Labs: thuyết trình và đưa ra mô hình OFDM 1971: Weinstein & Ebert đề nghị sử dụng FFT và khoảng bảo vệ 1985: Cimini mô tả ứng dụng của OFDM trong thông tin di động 1987: Alard & Lasalle: áp dụng OFDM cho digital broadcasting 1995: Chuẩn ETSI DAB: chuẩn OFDM cơ bản đầu tiên 1997: Chuẩn ETSI DVB-T 1998: Dự án Magic WAND trình diễn OFDM modems cho mạng WLAN 1999: Chuẩn IEEE 802.11a và ETSI BRAN HiperLAN/2 cho Wireless LAN 2000: Được dùng trong truy cập vô tuyến cố định (V-OFDM, Flash-OFDM) 2001: OFDM được đề cử cho những chuẩn mới 802.11 và 802.16 2002: Được dùng trong chuẩn IEEE 802.11g chuẩn cho WLAN 2003: OFDM được đề cử cho UWB (802.15.3a) 2004: Được dùng trong chuẩn IEEE 802.16-2004 chuẩn cho mạng WMAN (WiMAX) Được dùng trong chuẩn Chuẩn ETSI DVB-H Được đề cử cho chuẩn IEEE 802.15.3a, mạng WPAN (MB-OFDM) Được đề cử cho chuẩn IEEE 802.11n, thế hệ kế tiếp của mạng WLAN 2005: Được đề cử cho chuẩn di động tế bào 3.75G (3GPP & 3GPP2) Được đề cử cho chuẩn 4G (CJK) 4 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Chương 2 LÝ THUYẾT VỀ KỸ THUẬT ĐIỀU CHẾ OFDM 2.1 Tính trực giao trong OFDM O RTHOGONAL là thuật ngữ đề cập đến một mối quan hệ toán học chính xác giữa các tần số của các sóng mang trong hệ thống OFDM. Trong hệ thống FDM thông thường, nhiều sóng mang được đặt cách nhau một khoảng phù hợp để tín hiệu thu có thể nhận lại bằng cách sử dụng các bộ lọc và các bộ giải điều chế thông thường. Trong các hệ thống như vậy, các khoảng bảo vệ giữa các sóng mang khác nhau cần được dự liệu trước và việc đưa vào các khoảng bảo vệ này làm giảm hiệu quả sử dụng phổ của hệ thống . Tuy nhiên có thể sắp xếp các sóng mang trong OFDM sao cho các dải biên của chúng che phủ lên nhau mà các tín hiệu vẫn có thể thu được chính xác mà không có sự can nhiễu giữa các sóng mang. Muốn được như vậy các sóng mang phải trực giao về mặt toán học. Máy thu hoạt động như một bộ gồm các bộ giải điều chế, dịch tần mỗi sóng mang xuống mức DC, tín hiệu nhận được lấy tích phân trên một chu kỳ của symbol để phục hồi dữ liệu gốc. Nếu tất cả các sóng mang khác đều được dịch xuống tần số tích phân của sóng mang này (trong một chu kỳ symbol τ), thì kết quả tính tích phân cho các sóng mang khác sẽ là zero. Do đó các sóng mang độc lập tuyến tính với nhau (trực giao) nếu khoảng cách giữa các sóng là bội số của 1/τ. Bất kỳ sự phi tuyến nào gây ra bởi can nhiễu giữa các sóng mang ICI (Inter-Carrierinterference) cũng làm mất đi tính trực giao . Việc xử lý (điều chế và giải điều chế) tín hiệu OFDM được thực hiện trong miền tần số, bằng cách sử dụng các thuật toán xử lý tín hiệu số DSP (Digital Signal Processing ). Nguyên tắc của tính trực giao thường được sử dụng trong phạm vi DSP. Trong toán học, số hạng trực giao có được từ việc nghiên cứu các vectơ. Theo định nghĩa, hai vectơ được gọi là trực giao với nhau khi chúng vuông góc với nhau hay là tích của 2 vectơ là bằng 0. Điểm chính ở đây là ý tưởng nhân hai hàm số với nhau, tổng hợp các tích và nhận được kết quả là 0. Hình 2.1 : Tích 2 vectơ trực giao bằng 0 5 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Đầu tiên ta chú ý đến hàm số thông thường có giá trị trung bình bằng không (ví dụ giá trị trung bình của hàm sin dưới đây ). Nếu cộng bán kỳ dương và bán kỳ âm của dạng sóng sin như dưới đây chúng ta sẽ có kết quả là 0. Quá trình tích phân có thể được xem xét khi tìm ra diện tích dưới dạng đường cong. Do đó diện tích của 1 sóng sin có thể được viết như sau: 2π k ∫ sin(ωt )dt = 0 (2.1) 0 Quá trình tính tích phân có thể được xem như là quá trình tìm ra diện tích bên dưới đường cong tín hiệu. Do đó, diện tích của một sóng sin có thể được viết như sau : Hình 2.2 : Giá trị trung bình của sóng sin bằng 0 Nếu chúng ta nhân và cộng (tích phân) hai dạng sóng sin có tần số khác nhau.Ta nhận thấy quá trình này cũng bằng 0. Hình 2.3 : Tích phân các sóng sin có cùng tần số 6 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Nếu hai sóng sin có cùng tần số như nhau thì dạng sóng hợp thành luôn dương, giá trị trung bình của nó luôn khác không (hình trên). Đây là cơ cấu rất quan trọng cho quá trình giải điều chế OFDM. Các máy thu OFDM biến đổi tín hiệu thu được sang miền tần số nhờ dùng kỹ thuật xử lý tín hiệu số gọi là biến đổi nhanh Fourier (FFT). Việc giải điều chế chặt chẽ được thực hiện kế tiếp trong miền số (digital domain) bằng cách nhân từng sóng mang được truyền đến máy thu với từng sóng mang được tạo ra trong máy thu có cùng tần số và pha một cách chính xác. Sau đó phép tích phân được thực hiện, kết quả là tất cả các sóng mang khác sẽ về không ngoại trừ sóng mang được nhân, nó được dịch lên trục x, được tách ra một cách hiệu quả và giá trị symbol của nó khi đó đã được xác định. Toàn bộ quá trình này được lặp lại khá nhanh chóng cho mỗi sóng mang, đến khi tất cả các sóng mang đã được giải điều chế. Nhiều lý thuyết chuyển đổi được thực hiện bằng chuỗi trực giao. 2.1.1 Dạng biểu diễn toán học của sự trực giao Hai hàm thực f(t) và g(t) được gọi là trực giao (orthogonal) với nhau trên đoạn { t 0, t1 } nếu: t1 ∫ f (t)g(t)dt = 0 (2.2) t0 Nếu f(t) và g(t) là hai hàm phức, tính chất trên được định nghĩa là : t1 t1 ∫ f (t)g (t)dt =∫ f * t0 * (t)g (t)dt = 0 (2.3) t0 Trong đó f*(t) là lượng liên hợp phức của f(t) Nhận xét : từ định nghĩa có thể chứng minh rằng: Tập hợp các hàm (cosn ω 0 t ,sinm ω 0 t ) trực giao từng đôi một trên đoạn t 0 ≤ t ≤ t 0 + k . 2π ω 0 với m, n ≠ 0 , m ≠ n và k nguyên dương, nghĩa là : t 0 + k .2π ω0 ∫ cos(nω t ) cos(mω t ) = 0 0 0 (2.4) t0 t 0 + k .2π ω0 ∫ cos(nω t ) sin( mω t ) = 0 0 0 t0 7 (2.5) Chương 2: Lý thuyết về kỹ thuật điều chế OFDM t 0 + k .2 π ω0 ∫ sin(nω t ) sin(mω t ) = 0 0 0 (2.6) t0 Hình 2.4 : Cấu trúc của tín hiệu OFDM trong miền thời gian. Do vậy ta có thể dùng tập hợp trên như một tập hàm vectơ cơ sở trực giao. Sóng mang con trong một tín hiệu OFDM được đặt chồng lấp lên nhau mà vẫn duy trì tính trực giao giữa chúng. Tín hiệu OFDM được tạo thành từ tổng các tín hiệu sin, với mỗi tín hiệu sin tương ứng một sóng mang con. Tần số băng gốc của mỗi sóng mang con được chọn là số nguyên lần nghịch đảo thời gian ký tự, kết quả là tất cả các sóng mang đều có một số nguyên lần chu kỳ trên một ký tự OFDM. Vậy các sóng mang con trực giao với nhau. Hình 2.4 thể hiện cấu trúc của một tín hiệu OFDM với 4 sóng mang con. 2.1.2 Trực giao trong miền tần số Một cách khác để xem xét tính trực giao của tín hiệu OFDM là xem xét trong miền tần số của nó. Trong miền tần số mỗi sóng mang con có đáp ứng tần số là sinc = sin( x) / x như ta thấy trong hình 2.5. Đó là kết quả của thời gian ký tự tương ứng với nghịch đảo khoảng cách sóng mang. Xa hơn bộ thu là liên quan đến mỗi ký tự OFDM truyền trong một khoảng thời gian cố định ( TFFT ) với việc không bóp nhọn tại đầu cuối của ký tự. Thời gian ký tự này tương ứng với biến đổi ngược của khoảng cách sóng mang con của 1/ TFFT Hz. Tín hiệu có dạng chữ nhật trong miền thời gian thì sẽ có đáp ứng tần số là sinc trong miền tần số. Hình dạng sinc có một búp chính hẹp, với nhiều búp cạnh suy giảm chậm với biên độ của tần số khác nhau từ trung tâm. Mỗi sóng 8 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM mang con có đỉnh tại tần số trung tâm và khoảng cách rỗng với lỗ hổng tần số bằng khoảng cách sóng mang. Bản chất trực giao của việc truyền là kết quả của đỉnh sóng mang con và đáp ứng rỗng với các sóng mang con còn lại. Khi tín hiệu được tách bằng cách sử dụng DFT, phổ không phải liên tục như hình 2.5(a) mà gồm các mẫu rời rạc, điểm lấy mẫu được ký hiệu “o” như trong hình. Nếu DFT được đồng bộ thời gian, tần số lấy mẫu của DFT tương ứng đúng với đỉnh của sóng mang con, vì vậy sự chồng lấp trong miền tần số giữa các sóng mang con không ảnh hưởng đến bộ thu. Giá trị đỉnh của các sóng mang còn lại tương ứng với đáp ứng rỗng, dẫn đến sự trực giao giữa các sóng mang con. Hình 2.5 : Đáp ứng tần số của sóng mang con trong tín hiệu OFDM 5 tone a. chỉ phổ của mỗi sóng mang con, và mẫu tần số rời rạc xem xét bởi bộ thu. Chú ý mỗi sóng mang định dạng trong miền tần số là sinc (sin(x)/x) b. chỉ sự kết hợp toàn bộ đáp ứng 5 sóng mang con ( đường đen dày) 2.2 Biểu thức của tín hiệu OFDM Như đã biết, một sóng mang là một dao động điều hòa có thể được mô tả bởi : { S c (t ) = Re Ac (t ).e j [ωct +ϕ c ( t ) ] } (2.7) với Ac(t) và ϕc(t) là biên độ và pha của sóng mang trong từng symbol. Chẳng hạn như với điều chế QPSK, symbol thứ p trong khoảng thời gian (p-1)τ < t < pτ, ϕc(t) sẽ nhận một trong 4 giá trị 00, 900, 1800, 2700. Trong OFDM có nhiều sóng mang, ví dụ N sóng mang, tín hiệu sẽ có dạng : N −1 { S s (t ) = ∑ Re An (t ).e j [ω nt +ϕ n ( t ) ] n =0 trong đó : ωn = ω0 + nΔω. 9 } (2.8) Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Tín hiệu phát ra cho mỗi symbol OFDM từ thời điểm t = Δ đến thời điểm t = Ts là : k −( K j 2π ⎧ j 2π f t K S (t ) = Re ⎨e ∑ Ck e k =K ⎩ max c max − K min Tu min k ) 2 ( t −Δ ) ⎫ ⎬ ⎭ (2.9) : hệ số biểu diễn cho sóng mang. Kmax : chỉ số sóng mang lớn nhất, Kmax = Ncarrier - 1. Kmin : chỉ số sóng mang nhỏ nhất, Kmin = 0. fc : tần số trung tâm của tín hiệu RF. Tu : thời gian symbol tích cực. Δ : khoảng thời gian bảo vệ. Ck : biểu thức của sóng mang thứ k ở dạng phức. C k = Ae k ψ . j k 2.3 Tạo tín hiệu OFDM Những chòm sao phức cho mỗi sóng mang và cho bước điều chế được cung cấp bởi bộ tiền xử lý LCA (Logic Cell Array) để tạo các sóng mang điều chế. Các symbol điều chế được xác định theo phần thực và phần ảo (tổ hợp của phần thực và ảo này chính là symbol điều chế theo mã Gray). Các sóng mang được tập hợp trong thanh ghi ngõ vào của chip IFFT, khi có đủ N sóng mang thì IFFT hoạt động, biến đổi các sóng mang từ miền tần số sang miền thời gian. Các tín hiệu I/Q qua bộ biến đổi D/A, theo sau đó là bộ điều chế I/Q đưa tín hiệu OFDM vào băng thông kênh truyền. Bộ điều chế I/Q gồm có hai bộ điều chế Double-Sideband AM (DSB AM) với sóng mang dịch pha 900, các tín hiệu ngõ ra được tổ hợp tạo ra tín hiệu OFDM ở dạng analog, bộ điều chế I/Q chỉ tạo ra một phổ duy nhất mặc dù sử dụng hai bộ điều chế DSB. Bộ phát OFDM tạo ra N dòng phổ trong băng tần hẹp, mỗi dòng phổ tương ứng được xác định trong thời gian từng chu kỳ symbol, nhằm tạo ra tín hiệu OFDM có N sóng mang với điều chế đã lựa chọn. Trong suốt chu kỳ symbol, quan hệ biên độ và pha là cố định. Nhờ công nghệ xử lý tín hiệu số thực hiện phép biến đổi Fourier nhanh IFFT, tính toán các mẫu tín hiệu thời gian là thành phần thực và ảo, sau đó cung cấp lại dạng nhị phân tại ngõ ra. Các hệ số Fourier phức được thiết lập bằng giá trị phức của các sóng mang phụ điều chế, chỉ có một số của N giá trị ngõ vào tương ứng với số sóng mang OFDM được sử dụng, vì thế có thể sử dụng các bộ lọc thông thấp có độ dốc giới hạn phía sau bộ biến đổi D/A. 10 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM DSB AM Gross I D/A LPF data I Re rate Pre-proc Re F 0 IF Clock 90 BPF + (LCA) Im F Q T D/A LPF Im fZF 12-16 bit 1 BPF N RF fRF - fIF Synthesizer REF Hình 2.6 : Điều chế OFDM. 2.4 Mô hình hệ thống Hình 2.7: Mô hình hệ thống OFDM 2.4.1 Mã hoá kênh truyền Kỹ thuật mã hoá kiểm soát lỗi có thể tách và sửa lỗi xảy ra khi thông điệp được truyền trên hệ thống thông tin số. Để thực hiện điều này, mã hoá không chỉ truyền ký tự thông tin mà nó còn truyền một hoặc nhiều ký tự dư. Bộ giải mã sử dụng ký tự dư để tách và chỉnh sửa lỗi xuất hiện trong khi truyền. Mã hóa FEC (forward error control: kiểm soát lỗi tiến) trong hệ thống thông tin số gồm : • Mã hoá khối : mã hoá khối bao gồm mã hoá Reed-Solomon, BCH, vòng, Hamming, và mã hoá khối tuyến tính generic. 11 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM • Mã hoá chập : Mã hoá chập và giải mã Viterbi. Với hệ thống OFDM để sửa sai bit khi sóng mang con của hệ thống bị ảnh hưởng của fading chọn lọc tần số và ICI gây ra bởi fading nhanh thường sử dụng FEC là mã hóa khối Reed-Solomon và mã hóa chập. 2.4.2 Kỹ thuật phân tán dữ liệu Do fading chọn lọc tần số của các kênh truyền vô tuyến điển hình, các sóng mang con OFDM nhìn chung có biên độ rất khác nhau. Suy hao nhiều trong phổ tần số có thể làm cho sóng mang con ít tin cậy hơn sóng mang khác. Vì vậy chúng thường hay tạo ra chùm lỗi liên tiếp hơn là lỗi phân tán ngẫu nhiên (như dưới tác động của nhiễu Gaussian). Hầu hết các mã tiền sửa lỗi FEC không được thiết kế để giải quyết lỗi chùm. Vì vậy việc phân tán ký tự nhằm ngẫu nhiên hoá sự xuất hiện của những bit lỗi trước khi giải mã. Tại máy phát bằng cách nào đó người ta sẽ hoán vị các bit sau khi mã hoá sao cho mỗi bit kế cận cách nhau nhiều bit sau khi interleaving. Tại máy thu, việc hoán vị ngược lại sẽ được thực hiện trước khi giải mã. Kỹ thuật interleaving thông thường là kỹ thuật phân tán theo khối (block interleaving), hay cũng có thể là phân tán dạng chập (convolution interleaving). Nhìn chung thì mục đích cuối cùng của việc thực hiện Interleaving là đảm bảo cho xác suất xuất hiện bit 1 và bit 0 là đều nhau. 2.4.2.1 Kỹ thuật phân tán khối ( Block Interleaving) Hình 2.8 : Thuật toán block interleaving/ deinterleaving. Luồng bit sau khi mã hoá được đọc vào theo từng dòng của ma trận có kích thước p × m và đọc ra theo cột, trong đó p là chu kỳ của bộ interleaver và m=N/p. Động tác này sẽ thay thế p-1 ký tự vào giữa mỗi 2 ký tự số ban đầu. Nét tinh tế của kỹ thuật này là các ký tự mà ta thực hiện động tác xen chính là các biên độ của các sóng mang được điều chế. Vì vậy, kỹ thuật phân tán dữ liệu có tác động phân tán trong miền tần số. Khi 12 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM ký tự OFDM thu về, quá trình deinterleaving được thực hiện, kết quả các lỗi chùm được chia thành những lỗi bit riêng lẻ, điều này nâng cao đáng kể hiệu quả sửa lỗi của bộ giải mã hệ thống FEC. 2.4.2.2 Kỹ thuật phân tán dạng chập ( convolution interleaving) Hình 2.9 : Sơ đồ khối bộ convolutional interleaver/ Deinterleaver Hình 2.9 mô tả sơ đồ khối bộ convolution interleaver được Ramsey và Forney giới thiệu lần đầu tiên. Các ký tự mã hóa được dịch vào một bộ N thanh ghi, mỗi thanh ghi tiếp theo cho phép lưu nhiều hơn thanh ghi trước đó tới J ký tự. Thanh ghi số 0 xem như không có chức năng ghi dịch (ký tự được đi thẳng vào). Với mỗi ký tự mã hoá mới, bộ chuyển mạch sẽ chuyển sang một thanh ghi mới, và ký tự mới này sẽ được dịch vào. Trong khi ký tự trước đó của thanh ghi trước, sẽ dịch chuyển ra bộ điều chế hay máy phát. Sau (N-1) thanh ghi, bộ chuyển mạch lại quay về thanh ghi 0 và quá trình được thực hiện lặp lại. Bộ giải phân tán thực hiện động tác ngược lại, và cả hai bộ chuyển mạch tại đầu phát và thu cần phải được hoạt động đồng bộ. Bộ phân tán ký tự dạng này có chất lượng tương đương với dạng khối nhưng ưu điểm đặc biệt là nó gây trễ đầu phát tới đầu thu chỉ bằng M(N-1) ký tự. Trong đó, M=NJ và số phần tử nhớ trong các thanh ghi dịch là M(N-1)/2 tại cả 2 đầu kênh. Bởi vậy bộ phân tán dạng chập giảm được một nửa bộ nhớ cũng như độ trễ cho hệ thống so với dạng khối. 13 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM 2.4.3 Chuyển đổi Serial/Parallel và Parallel/Serial Hình 2.10: a) Hệ thống đơn sóng mang b) OFDM với Δf = 1 3TB Theo Shanon tốc độ dữ liệu cao nhất cho một kênh truyền chỉ có nhiễu trắng AWGN (không có fading) là: S⎞ ⎛ Cmax = B log 2 ⎜ 1 + ⎟ [bps ] ⎝ N⎠ (2.10) B là băng thông của kênh truyền [Hz]. S/N là tỉ số tín hiệu trên nhiễu của kênh truyền. Vì vậy muốn truyền dữ liệu với tốc độ cao hơn Cmax ta phải chia nhỏ luồng dữ liệu tốc độ cao thành các luồng dữ liệu tốc độ thấp hơn Cmax bằng cách sử dụng bộ Serial/Parallel (nối tiếp sang song song). Tức là chia luồng dữ liệu vào thành từng frame nhỏ có chiều dài k x b bit k <= N, với b là số bit trong mô hình điều chế số, N số sóng mang. k, N sẽ được chọn sao cho các 14 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM luồng dữ liệu song song có tốc độ đủ thấp, để băng thông tương ứng đủ hẹp, sao cho hàm truyền trong khoảng băng thông đó có thể xem là phẳng. Bằng cách sử dụng bộ S/P ta đã chuyển kênh truyền từ frequency selective fading thành kênh truyền flat fading. Ngược lại với phía phát, phía thu sẽ dùng bộ Parallel/Serial để ghép N luồng dữ liệu tốc độ thấp thành một luồng dữ liệu tốc độ cao duy nhất. 2.4.4 Điều chế các sóng mang con Hình 2.11: Cho ta thấy quan hệ giữa tốc độ symbol và tốc độ bit phụ thuộc vào số bit trong một symbol. Mỗi một symbol b bit trong một frame sẽ được đưa vào bộ mapping, mục đích là để nâng cao dung lượng kênh truyền. Một symbol b bit sẽ tương ứng một trong M= 2 trạng thái hay một vị trí trong constellation (giản đồ chòm sao). b * BPSK sử dụng 1 symbol có 1 bit 0 hoặc 1 sẽ xác định trạng thái pha 0 hoặc 0 180O , tốc độ Baud hay tốc độ symbol sẽ bằng tốc độ bit Rsymbol = Rb * QPSK sử dụng 1 symbol 2 bit (Dibit), Rsymbol = Rb / 2 * 8-PSK hay 8-QAM sử dụng 1 symbol 3 bit (Tribit), Rsymbol = Rb / 3 * 16-PSK hay 16-QAM sử dụng 1 symbol 4 bit (Quabit), Rsymbol = Rb / 4 15 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Số bit được truyền trong một symbol tăng lên (M tăng lên), thì hiệu quả băng thông Befficiency = Rb = log 2 M = b [bps / Hz ] tăng lên, tuy nhiên sai số BER cũng sẽ tăng BT lên. Nyquist đã đưa ra công thức dung lượng kênh tối đa trong môi trường không nhiễu: C = 2 B log 2 M trong đó B là băng thông của kênh truyền. Do đó ta không thể tăng M lên tuỳ ý được, công thức trên cho phép ta xác định M lớn nhất, số bit lớn nhất có thể truyền trong một symbol. Một số phương thức điều chế số thường dùng trong bộ Mapping: * M-PSK (Phase Shift Keying) * M-DPSK (Differential Phase Shift Keying) * M-QAM (Quarature Amplitude Modulation) 2.4.4.1 M-PSK (M-Phase shitf keying) Sóng mang chỉ thay đổi về pha phụ thuộc bit vào, mà không thay đổi biên độ, nên công suất của tín hiệu không đổi. Một số dạng PSK thường gặp: * BPSK có 2 trạng thái pha phụ thuộc 1 bit vào. * QPSK có 4 trạng thái pha phụ thuộc 2 bit (Dibit) vào. * 8-PSK có 8 trạng thái pha phụ thuộc 3 bit (Tribit) vào. * 16-PSK có 16 trạng thái pha phụ thuộc 4 bit (Quadbit) vào. Phương pháp này đòi hỏi phía thu phải khôi phục được chính xác sóng mang. M-PSK có biểu thức tổng quát như sau: si (t ) = 2 Es 2π i ⎞ ⎛ cos ⎜ 2π f c t + ⎟ Ts M ⎠ ⎝ 0 ≤ t ≤ Ts , i = 0,1,...., M − 1 Es : năng lượng 1 symbol Ts : độ rộng một symbol f c : tần số sóng mang i : giá trị tương ứng với b bit 16 (2.11) Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Hình 2.12: Giản đồ chòm sao M-PSK Viết theo dạng IQ: si (t ) = xI φI (t ) + xQφQ (t ) Với: φI (t ) = φQ (t ) = 2 cos(2π f c t ) T (2.12) 0≤t ≤T 2 sin(2π f c t ) T 0≤t ≤T ⎛ 2π i ⎞ xI = E cos ⎜ ⎟ ⎝ M ⎠ ⎛ 2π i ⎞ xQ = − E sin ⎜ ⎟ ⎝ M ⎠ 17 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Pha của sóng mang có giá trị là 1 trong M góc pha: θi = 2π i M i = 0,1,..., M − 1 2.4.4.2 M-QAM M-QAM là dạng điều chế số, sóng mang bị điều chế cả về biên độ và pha, phương pháp này được sử dụng rất phổ biến trong các đường truyền vô tuyền số tốc độ cao. Hình 2.13: Giản đồ chòm sao QAM Sau đây là biểu thức tổng quát của tín hiệu M-QAM: si (t ) = ai1φ1 (t ) + ai 2φ2 (t ) φ1 (t ) = i = 1,..., M 2E cos(2π f c t ) Ts φ2 (t ) = (2.13) 2E sin(2π f c t ) Ts với 0 ≤ t ≤ Ts ai1 và ai 2 là một trong các mức của symbol được điều chế PAM ai1 , ai 2 = ± a, ± 3a, ± 5a,... ± ( log 2 M -1)a Ts là độ rộng một symbol f c là tần số sóng mang 2.4.4.3 DPSK (Differential Phase Shift Keying) Đây là một dạng của M-PSK, trước khi đi vào bộ M-PSK tín hiệu sẽ được xử lý sai biệt, kí tự ra khỏi bộ này chứa đựng thông tin về sự khác nhau giữa hai kí tự liên tiếp. 18 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM Bộ giải điều chế sẽ so sánh sự khác biệt về pha giữa 2 kí tự liên tiếp để xác định kí tự thu được. Thông thường nhiễu tác động lên 2 kí tự liên tiếp gần như nhau, sai biệt giữa 2 kí tự liên tiếp sẽ giống nhau trong trường hợp có nhiễu và không có nhiễu. Ưu điểm của phương pháp này là không cần khôi phục sóng mang. Tuy nhiên để có sai số như PSK, tín hiệu DPSK vào bộ giải điều chế cần có tỷ số tín hiệu trên nhiễu S/N lớn hơn từ 1 đến 3dB so với PSK. Hình 2.14, 2.15 và 2.16 cho ta thấy cách thức điều chế và giải điều DBPSK. Hình 2.14 : Sơ đồ điều chế DBPSK Hình 2.15: Chuỗi bit vào và pha của sóng mang tương ứng Hình 2.16: Sơ đồ giải điều chế DBPSK 2.4.5 Bộ IFFT và FFT ( Inverse Fast Fourier Transform, Fast Fourier Transform) Phép biến đổi IDFT (Inverse Discrete Fourier Transform) cho phép ta tạo tín hiệu OFDM dễ dàng, tức là điều chế N luồng tín hiệu song song lên N tần số trực giao một cách chính xác và đơn giản. Phép biến đổi DFT (Discrete Fourier Transform) cho phép ta giải điều chế lấy lại thông tin từ tín hiệu OFDM. Nhờ sử dụng phép biến đổi IDFT 19 Chương 2: Lý thuyết về kỹ thuật điều chế OFDM và DFT mà ta tinh giản được bộ tổng hợp tần số phức tạp ở phía phát và phía thu. Nếu không sử dụng IDFT và DFT bộ tổng hợp tần số phải tạo ra một tập tần số cách đều nhau chính xác và đồng pha, nhằm tạo ra tập tần số trực giao hoàn hảo, điều này không hề đơn giản một chút nào. Biến đổi DFT phức có thể được xem như là cách xác định biên độ và pha của những thành phần sóng sin và cosin cấu thành nên tín hiệu phân tích. X [k ] = 1 N −1 ⎛ ⎛ kn ⎞ ⎛ kn ⎞ ⎞ x[n] ⎜ cos ⎜ 2π ⎟ − j sin ⎜ 2π ⎟ ⎟ ∑ N n =0 N⎠ N ⎠⎠ ⎝ ⎝ ⎝ (2.14) Trong đó mảng X[k] chứa N giá trị biên độ của các thành phần tần số, mảng x[n] chứa N mẫu của tín hiệu miền thời gian. kn/N biểu thị tần số của sóng sin/cosin ứng với k ∈[0,N-1], n thay đổi giữa 0 và tổng số mẫu miền thời gian. Thông số k định nghĩa số chu kỳ sóng sin/cosin hoàn chỉnh xảy ra qua N điểm tín hiệu miền thời gian được lưu trữ trong mảng x[n]. Thông số n biểu thị cho số mẫu miền thời gian thu được. Công thức (2.14) định nghĩa biến đổi Fourier phức nên cả hai mảng miền thời gian và miền tần số đều lưu trữ những giá trị phức. Mảng X[k] bao gồm cả tần số dương và âm, trong đó chỉ số k=0,..,N/2 biểu thị cho tần số dương và k=N/2+1,..., N-1 biểu thị cho tần số âm. Hình 2.17: Ví dụ về phổ phức thay thế cho tín hiệu miền thời gian hoàn toàn thực. Có hai cách chính để ứng dụng biến đổi DFT phức vào hệ thống điện tử: 20
- Xem thêm -

Tài liệu liên quan