Đăng ký Đăng nhập

Tài liệu Bài giảng kỹ thuật điện

.PDF
67
352
73

Mô tả:

CHƯƠNG I: MẠCH ĐIỆN MỘT PHA 1.1.KHÁI NIỆM CƠ BẢN VỀ MẠCH ĐIỆN MỘT PHA 1.1.1.Mạch điện và kết cấu hình học của mạch điện 1. Mạch điện. Mạch điện là tập hợp các thiết bị điện nối với nhau bằng các dây dẫn tạo thành những vòng kín trong đó dòng điện có thể chạy qua. Mạch điện thường gồm các phần tử sau: nguồn điện, phụ tải (tải), dây dẫn (hình 1.1). a. Nguồn điện: Nguồn điện là thiết bị phát ra điện năng. Về nguyên lý, nguồn điện là thiết bị biến đổi các dạng năng lượng như cơ năng, hoá năng, nhiệt năng v.v… thành điện năng. b. Tải: Tải là các thiết bị tiêu thụ điện năng và biến đổi điện năng thành các dạng năng lượng khác như cơ năng, nhiệt năng, quang năng v.v…Ví dụ: động cơ điện tiêu thụ điện năng và biến điện năng thành cơ năng; bàn là, bếp điện biến điện năng thành nhiệt năng; bóng điện biến điện năng thành quang năng, v.v… 2. Kết cấu hình học của mạch điện Hình 1-1. Kết cấu hình học mạch điện a. Nhánh:. Nhánh là bộ phận của mạch điện gồm các phần tử nối tiếp nhau trong đó có cùng dòng điện chạy qua. b. Nút: Nút là chỗ gặp nhau của từ ba nhánh trở lên. c. Vòng: Vòng là lối đi khép kín qua các nhánh. 1.1.2. Các đại lượng đặc trưng quá trình năng lượng trong mạch điện 1. Dòng điện Dòng điện i về trị số bằng tốc độ biến thiên của lượng điện tích q qua tiết diện ngang một vật dẫn. i= dq dt Hình 1-2. Chiều dòng điệnvà điện áp trong nhánh (1.1) Chiều dòng điện quy ước là chiều chuyển động của điện tích dương trong điện trường (hình 1.2). 2. Điện áp Tại mỗi điểm trong mạch điện có một điện thế. Hiệu điện thế giữa hai điểm gọi là điện áp. Như vậy điện áp giữa hai điểm A và B có điện thế uA và uB là: 1 uAB= uA- uB (1.2) Chiều điện áp quy ước là chiều từ điểm có điện thế cao đến điểm có điện thế thấp (hình 1.2). 3. Công suất Trong mạch điện, một nhánh, một phần tử có thể nhận năng lượng hoặc phát năng lượng. Khi chọn chiều dòng điện và điện áp trên nhánh trùng nhau (hình 1.2), sau khi tính toán công suất p của nhánh ta có kết luận sau về quá trình năng lượng của nhánh. ở một thời điểm nào đó, nếu: p = ui > 0 : nhánh nhận năng lượng (1.3) p = ui < 0 : nhánh phát năng lượng (1.4) 4. Chiều dương dòng điện và điện áp trong mạch điện Khi giải mạch điện, ta tuỳ ý vẽ chiều dòng điện và điện áp trong các nhánh gọi là chiều dương. Trên cơ sở các chiều đã vẽ, thiết lập hệ phương trình giải mạch điện. Kết quả tính toán: dòng điện (điện áp) ở một thời điểm nào đó có trị số dương, chiều dòng điện (điện áp) trong nhánh ấy trùng với chiều đã vẽ, ngược lại nếu dòng điện (điện áp) có trị số âm, chiều của chúng ngược với chiều đã vẽ. 1.1.3. Mô hình mạch điện, các thông số 1. Nguồn điện áp u(t) Nguồn điện áp đặc trưng cho khả năng tạo ra và duy trì một điện áp trên hai cực của nguồn. Nguồn điện áp được ký hiệu như hình Hình 1-3. Chiều sđđ và điện áp 1-3a và được biểu diễn bằng một sức điện động e(t) (hình 1.3b). Chiều e(t) từ điểm điện thế thấp đến điểm điện thế cao. Chiều điện áp theo quy ước từ điểm có điện thế cao đến điểm có điện thế thấp, vì thế chiều điện áp đầu cực nguồn ngược với chiều sức điện động (hình 1.3b). Điện áp đầu cực u(t) sẽ bằng sức điện động: u(t) = - e(t) (1.5) 2. Điện trở R Cho dòng điện i chạy qua điện trở R (hình 1-4) và gây ra điện áp rơi trên điện trở uR. Theo định luật Ôm, quan hệ giữa dòng điện i và điện áp uR là: uR = R i (1.6) Công suất tiêu thụ trên điện trở: p = uR i = R i2 (1.7) Hình 1-4. Điện trở R 2 Như vậy điện trở R đặc trưng cho công suất tiêu tán trên điện trở. Đơn vị của điện trở là Ω (ôm). Điện năng tiêu thụ trên điện trở trong khoảng thời gian t là : t t 0 0 A = ∫ pdt = ∫ Ri 2 dt , khi i =const có A = R i t 2 (1.8) Đơn vị của điện năng là Wh (oát giờ), bội số của nó là kWh. 3. Điện cảm L Khi có dòng điện i chạy qua cuộn dây có w vòng sẽ sinh ra từ thông móc vòng với cuộn dây: ψ=wΦ (1.9) Điện cảm của cuộn dây được định nghĩa: L= ψ wΦ = i i (1.10) Đơn vị của điện cảm là Henry (H). Nếu dòng điện i biến thiên thì từ thông cũng biến thiên và theo định luật cảm ứng điện từ, trong cuộn dây xuất hiện sức điện động tự cảm (hình 1-5): eL = − dψ di = −L dt dt Hình 1-5. Điện cảm L (1.11) Điện áp trên cuộn dây: u L = −e L = L Công suất trên cuộn dây: p L = u Li = Li di dt di dt (1.12) (1.13) Năng lượng từ trường tích luỹ trong cuộn dây: t i 0 0 WM = ∫ p L dt = ∫ Lidi = 1 2 Li 2 (1.14) Như vậy điện cảm L đặc trưng cho hiện tượng tích luỹ năng lượng từ trường của cuộn dây. 4. Hỗ cảm M Hiện tượng hỗ cảm là hiện tượng xuất hiện từ trường trong một cuộn dây do dòng điện biến thiên trong cuộn dây khác tạo nên. Trên hình 1-6a có hai cuộn dây có liên hệ hỗ cảm với nhau. Từ thông hỗ cảm trong cuộn 2 do dòng điện i1 tạo nên là: ψ21 = M i1 (1.15) 3 M là hệ số hỗ cảm giữa hai cuộn dây. Nếu i1 biến thiên thì điện áp hỗ cảm của cuộn 2 do i1 tạo nên là: u 21 = dψ 21 Mdi1 = dt dt (1.16) Tương tự điện áp hỗ cảm của cuộn 1 do dòng điện i2 tạo nên là: u 12 = dψ 12 Mdi 2 = dt dt (1.17) Cũng như điện cảm L, đơn vị của hỗ cảm là Henry (H). Hỗ cảm M được ký hiệu như sơ đồ hình 1.6b và dùng cách đánh dấu một cực cuộn dây bằng dấu sao (*) để dễ xác định dấu của phương trình (1.16) và (1.17). Đó là các cực cùng tính, khi các dòng điện có chiều cùng đi vào (hoặc cùng Hình 1-6. Hỗ cảm M ra khỏi) các cực đánh dấu ấy thì từ thông tự cảm ψ11 và từ thông hỗ cảm ψ21 cùng chiều. Cực cùng tính phụ thuộc chiều quấn dây và vị trí của các cuộn dây có hỗ cảm. 5. Điện dung C Khi đặt điện áp uc lên tụ điện có điện dung C thì tụ điện sẽ được nạp điện với điện tích q (hình 1-7). q = C uC (1.18) Nếu điện áp uC biến thiên sẽ có dòng điện chuyển dịch qua tụ điện: i= từ đó suy ra: dq d du = (Cu C ) = C C dt dt dt uC = (1.19) t 1 idt C ∫0 (1.20) Nếu tại thời điểm t = 0 mà tụ điện đã có điện tích ban đầu thì điện áp trên tụ điện là: uC = t 1 idt + u c (0) C ∫0 (1.21) Công suất trên tụ điện: p C = u C i = Cu C du C dt (1.22) Năng lượng tích luỹ trong điện trường của tụ điện: 4 Hình 1-7. Điện dung C t u 0 0 WE = ∫ p c dt = ∫ Cu C du C = 1 2 Cu 2 (1.23) Vậy điện dung C đặc trưng cho hiện tượng tích luỹ năng lượng điện trường trong tụ điện. Đơn vị của điện dung là Fara (F). 6. Mô hình mạch điện Mô hình mạch điện còn được gọi là sơ đồ thay thế mạch điện, trong đó kết cấu hình học và quá trình năng lượng giống như ở mạch điện thực, song các phần tử của mạch điện thực đã được mô hình hoá bằng các thông số lý tưởng e, R, L, M, C. 1.1.4. Phân loại và các chế độ làm việc của mạch điện 1. Phân loại theo dòng điện trong mạch a. Mạch điện một chiều: Mạch điện có dòng điện một chiều gọi là mạch điện một chiều. b. Mạch điện xoay chiều: Mạch điện có dòng điện xoay chiều gọi là mạch điện xoay chiều. 2. Phân loại theo tính chất các thông số R, L, C của mạch a. Mạch điện tuyến tính: Tất cả các phẩn tử của mạch điện là phần tử tuyến tính, nghĩa là các thông số R, L, M, C là hằng số, không phụ thuộc vào dòng điện i và điện áp u trên chúng. b. Mạch điện phi tuyến: Mạch điện có chứa các phần tử phi tuyến gọi là mạch điện phi tuyến. Thông số R, L, M, C của phần tử phi tuyến thay đổi phụ thuộc vào dòng điện i và điện áp u trên chúng. Trong giáo trình này chủ yếu nghiên cứu mạch điện tuyến tính. 3. Phân loại theo quá tình năng lượng trong mạch a. Chế độ xác lập: Chế độ xác lập là quá trình, trong đó dưới tác động của các nguồn, dòng điện và điện áp trên các nhánh đạt trạng thái ổn định. Ở chế độ xác lập, dòng điện và điện áp trên các nhánh biến thiên theo một quy luật giống với quy luật biến thiên của nguồn điện. b. Chế độ quá độ: Chế độ quá độ là quá trình chuyển tiếp từ chế độ xác lập này sang chế độ xác lập khác. Chế độ quá độ xảy ra trong quá trình đóng cắt hoặc thay đổi thông số của mạch có chứa L, C. Thời gian quá độ thường rất ngắn. Ở chế độ 5 quá độ, dòng điện và điện áp biến thiên theo các quy luật khác với quy luật biến thiên ở chế độ xác lập. 1.1.5. Hai định luật Kiếchốp 1. Định luật Kiếchốp 1 Định luật Kiếchốp 1 phát biểu cho một nút. Tổng đại số các dòng điện tại một nút bằng không ∑i = 0 (1.24) trong đó nếu quy ước các dòng điện đi tới nút mang dấu dương, thì các dòng điện rời khỏi nút mang dấu âm, hoặc ngược lại. Hình 1-8. Dòng điện tại một nút Ví dụ: tại nút K hình 1.8, định luật Kiếchốp 1 được viết: i1 - i2 - i3 = 0 (1.25) Từ phương trình (1.25) ta có thể viết lại: i1 = i2 + i3 (1.26) Nghĩa là tổng các dòng điện tới nút bằng tổng các dòng điện rời khỏi nút. Định luật Kiếchốp 1 nói lên tính chất liên tục của dòng điện. Trong một nút không có hiện tượng tích luỹ điện tích, có bao nhiêu điện tích tới nút thì cũng có bấy nhiêu điện tích rời khỏi nút. 2. Định luật Kiếchốp 2 Định luật Kiếchốp 2 phát biểu cho mạch vòng kín. Đi theo một vòng kín với chiều tuỳ ý, tổng đại số các điện áp rơi trên các phần tử bằng không. Hoặc ∑u = 0 ∑u = ∑e (1.27) (1.28) Định luật Kiếchốp 2 được phát biểu như sau: Đi theo một vòng khép kín, với chiều tuỳ ý, tổng đại số các điện áp rơi trên các phần tử bằng tổng đại số các sức điện động của vòng; trong đó những sức điện động và dòng điện có chiều trùng với chiều đi của vòng sẽ lấy dấu dương, ngược lại mang dấu âm. Hình 1-9 6 Ví dụ: Đối với vòng kín trong hình 1.9, định luật Kiếchốp 2 viết: R 3i 3 + 1 di i 3 dt − L 2 2 + R 1 i1 = e 2 − e1 ∫ C3 dt Định luật Kiếchốp 2 nói lên tính chất thế của mạch điện. Trong một mạch điện xuất phát từ một điểm theo một mạch vòng kín và trở lại vị trí xuất phát thì lượng tăng điện thế bằng không. 1.2. DÒNG ĐIỆN HÌNH SIN Dòng điện hình sin (thường gọi tắt là dòng điện sin) là dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian (hình 1.10). 1.2.1. Các đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở một thời điểm t gọi là trị số tức thời và được biểu diễn là: i = Imax sin (ωt +ψi) (1.29) u = Umax sin (ωt +ψu) (1.30) trong đó: i, u - trị số tức thời của dòng điện, điện áp Imax, U max - trị số cực đại (biên độ) của dòng điện, điện áp. (ωt +ψi), (ωt + ψu): là góc pha (gọi tắt là pha) của dòng điện, điện áp. Hình 1-10. Dòng điện sin ψi, ψu - pha đầu của dòng điện, điện áp. ω - tần số góc của dòng điện sin (rad/s). T – chu kỳ của dòng điện sin (s) f- tần số (Hz). Giữa tần số f và tần số góc ω có quan hệ sau: ω = 2πf (1.31) Góc lệch pha giữa điện áp và dòng điện thường ký hiệu là ϕ, được định nghĩa như sau: ϕ = ψu - ψi (1.32) Góc ϕ phụ thuộc vào các thông số của mạch. ϕ > 0 : điện áp vượt trước dòng điện (hình 1.11a) 7 ϕ < 0 : điện áp chậm sau dòng điện (hình 1.11b) ϕ = 0 : điện áp trùng pha dòng điện (hình 1.11c) Nếu biểu thức tức thời của điện áp u là: u = Umaxsinωt (1.33) thì dòng điện tức thời là: i = Imaxsin(ωt-ϕ) (1.34) Hình 1.11. Góc lệch pha giữa dòng điện và điện áp ở các chế độ khác nhau 1.2. 2. Trị số hiệu dụng của dòng điện sin Khi tính công suất tác dụng P của dòng điện qua điện trở R, ta phải tính trị số trung bình công suất điện trở tiêu thụ trong thời gian một chu kỳ T. Công suất tác dụng được tính như sau: T T 1 1 P = ∫ Ri 2 dt = R ∫ i 2 dt T 0 T 0 (1.35) với dòng một chiều, công suất tiêu tán trên điện trở R là: P = R I2 (1.36) Điều chỉnh dòng i sao cho (1.36) bằng (1.35), ta có: T RI 2 = R 1 2 i dt T ∫0 (1.37) T suy ra I= 1 2 i dt T ∫o (1-38) Trị số I tính theo biểu thức (1.38) được gọi là trị số hiệu dụng của dòng điện biến đổi. Nó được dùng để đánh giá, tính toán hiệu quả tác động của dòng điện biến thiên chu kỳ. Đối với dòng điện sin, thay i = Imaxsinωt vào (1.38), sau khi lấy tích phân, ta được quan hệ giữa trị số hiệu dụng và trị số cực đại là: I= Imax 2 (1-39) 8 tương tự, ta được trị hiệu dụng của điện áp, sức điện động là: U= U max 2 E= (1-40) E max 2 (1.41) Thay thế trị số Imax, U max theo (1.39), (1.40) vào biểu thức (1.29), (1.30) ta được biểu thức trị tức thời viết theo trị số hiệu dụng như sau: i = 2 I sin(ωt + ψ i ) (1.42) u = 2 U sin(ωt + ψ u ) (1.43) Trị số hiệu dụng viết bằng chữ in hoa I, U, E, P. 1.2.3. Các phương pháp biểu diễn dòng điện sin 1. Biểu diễn dòng điện sin bằng véc tơ Từ toán học ta đã biết việc cộng, trừ các đại lượng sin cùng tần số, tương ứng với việc cộng trừ các véctơ biểu diễn chúng trên đồ thị, vì thế trong kỹ thuật điện thường hay biểu diễn các đại lượng sin bằng vectơ có độ lớn (môđun) bằng trị số hiệu dụng và góc tạo với trục OX bằng pha đầu của các đại lượng ấy. Bằng cách đó, mỗi đại lượng sin được biểu diễn bằng một véctơ, ngược lại, mỗi véctơ biểu diễn một đại lượng sin tương ứng. Hình 1.12b.Véc tơ có ϕ<0 vàϕ>0 Hình 1.12a. Véc tơ dòng điện và điện áp Ví dụ: i = 2 .10 sin(ωt + 300 ) và u = 2.20 sin(ωt − 450 ) được biểu diễn bằng các véctơ I và U như hình (1.12a). Hình (1.12b) vẽ các véctơ ứng với góc pha ϕ >0 và ϕ < 0. Khi biểu diễn các đại lượng sin bằng véctơ, hai định luật Kiếchốp được viết dưới dạng: Định luật Kiếchốp 1: ∑I = 0 (1.44) Định luật Kiếchốp 2: ∑U = ∑E (1.45) 9 2. Biểu diễn dòng điện sin bằng số phức Khi giải mạch điện sin ở chế độ xác lập một công cụ rất hiệu lực là biểu diễn các đại lượng sin bằng số phức. a) Cách biểu diễn Hình 1.12 là biểu diễn dòng điện sin bằng véctơ trong toạ độ vuông góc xOy. Để biểu diễn sang phức, thay trục Ox bằng trục số thực +1, và thay trục Oy bằng trục số ảo +j, ta đã thực hiện việc biểu diễn đại lượng sin bằng số phức trong toạ độ phức hình 1.13. Số phức biểu diễn các đại lượng sin ký hiệu bằng các chữ in hoa, có dấu chấm ở trên. Số phức có hai dạng: Hình 1.13. Cách biểu diễn véc tơ bằng số phức • • Dạng số mũ: I = Ie jψ , U = Ue jψ có môđun I, U (độ lớn) bằng trị số hiệu dụng và acgumen ψi, ψu bằng pha đầu các đại lượng sin. Dạng mũ còn được u i • • ký hiệu I = I∠ψ i ; U = U∠ψ u . Ví dụ: Dòng điện • I = 10e − j30 . 0 Ngược lại, π i = 2 .10 sin(ωt − ) được biểu diễn bằng số phức 6 phức số • U = 200e j60 0 biểu diễn điện áp π u = 2 .200 sin(ωt + ) . 3 Dạng đại số: • I = I cosψ i + jI sin ψ i = 10 cos(−300 ) + j10 sin( −30 0 ) = 5 3 − j5 • U = U cosψ u + jU sin ψ u = 200 cos(60 0 ) + j 200 sin( 60 0 ) = 100 + j100 3 Với j = − 1 là đơn vị ảo b) Số phức biểu điễn đạo hàm di dt • Nếu i = 2I sin ωt được biểu diễn bằng dòng điện phức I thì đạo hàm di π di = 2ωI cos ωt = 2ωI sin(ωt + ) , như vậy số phức biểu diễn của đạo hàm dt 2 dt là: • di − − − − → jω I dt 10 (1.46) ∫ idt c)Số phức biểu diễn tích phân • Nếu i = 2I sin ωt được biểu diễn bằng dòng điện phức I thì tích phân t ∫ idt = − 0 2 I I π cos ωt = 2 sin(ωt − ) ω ω 2 như vậy biểu diễn phức của ∫ idt là: • t I ∫0 idt − − − − → jω (1.47) Bằng cách biểu diễn số phức ta đã chuyển các biểu thức chứa đạo hàm và tích phân về các biểu thức đại số với các số phức. Định luật Kiếchốp 1: Từ biểu thức Định luật Kiếchốp 2: • ∑i = 0 • suy ra ∑ I = 0 • ∑Z I = ∑E (1.48) (1.49) Nhờ cách biểu diễn các lượng sin bằng số phức ta đã chuyển được các phương trình vi tích phân dưới dạng tức thời thành phương trình đại số với các số phức. 1.2.4. Dòng điện sin trong nhánh thuần trở Khi có dòng điện i =Imaxsinωt qua điện trở R (hình 1.14a) điện áp rơi trên điện trở là: u R = R.i = RI max sin ωt = U R max sin ωt = 2U R sin ωt trong đó: UR = U R max 2 = RI (1.50) Rút ra quan hệ giữa trị số hiệu dụng của dòng và áp là: I= viết dưới dạng phức: • Uñ R (1.51) • U I= R R (1.52) Đồ thị tức thời và độ thị véctơ phức dòng điện và điện áp vẽ trên hình 1.14b và 1.14c. 11 Hình 1-14. Đồ thị véc tơ (b) và đồ thị tức thời (c) của nhánh thuần trở (a ) Công suất tức thời của điện trở là: pR(t) = uRi = URmax Imax sin2ωt = UR I (1- cos2ωt) (1.53) PR(t) được vẽ trên hình 1.14c. Công suất tác dụng P: P= T T 1 1 p R (t )dt = ∫ U R I (1 − cos 2ωt )dt ∫ T0 T0 Sau khi lấy tích phân ta được: P = UR I = R I2 (1.54) Nhận xét: trong nhánh thuần trở dòng và áp trùng pha nhau. Mối quan hệ giữa dòng và áp được tính theo công thức (1.51) hoặc (1.52). Trong nhánh thuần trở luôn có sự tiêu thụ điện năng của nguồn để biến sang các dạng năng lượng khác (PR(t) ≥ 0). 1.2.5. Dòng điện sin trong nhánh thuần điện cảm Khi có dòng i = Imaxsinωt đi qua điện cảm L (hình 1.15a), điện áp trên điện cảm sẽ là: u L (t) = L di d (I sin ωt ) π = L max = ωLImax sin(ωt + ) dt dt 2 π π = X L I max sin(ωt + ) = U L max sin(ωt + ) 2 2 π = 2 U L sin(ωt + ) 2 trong đó Rút ra : XL=ωL có thứ nguyên điện trở đo bằng Ω gọi là cảm kháng. I= viết dưới dạng phức: UL XL • (1.55) • U I= L jX L (1.56) 12 Đồ thị tức thời, đồ thị véctơ được biểu diễn trên hình 1.15c và 1.15 b. Hình 1-15. Đồ thị véc tơ(b), đồ thị tức thời(c) của nhánh thuần cảm(a) Công suất tức thời của điện cảm: p L (t) = u L = U Lmax I max sin(ωt + = π ) sin 2ωt 2 U L max I max sin 2ωt = U L I sin 2ωt 2 (1.57) Công suất tác dụng: T PL = T 1 1 p L (t )dt = ∫ U L I sin 2ωtdt = 0 ∫ T0 T0 Nhận xét: Qua phân tích trên ta thấy: • Trong nhánh thuần điện cảm, dòng điện và điện áp có cùng tần số, song π . Mối quan hệ giữa dòng và áp được 2 dòng điện chậm sau điện áp một góc tính theo công thức (1.55) hoặc (1.56). • Trong nhánh thuần điện cảm có hiện tượng trao đổi năng lượng (tích, phóng) giữa điện cảm và phần còn lại của mạch điện. Do vậy công suất tác dụng P= 0, tức không có hiện tượng tiêu tán năng lượng. Để đặc trưng cho cường độ quá trình trao đổi năng lượng của điện cảm, người ta đưa ra khái niệm công suất phản kháng QL của điện cảm. QL = ULI = X LI2 (1.58) Đơn vị của công suất phản kháng là Var hoặc kVAr = 103Var. 1.2.6. Dòng điện sin trong nhánh thuần điện dung. Khi có dòng điện i = Imaxsinωt qua điện dung (hình 1.16a), điện áp trên điện dung là: 13 u C (t ) = 1 1 1 π idt = ∫ I max sin ωtdt = I max sin(ωt − ) ∫ C C 2 ωC π π = X C I max sin(ωt − ) = U C max sin(ωt − ) 2 2 π = 2 U C sin(ωt − ) 2 trong đó: X C = 1 có thứ nguyên của điện trở, đo bằng Ôm được gọi là ωC dung kháng. I= Rút ra UC XC (1.59) o o U viết dưới dạng phức I = C − jX C (1.60) Đồ thị tức thời và độ thị véctơ phức được biểu diễn trên hình 1.16c và b. Hình 1-16. Đồ thị véc tơ (b), đồ thị tức thời (c) của nhánh thuần dung (a) Công suất tức thời của điện cảm: π p C (t) = u c i = U C max I max sin ωt sin(ωt − ) = −U C I sin 2ωt 2 (1.61) Công suất tác dụng: PC = T T 1 1 p c (t )dt = ∫ − U C I sin 2ωtdt = 0 ∫ T0 T0 (1.62) Nhận xét: Qua phân tích trên ta thấy: • Trong nhánh thuần điện dung, dòng điện và điện áp có cùng tần số song dòng điện vượt trước điện áp một góc π . Mối quan hệ giữa dòng và áp được 2 tính theo công thức 1.59 hoặc 1.60. • Trong nhánh thuần điện dung có hiện tượng trao đổi năng lượng (tích, phóng), giữa điện dung và phần còn lại của mạch. Do vậy công suất tác dụng P=0 tức không có hiện tượng tiêu tán năng lượng. 14 Để đặc trưng cho cường độ quá trình trao đổi năng lượng của điện dung, người ta đưa ra khái niệm công suất phản kháng QC của điện dung: QC = -UCI = -XCI2 (1.63) 3 Đơn vị đo công suất phản kháng là Var hoặc kVAr = 10 Var. 1.2.7. Dòng điện sin trong nhánh R-L-C nối tiếp Khi cho dòng điện i =Imaxsinωt qua nhánh R- L- C nối tiếp (hình 1.17a) sẽ gây ra các điện áp uR, uL, uC trên các phần tử R, L, C. Theo định luật Kiếchốp 2 cho vòng kín ta có: u = u R + u L + u C = Ri + L di 1 + idt dt C ∫ Hình 1-17. Mạch R-L-C nối tiếp (a) và tam giác tổng trở (b) chuyển sang dạng phức ta được: o o o o U = R I+ j I X L − j I X C o o o = I[R + j(X L − X C )] = I(R + jX ) = I Z (1.64) trong đó: X=X L-XC gọi là điện kháng của nhánh Z = R + jX gọi là tổng trở phức của nhánh, có thứ nguyên là Ω, và có: Z = R 2 + X2 (1.65) gọi là tổng trở của nhánh. Ta có tam giác tổng trở như hình 1.17b. Quan hệ giữa dòng và áp trên nhánh theo định luật Ôm: I= viết dưới dạng phức: • U R (1.66) • U I= Z (1.67) 15 Góc lệch pha giữa dòng và áp ϕ = ψu - ψi được tính như sau: ϕ = arctg = arctg UL − UC I( X L − X C ) = arctg UR IR (X L − X C ) X = arctg R R (1.68) Sẽ xảy ra các trường hợp sau đối với góc lệch pha ϕ: +Khi XL-XC = 0, ϕ = 0, dòng điện trùng pha với điện áp, lúc này trong mạch xảy ra hiện tượng cộng hưởng điện áp, dòng điện trong nhánh I = U đạt R trị số lớn nhất. Đồ thị véctơ phức có dạng như hình 1.18a. +Khi XL > XC, ϕ > 0, mạch có tính chất điện cảm, dòng điện chậm sau điện áp một góc ϕ (hình 1.18b). +Khi XL < XC, ϕ < 0, mạch có tính chất điện dung, dòng điện vượt trước điện áp một góc ϕ (hình 1.18c). Hình 1-18. Đồ thị véc tơ mạch cộng hưởng điện áp (a), mạch có tính chất điện cảm (b), mạch có tính chất điện dung (c). Ngoài khái niệm tổng trở phức Z , còn có khái niệm tổng dẫn phức: Tổng dẫn phức được định nghĩa là: Y= = trong đó g= 1 1 R X = = 2 −j 2 2 R + X2 Z R + jX R + X R X − j 2 = g − jb 2 Z Z R R X = 2 ; b= 2 2 R +X Z Z 2 Viết dưới dạng mũ: Y = với Υ = (1.69) 1 = Υe − jϕ Z (1.70) 1 1 có thứ nguyên là ký hiệu là S (đọc là Simen) là môđun của z Ω tổng dẫn phức. 16 1.2.8. Công suất của dòng điện sin Xét trường hợp tổng quát, mạch điện có một nhánh, hoặc nhiều nhánh có các thông số R, L, C như ký hiệu ở hình 1.19. Khi biết dòng điện I, điện áp U, góc lệch pha ϕ giữa điện áp và dòng điện ở đầu vào, hoặc biết các thông số R, L, C của các nhánh, ta tính công suất như sau: 1. Công suất tác dụng P Công suất tác dụng P là công suất trung bình trong một chu kỳ: T P= T 1 1 p( t )dt = ∫ uidt ∫ T0 T0 (1.71) Thay giá trị của u và i vào (1.73) ta có: P= T 1 U 2 sin ωt.I 2 sin(ωt − ϕ ) dt T ∫0 Sau khi lấy tích phân ta có: P = U I cosϕ (1.72) Công suất tác dụng P có thể được tính bằng tổng công suất tác dụng trên các điện trở của các nhánh của mạch điện: P = ∑ R n I 2n Hình 1-19. Tải hỗn hợp (1.73) trong đó: Rn, In - điện trở, dòng điện của nhánh. Công suất tác dụng P đặc trưng cho hiện tượng biến đổi điện năng sang các dạng năng lượng khác như nhiệt năng, cơ năng v.v… 2. Công suất phản kháng Q Để đặc trưng cho cường độ quá trình trao đổi năng lượng điện từ trường, trong tính toán người ta đưa ra khái niệm công suất phản kháng Q. Q = U I sinϕ (1.74a) Công suất phản kháng có thể được tính bằng tổng công suất phản kháng của điện cảm và điện dung của mạch điện. Q = QL + QC = Σ X LnIn2 – Σ XCnI2n (1.74b) 3. Công suất biểu kiến S Ngoài công suất tác dụng P và công suất phản kháng Q người ta còn đưa ra khái niệm công suất biểu kiến, được định nghĩa là: S = UI = P 2 + Q 2 (1.75) 17 Công suất biểu kiến còn được gọi là công suất toàn phần. Quan hệ giữa S, P, Q được mô tả bằng một tam giác công suất như hình 1.20. P, S, Q có cùng một thứ nguyên, song để phân biệt ta cho các đơn vị khác nhau. Đơn vị của P là W, của Q là Var, còn của S là VA. Hình 1-20. Tam giác công suất 1.2.9. Nâng cao hệ số công suất cosϕ Trong biểu thức công suất tác dụng P=UIcosϕ, cosϕ được gọi là hệ số công suất. Hệ số cosϕ là chỉ tiêu kỹ thuật quan trọng, nó có ý nghĩa rất lớn về kinh tế. Nâng cao hệ số cosϕ sẽ tăng được khả năng sử dụng công suất nguồn. Ví dụ một máy phát điện có Sđm =10.000 kVA nếu cosϕ =0,7; công suất định mức phát ra: Pđm = Sđmcosϕ = 10000. 0,7 =7000 kW, nếu nâng cosϕ = 0,9: Hình 1-21. Mắc tụ song song Pđm = 10000. 0,9 = 9000kW. Như vậy rõ ràng sử dụng thiết bị có lợi hơn rất nhiều. Mặt khác nếu cần một công suất P nhất định trên đường dây một pha thì dòng điện chạy trên đường dây là: I= P UI cos ϕ Nếu cosϕ lớn thì I sẽ nhỏ dẫn đến tiết diện dây nhỏ hơn, và tổn hao điện năng trên đường dây sẽ bé, điện áp rơi trên đường dây cũng giảm đi. Trong sinh hoạt và trong công nghiệp tải thường có tính chất điện cảm nên cosϕ thấp. Để nâng cao cosϕ, một trong các biện pháp kỹ thuật là dùng tụ nối song song với tải (hình 1.21). Hình 1-22. Đồ thị véc tơ khi mắc tụ song song tải Khi chưa bù (chưa có nhánh tụ điện) dòng điện trên đường dây I bằng dòng điện qua tải I1, hệ số công suất của mạch là cosϕt của tải. Khi có bù (có nhánh tụ điện), dòng điện trên đường dây I là : 18 I = I1 + I C Từ đồ thị hình 1.22 ta thấy dòng điện I trên đường dây giảm, và cosϕ tăng lên: I < I1, ϕ < ϕ1 và cosϕ > cosϕ1 Vì công suất P của tải không đổi, nên công suất phản kháng của mạch là: Lúc chưa bù: Q1 = P tgϕ1 (1.76) Lúc bù, hệ số công suất là cosϕ, công suất phản kháng của mạch là: Q = P tgϕ Khi ấy công suất phản kháng của mạch gồm: Q 1 của tải và QC của tụ điện. Do đó: Q1 + QC = P tgϕ1 + QC = P tgϕ Rút ra (1.77) QC= - P(tgϕ1 - tgϕ) Mặt khác, công suất QC = -UC IC = - U. UωC = - U2ωC (1.78) Từ (1.77) và (1.78) ta tính được giá trị điện dung C cần thiết để nâng hệ số công suất mạch điện từ cosϕ1 lên cosϕ là: C= P ( tgϕ1 − tgϕ ) ωU 2 (1.79) 1.2.10. Phương pháp biến đổi tương đương Biến đổi mạch điện nhằm mục đích đưa mạch phức tạp về dạng đơn giản hơn. Biến đổi tương đương là biến đổi mạch điện sao cho dòng điện, điện áp tại các bộ phận không bị biến đổi vẫn giữ nguyên. Dưới đây dẫn ra một số biến đổi thường gặp. 1. Biến đổi nối tiếp Giả thiết các tổng trở Z1 , Z 2 , Z n mắc nối tiếp được biến đổi thành tổng trở tương đương Ztđ (hình 1.23). Theo điều kiện biến đổi tương đương có: Hình 1-23. Nhánh mắc nối tiếp. • • • • • • U = Z tđ I = U1 + U 2 + .. + U n = ( Z1 + Z 2 + .. + Zn ) I n suy ra Ztđ = Z1 + Z2 + .. + Zn = ∑ Zi i =1 19 (1.80) 2. Biến đổi song song Giả thiết có n tổng trở mắc song song (hình 1.24) được biến đổi tương đương. Theo định luật Kiếchốp 1 ta có: • • • • • I = I1 + I 2 + ... + I n = U( 1 1 1 + + ... + ) Zn Z1 Z2 • n = U ( Y1 + Y 2 + ... + Y n ) = ∑ Yi i =1 • • • U = U Ytd Mặt khác I = Ztd Theo điều kiện biến đổi tương đương có: Hình 1-24. Mắc song song 1 = Ytd = Y1 + Y2 + .. + Yn Ztd Ytd = ∑ Y n Tổng quát: (1.81) Đối với trường hợp hai nhánh mắc song song: − Z td = Z1.Z2 Z1 + Z 2 ( 1. 82 ) 3. Biến đổi sao - tam giác Hình 1.25a- nối sao và hình 12.5b nối tam giác. Hình 1-25. Mắc sao và tam giác a) Biến đổi từ tam giác sang hình sao Z1 = Z12 .Z31 Z12 + Z23 + Z31 Z2 = Z12 .Z23 Z12 + Z23 + Z31 Z3 = Z23 .Z31 Z12 + Z 23 + Z31 (1.83) 20
- Xem thêm -

Tài liệu liên quan