Đăng ký Đăng nhập
Trang chủ Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng aon...

Tài liệu Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng aon

.PDF
131
194
104

Mô tả:

Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON
MỞ ĐẦU Sự bùng nổ của mạng Internet, sự phát triển số lượng người sử dùng, sự phát triển của các ứng dụng và dịch vụ mới trên nền IP, đó là những gì mà chúng ta đã chứng kiến trong vòng gần một thập kỉ qua. Xét về mặt kỹ thuật, để đáp ứng được sự phát triển đó, hạ tầng mạng truyền dẫn bao gồm mạng đường backbone và mạng truy nhập đã và đang phải nâng cao dung lượng bằng cách chuyển dần sang mạng truyền dẫn cáp sợi quang. Mạng truyền dẫn quang đã đáp ứng được rất nhiều yêu cầu về dung lượng (tối đa 50Tbps), chi phí xây dựng và tính bảo mật thông tin. Hai công nghệ quan trọng gần đây giúp tăng dung lượng hệ thống là WDM và khuêch đại sợi quang EDFA. Từ khoảng năm 1986 trở lại đây có rất nhiều các dự án xây dựng mạng đường trục cáp quang biển quốc tế được triển khai, đã giúp tăng cường khả năng trao đổi thông tin giữa các quốc gia, lãnh thổ trên thế giới. Tiếp đến là các mạng đường trục trên đất liền ở các quốc gia được xây dựng trên nền tảng truyền dẫn sợi quang. Vào đầu năm 1988, các công nghệ SONET và SDH là những chủ đề nóng được đề cập đến như là những chuẩn ghép kênh cho các mạng đường trục trong tương lai. SONET và SDH là các chuẩn thiết kế từ đầu cho các hệ thống TDM (chiếm đa số vào những năm 1980). Sử dụng TDM, một luồng dữ liệu ở tốc độ cao hơn được tạo ra trực tiếp bằng cách ghép các kênh có tốc độ bit thấp hơn. Thực tế đã có rất nhiều các hệ thống SDH/SONET đã và vẫn đang được triển khai. Các hệ thống TDM dung lượng cao hoạt động ở tốc độ OC-192 hoặc 10Gbps. Tuy nhiên ta sẽ gặp khó khăn khi muốn chuyển lên tốc độ OC-768 hoặc lớn hơn do hạn chế tần số hoạt động của linh kiện điện tử. Đến năm 1997, công nghệ WDM được đánh giá là công nghệ ghép kênh số một giúp tăng dung lượng hệ thống lên hàng trăm lần, giảm chi phí đầu tư. Công nghệ WDM cho phép ghép nhiều kênh tốc độ bít khác nhau trên cùng một sợi quang bằng cách đặt các kênh trên các bước sóng khác nhau. Hiện nay đã có thiết bị ghép kênh WDM có khả năng ghép 80 kênh (bước sóng). Với việc chỉ xử lý tín hiệu quang tại các node mạng, đã loại bỏ sự hạn chế của thiết bị điện tử, và đưa ra một mạng mới tên là mạng toàn quang (AON). Mạng toàn quang định tuyến bước sóng được coi là ứng cử viên cho mạng backbone diện rộng thế hệ tiếp theo. Mạng AON được xây dựng từ các thiết bị ghép kênh WDM (kèm theo khả năng xen/tách) và các thiết bị đấu chéo OXC (cross-connect). Hệ thống DWDM có khả năng ghép 32 bước sóng hoặc nhiều hơn trong dải 1550nm, tăng dung lượng trên sợi quang đang có và trong suốt với tốc độ bít. Mạng AON làm việc với các bước sóng khác nhau ở lớp vật lý, ghép kênh WDM và định tuyến theo bước sóng. Nó gồm các node định tuyến bước sóng quang được nối với nhau bằng các kết nối sợi quang. Một lightpath phải được thiết lập giữa hai node định tuyến bất kì trước khi chúng trao đổi thông tin. Mạng sẽ phải xác định tuyến (route/path) nối node này và gán một bước sóng rỗi cho các kết nối dọc theo đường đi. Lightpath chính là một kết nối quang trực tiếp giữa hai node không qua bất kì một thiết bị điện tử trung gian nào. Để thiết lập một lightpath, thông thường yêu cầu mạng phải phân bổ một bước sóng chung trên tất cả các kết nối dọc theo đường đi của lightpath. Đó chính là yêu cầu về tính liên tục bước sóng, điều khiến cho mạng định tuyến bước sóng khác với các mạng điện thoại chuyển mạch truyền thống. Một yêu cầu sẽ bị từ chối nếu không có bước sóng chung còn rỗi trên toàn tuyến. Một trong những mục tiêu cơ bản của bài toán thiết kế mạng AON định tuyến bước sóng là phải giảm tối thiểu xác suất nghẽn toàn mạng. Để tận dụng tài nguyên bước sóng và giảm xác nghẽn, tại các node mạng người ta phải đặt các bộ chuyển đổi bước sóng (WC). Khi đó mỗi kết nối từ node nguồn đến node đích, thông tin được truyền đi trên cùng một hoặc các bước sóng khác nhau. Xong câu hỏi đặt ra là có cần phải đặt các bộ chuyển đổi bước sóng ở tất cả các node? Nếu không thì những node mạng nào nên đặt và cần bao nhiêu bộ chuyển đổi đặt tại node đó? 2 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON Trước khi đi ta trả lời hai câu hỏi trên, ta cần phải biết là giá thành của các bộ chuyển đổi hiện nay rất đắt mặc dù đã có những đột phá về công nghệ. Mạng có tất cả các node được trang bị bộ chuyển đổi bước sóng sẽ đạt được chất lượng tốt nhất (xác suất nghẽn nhỏ nhất), nhưng kéo theo đòi hỏi chi phí đầu tư lại rất lớn. Đối với nhà khai thác mạng khi đầu tư, yếu tố chi phí đầu tư ban đầu (CAPEX) luôn được quan tâm đâu tiên vì nó ảnh hưởng đến giá thành dịch vụ và hiệu quả đầu tư kinh doanh sau này. Mặt khác lý thuyết và thực tế đã chứng minh, có những node mạng không cần phải có bộ chuyển đổi bước sóng vì không có lưu lượng đi qua nó cần chuyển đổi. Chính vì lý do đó đã thúc đẩy các nhà thiết kế, quy hoạch mạng tìm ra một thuật giải phân bổ các bộ chuyển đổi bước sóng sao cho số lượng bộ chuyển đổi bước sóng sử dụng là tối thiểu, nhưng lại đạt chất lượng gần với mạng được trang bị đầy đủ. Đó chính là yêu cầu của bài toán phân bổ tối ưu các bộ chuyển đổi bước sóng được tác giả nghiên cứu trong luận văn này. Có thể coi đây là bài toán con trong cả một bài toán lớn về thiết kế và quy hoạch mạng truyền dẫn toàn quang. Đầu vào của bài toán gồm có : Topo mạng, số lượng bộ chuyển đổi, và thống kế lưu lượng của mạng. Đầu ra của bài toán này sẽ cho biết phải đặt bộ chuyển đổi ở node mạng nào và số lượng bao nhiêu để mạng có xác suất nghẽn nhỏ nhất. Dựa vào đó, nhà khai thác sẽ có cơ sở để lên cấu hình thiết bị cho các node mạng. Do đó bài toán WCP rất quan trọng đối với nhà khai thác mạng đường trục khi chuyển dần mạng truyền dẫn quang hiện tại sang mạng WDM, hoặc xây dựng một mạng truyền dẫn quang WDM mới xếp chồng lên mạng đang có. Sau khi nhận thấy tầm quan trọng của các bộ chuyển đổi bước sóng, yếu tố giá thành, và đặc biệt là nhận xét về sự dư thừa không cần thiết khi trang bị các bộ chuyển đổi bước sóng tại node mạng, đã có rất nhiều công trình nghiên cứu và đưa ra các thuật toán phân bổ tối ưu các bộ chuyển đổi bước sóng cho các cấu trúc mạng khác nhau (Mesh, Ring..). Lúc đầu các thuật toán này được nghiên cứu độc lập, sau đó nó được nghiên cứu gắn liền với LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 3 các thuật giải định tuyến và gán bước sóng RWA. Dựa trên mô phỏng, các công trình đã có sự so sánh chất lượng giữa các thuật toán cũ và mới đề xuất. Trong luận văn này, tác giả không đưa ra một thuật giải mới. Mà mục đích chính là để nêu ra một vấn đề mà các nhà thiết kế và quy hoạch mạng phải quan tâm trước khi đầu tư mua thiết bị, đó là chất lượng mạng không chỉ phụ thuộc vào thuật toán đính tuyến và gán bước sóng được chọn, mà phân bổ tối ưu bộ chuyển đổi bước sóng là một bài toán góp phần nâng cao hơn nữa chất lượng mạng. Do đó đầu tiên tác giả nêu bật tầm quan trọng của bộ chuyển đổi bước sóng và ý nghĩa của việc chọn thuật toán phân bổ tối ưu bộ trong thiết kế và quy hoạch mạng. Trong luận văn này, tác giả đề cập đến mạng truyền dẫn quang đường trục cấu trúc mesh và ring. Mạng mesh sẽ được chọn là mạng đường trục trong tương lai vì tính dư thừa cần thiết của nó mặc dù sẽ tăng chi phí đầu tư ban đầu. Mạng vòng ring hay được triển khai trong thực tế do khả năng dự phòng của nó rất tốt. Nếu xét về khả năng chuyển đổi bước sóng, thì đối tượng nghiên cứu của luận văn là mạng có phân bố bộ chuyển đổi bước sóng rời rạc và có khả năng chuyển đổi hạn chế (SPWC- Sparse Partial Wavelength Converter). Hai ưu điểm quan trọng của mạng này là giảm chỉ phí đầu tư nhờ việc sử dụng ít bộ chuyển đổi hơn mà vẫn đạt được chất lượng mạng như yêu cầu, và mang lại thuận lợi cho các nhà khai thác khi nâng cấp dần lên hệ thống full-complete. 4 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON TỔNG QUAN MẠNG TRUYỀN DẪN TOÀN QUANG 1.1 Các thành phần cơ bản của mạng truyền dẫn quang Sợi quang Sợi quang (Optical fiber) được chọn làm môi trường truyền dẫn tín hiệu trong các mạng tốc độ cao do nó sở hữu nhiều ưu điểm vượt trội so với các môi trường truyền dẫn truyền thống. Có thể liệt kê ra như : Phổ tần sử dụng rộng, suy hao thấp, tiêu thụ công suất ít, không bị gây nhiễu bởi điện từ trường bên ngoài, sử dụng vật liệu chế tạo ít, nhỏ gọn và giá thành rẻ hơn. Cũng nhờ đó mà các hệ thống thông tin quang thường có tỉ lệ BER rất thấp, nhỏ hơn 10-11 Tuy nhiên sợi quang vẫn tồn tại các hiện tượng vật lý như: suy hao, tán sắc, và các hiệu ứng phi tuyến đã làm ảnh hưởng đến việc tận dụng tối đa tài nguyên của nó, đặc biệt trong các mạng đường trục tốc độ cao. Có hai vùng suy hao thấp quan trọng hay được sử dụng:1300nm, bề rộng 200nm, suy hao nhỏ hơn 0.5dB/Km; và 1550nm, bề rộng 200nm, suy hao thấp khoảng 0.2dB/Km. Băng thông được tính xấp xỉ 50THz theo công thức: ∆f ≈ c ∆λ λ2 Phổ suy hao của sợi quang LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 5 Có hai loại sợi quang là sợi quang đơn mode(SMF) và sợi quang đa mode (MMF). Nhược điểm chính của sợi quang đa mode là do hiện tượng tán sắc giữa các mode (Iinter-mode Dispersion), làm giảm giá trị tích BR*D ( BR- Bit Rate; D – Distance) xuống chỉ còn vài chục Mb/s/Km. Sử dụng sợi quang có chiết suất bậc (Step- Index), và sợi quang chiết suất giảm dần (Graded- Index) có thể nâng lên hàng (Gb/s )-Km, tuy nhiên vẫn không đảm bảo khi khoảng cách truyền dẫn lớn. Trong khi đó, sợi quang đơn mode loại bỏ tán sắc giữa các mode bằng cách giảm đường kính của lõi sợi quang. Tuy nhiên, hiện tượng tán sắc (Chromatic Dispersion)-do sự tồn tại nhiều thành phần hài trong phổ tín hiệu quang truyền trong sợi quang gây nên- lại là yếu tố ảnh hưởng sâu sắc đến chất lượng truyền quang. Một số loại sợi quang đơn mode chuẩn, do ITU-T khuyến nghị hay được dùng trong các mạng truyền dẫn quang gồm có : Non- Dispersion Shifted Fiber (G.652), Dispersion-Shifted (C.653), 1550-nm Loss minimized Fiber (G.654) và Nonzero-Dispersion Fiber (G.655)  NDSF (ITU-T G.652 ) Là loại sợi quang được sử dụng nhiều nhất. Nó được chế tạo tối ưu cho vùng 1310nm, có tán sắc bằng 0 tại chính bước sóng 1310nm, và gần 20ps/nm-Km ở bước sóng 1550nm.  DSF (ITU-T G.653) Là loại sợi quang được thiết kế tối ưu cho vùng 1500-1600nm, có hệ số tán sắc xấp xỉ 3.3ps/nm-Km tài cửa sổ 1550nm và gần bằng 0 tại bước sóng 1550nm. Loại sợi quang này không phù hợp cho mạng WDM do ảnh hưởng của các hiệu ứng phi tuyến.  1550nm Loss Minimized Fiber (ITU-T G.654) Đây là loại sợi quang đơn mode chuẩn đặc biệt, có tổn hao rất thấp tại vùng cửa sổ 1550nm. ITU G.654 được thiết kế tối ưu cho vùng 1500-1600nm. Bước sóng cutoff hiệu dụng là một thông số quan trọng trong thiết kế loại sợi này. Tổn hao thấp là nhờ sử dụng lõi thuỷ tinh tinh khiết. Sản xuât ITU G.654 6 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON tốt kém, giá thành cao, nên nó ít được sử dụng. Loại sợi quang này phù hợp nhất là cho hệ thống cáp quang biển hoặc mạng cáp quang đường trục  NZ-DSF (ITU-T G.655) Là loại sợi quang SMF có hệ số tán sắc lớn hơn một giá trị khác không ở cả vùng 1500nm. Hiện tượng tán sắc này làm giảm ảnh hưởng của các hiệu ứng phi tuyến như: FXM, SPM,XPM xuất hiện trong các hệ thống DWDM. Loại sợi quang này phù hợp nhất, hoạt động tối ưu nhất là tại vùng 15001600nm. Bộ phát/thu tín hiệu quang • Bộ phát tín hiệu quang Bộ phát tín hiệu quang (Optical transmitter) có chức năng chuyển tín hiệu điện thành tín hiệu quang. ánh sáng phát ra từ các nguồn này được bơm vào sợi quang để truyền đi. Có hai loại linh kiện dùng làm nguồn phát quang hiện nay là LED (Light Emitting Diode) và LASER ( Light Amplification by Stimulated Emission Radiation). Các nguồn phát sáng quang cần có các tính chất vật lý sau : Phù hợp với kích thước sợi quang  Bơm đủ công suất vào sợi quang để đảm bảo tín hiệu có thể được phát hiện ở đầu thu với suy hao biết trước.  Phát ra ánh sáng ở bước sóng có suy hao và tán xạ thấp. Độ rộng phổ hẹp để giảm thiểu tán xạ.  Duy trì đặc tính ổn định trong điều kiện môi trường thay đổi  Cho phép điều chế trực tiếp công suát quang phát ra  Giá thành thấp và độ tin cậy cao LEDs là nguồn phát lý tưởng cho các hệ thống quang đa mode sử dụng trong mạng LAN hoặc các mạng truy cập. Tuy nhiên LEDs không thể cung cấp đủ ánh sáng vào sợi quang đơn mode trên một khoảng cách truyền dẫn lớn. LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 7 LASER là nguồn phát ánh sáng được sử dụng phổ biến nhất trong các hệ thống truyền dẫn quang. Hầu hết các hệ thống phát Laser được thiết kế để làm việc với nhưng bước sóng được quy định bởi ITU-T. Đối với các hệ thống WDM, người ta thường dùng loại nguồn Laser có thể điểu chỉnh được đến các bước sóng khác nhau (Tunable Laser) nhằm tiết kiệm chi phí. Cách khác là dùng các Laser cố định bước sóng (Fixed Tune Laser) DFB làm việc rất tốt với các ứng dụng hiện nay. Với các hệ thống WDM có số bước sóng lớn gồm hàng chục đến hàng trăm bước sóng, cách này trở thành rất tốn kém, gây khó khăn cho nhà sản xuất và công tác vận hành Một lựa chọn khác là dùng mảng Laser (Laser Array), bao gồm một tập các Laser, với mỗi Laser đã hoạt động ở một bước sóng cố định khác nhau. Nhưng mặt hạn chế là số bước sóng có sẵn trong một mảng Laser là cố định và hiện tại giới hạn khoảng 20 bước sóng. • Thiết bị thu tín hiệu quang Thiết bị thu tín hiệu quang (Optical Receiver) thực hiện chuyển đổi tín hiệu quang thành tín hiệu điện bằng cách sử dụng linh kiện Photodetector tạo ra dòng điện có cường độ tỷ lệ với công suất quang thu được. Dòng điện sau đó được khuếch đại và cho đi qua một thiết bị ngưỡng. Một bít phát đi được xác định là ở mức 0 hay 1 phụ thuộc dòng điện này ở trên hay dưới một ngưỡng nào đó trong suốt thời gian bit. Nói cách khác sự quyết định được thực hiện dựa vào cường độ ánh sáng trong suốt khoảng thời gian bit đó. Bộ lọc và bộ ghép kênh quang Các bộ lọc quang (Optical Filter) là những thành phần chủ yếu trong hệ thống truyền dẫn WDM đối với ít nhất hai ứng dụng là ghép và tách các bước sóng, các thiết bị này được gọi là các bộ ghép kênh (MUX) và các bộ phân kênh (DEMUX). Ngoài ra bộ lọc còn làm phẳng độ lợi và lọc nhiễu trong các bộ khuếch đại quang. 8 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON Bộ lọc và bộ ghép kênh Một bộ lọc đơn giản là một thiết bị hai cổng chọn một bước sóng và loại bỏ các bước sóng khác. Nó có thể có một cổng thứ ba thêm vào mà trên đó thu được các bước sóng bị loại bỏ. Một bộ ghép kênh (MUX) kết hợp các tín hiệu ở các bước sóng khác nhau trên các đầu vào đưa tín hiệu kết hợp ở một đầu ra chung. Bộ DEMUX thực hiện chức năng ngược lại. MUX và DEMUX được dùng trong các thiết bị đầu cuối mạng WDM, các bộ kết nối chéo bước sóng (WXC) và các bộ ghép kênh xen/tách bước sóng (ADM). MUX và DEMUX có thể được nối liên tầng để tạo ra các WXC. Hình 1.3 là một ví dụ về WXC cố định. Thiết bị gửi các tín hiệu từ một đầu vào đến một ngõ ra dựa trên bước sóng. WXC động có thể được xây dựng bằng cách kết hợp sử dụng các bộ chuyển mạch quang với các bộ ghép kênh và phân kênh. Bộ kết nối chéo cố định . LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 9 Bộ chuyển mạch quang Các mạng thông tin quang trước đây sử dụng chuyển mạch điện tử tại các node mạng. Tuy nhiên ngày nay tốc độ của chuyển mạch điện tử không thể đáp ứng với yêu cầu về tốc độ bit, và hiệu suất sử dụng băng thông của sợi quang. Chuyển mạch điện tử ở các node trung gian trong mạng cũng làm gia tăng trễ. Những yếu tố này đã thúc đẩy sự phát triển của mạng toàn quang trong đó các thành phần chuyển mạch điện tử được thay thế bằng chuyển mạch quang với khả năng chuyển mạch các luồng dữ liệu quang băng thông cao. Các bộ chuyển mạch quang được sử dụng trong các mạng quang cho nhiều ứng dụng khác nhau. Mỗi ứng dụng yêu cầu thời gian chuyển mạch và số cổng chuyển mạch khác nhau. Một ứng dụng của các bộ chuyển mạch quang là cung cấp các lightpaths. Trong ứng dụng này, các chuyển mạch được sử dụng bên trong các bộ WXC nhằm cấu hình lại chúng để cung cấp các lightpaths mới. Sẽ phải có một phần mềm dùng để quản lý mạng từ đầu cuối đến đầu cuối. Một ưng dụng quan trọng khác là chuyển mạch bảo vệ. ở đây các chuyển mạch được sử dụng để chuyển các luồng lưu lượng từ một sợi chính sang một sợi khác trong trường hợp sợi chính bị hỏng. Toàn bộ quá trình chuyển luồng phải được hoàn thành trong hàng chục ms, bao gồm thời gian tìm ra lỗi, thông tin lỗi đến các phần tử mạng để điều khiển việc chuyển mạch, và thời gian chuyển mạch thật sự. Vì vậy thời gian chuyển mạch yêu cầu khoảng một vài ms. Có thể có các dạng chuyển mạch bảo vệ khác nhau, phụ thuộc vào phương pháp sử được sử dụng, số lượng cổng chuyển mạch cần thiết có thể thay đổi từ hàng trăm đến hàng ngàn cổng khi sử dụng trong các bộ kết nối chéo bước sóng. Các bộ chuyển mạch quang cũng là phần tử quan trọng trong mạng chuyển mạch gói quang tốc độ cao. Trong các mạng này, các chuyển mạch được sử dụng để chuyển các tín hiệu trên cơ sở các gói. Với ứng dụng này, thời gian chuyển mạch phải nhở hơn nhiều thời gian của một gói nên cần có 10 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON các bộ chuyển mạch tốc độ cực cao. Ví dụ kích thước của một cell trong mạng ATM là 53bytes ở tốc độ 10Gbps dài 42ns, vì vậy thời gian chuyển mạch yêu cầu khoảng một vài ns. Các bộ chuyển mạch quang còn được sử dụng như là cá bộ điều chế bên ngoài để mở và đóng dữ liệu trước một nguồn Laser. Trong trường hợp này, thời gian chuyển mạch phải là một phần nhỏ của độ rộng bit. Do đó một bộ điều chế bên ngoài cho một tín hiệu 10Gbps (với một khoảng thời gian bit 100ps) phải có thời gian chuyển mạch khoảng 10ps. Bộ chuyển đổi bước sóng Bộ chuyển đổi bước sóng (Wavelength Converter) là thiết bị có khả năng chuyển đổi tín hiệu quang từ bước sóng này ở đâu vào sang một bước sóng khác ở ngõ ra. Bộ WC rất hữu ích trong việc làm giảm xác suất nghẽn mạng. Nếu các bộ WC được tích hợp vào các bộ OXC trong mạng toàn quang, thì các kết nối có thể được thiết lập giữa nguồn và đích ngay cả khi bước sóng đó không có trên tất cả các tuyến của đường đi. Chúng sẽ giúp loại bỏ sự bắt buộc về tính liên tục bước sóng. Dưới đây là một số đặc điểm mà một bộ WC lý tưởng nên có:  Trong suốt đối với tốc độ bit và các định dạng tín hiệu.  Thời gian tạo bước sóng ở đầu ra nhanh  Chuyển đổi được cả những bước sóng ngắn và dài  Dải bước sóng rộng đối vớicác tín hiệu vào/a  Có tỷ số SNR cao để đảm bảo khả năng ghép tầng  Có độ nhậy thấp với phân cực của tín hiệu vào  Chi phí thấp và lắp đặt đơn giản Các bộ chuyển đổi bước sóng có thể được chia thành hai dạng dựa vào lượng chuyển đổi có thể. Một số bộ chuyển đổi bước sóng đầy đủ có thể chuyển một bước sóng ngõ vào thành bất kỳ bước sóng nào ở ngõ ra. Một bộ chuyển đổi bước sóng giới hạn chỉ có thể chuyển một bước sóng ngõ vào LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 11 thành một số các bước sóng nào đó ở ngõ ra. Một mạng mà có các bộ chuyển đổi bước sóng đầu đủ ở tất cả các node sẽ có chất lượng tốt hon xét về khía cạnh tối thiểu hóa xác suất nghẽn. Tuy nhiên, điều này khó thực hiện trong thực tế do yếu tố chi phí và phụ thuộc các giới hạn kỹ thuật. Vì vậy thường một mạng chỉ có một số node được trang bị các bộ WC đầy đủ hoặc giới hạn. Vì vậy vấn đề lựa chọn các node thích hợp để đặc các bộ WC trở nên hết sức quan trọng. Các kỹ thuật thiết kế bộ chuyển đổi bước sóng có thể được chia ra hai dạng chuyển đổi bước sóng quang-điện và chuyển đổi bước sóng toàn quang. Dưới đây sẽ trình bày hai kỹ thuật này. Chuyển đổi bước sóng O-E Trong phương pháp này, tín hiệu quang trước tiên được chuyển thành tín hiệu điện sử dụng một bộ tách sóng. Luồng bit được lưu trữ trong bộ đệm. Sau đó tín hiệu điện được dùng dể lái ngõ vào của một Tuable Laser để tạo thành một bước sóng mong muốn ở ngõ ra. Phương pháp này không thích hợp cho các tốc độ bít cao hơn 10Gb/s. Sự tiêu hao nhiều công suất hơn và các thủ túc phức tạp là một số trở ngại củ phương pháp này khi so với các phương pháp khác. Tuy nhiên quá trình chuyển đổi O-E ảnh hưởng một cách bất lợi đến tính trong suốt. Chuyển đổi bước sóng toàn quang Trong phương pháp này tín hiệu quang ở trong miền quang trong suốt quá trình chuyển đổi. Ta có thể chia phương pháp này thành các loại sau: a) Chuyển đổi bước sóng sử dụng hiệu ứng kết hợp Các phương pháp này dựa vào hiệu ứng trộn 4 bước sóng. Trộn bước sóng phát sinh từ hiệu ứng phi tuyến trong sợi quang khi có nhiều hơn 2 bước sóng cùng truyền trên một sợi quang. Kết quả là sinh ra một bước sóng khác mà cường độ tỉ lệ với cường dộ các sóng tương tác. Trộn bước sóng duy trì thông tin về pha và biên độ, cung cấp một sự trong suốt nghiêm ngặt. Nó cũng là phương pháp duy nhất cho phép đồng thời chuyển một tập nhiều bước sóng 12 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON ở ngõ vào thành một tập các bước sống ở ngõ ra và có thể cung cấp các tín hiệu với tốc độ bit vượt qua 100Gb/s. Trong hình 1.4, giá trị n=3 tương ứng với FWM và n=2 tương ứng với DFG. Các kỹ thuật này được mô tả dưới đây:  Trộn bốn bước sóng (FWM) : FWM được sử dụng trong các sợi thủy tinh, nó làm cho ba sóng quang với các tần số f a , f b , và f c với a#b,c tương tác với nhau trong hệ thống ghép kênh đa bước sóng tạo ra bước sóng thứ tư có tần số f abc = fa + fb − fc . FWM có thể thực hiện được trong các ống dẫn sóng bán dẫn hoặc trong môi trường tích cực như bộ SOA. Kỹ thuật này cho phép tạo ra sự độc lập dạng điều chế và tốc độ bit. Tuy nhiên hiệu suất chuyển đổi từ năng lượng bơm vào thành năng lượng tín hiệu không cao lắm.  Phát sinh tần số sai phân (DFG) : DFG là kết quả của sự tương tác phi tuyến của một môi trường với hai sóng quang : một sóng bơm và một sóng tín hiệu. Kỹ thuật này cung cấp một phạm vi trong suốt hoàn toàn mà không thêm vào nhiễu, nhưng hiệu suất thấp và nhạy với sự phân cực. Khó khăn chính trong việc thực hiện kỹ thuật này nằm ở chỗ làm khớp pha của các sóng tương tác và chế tạo một ống dẫn sóng suy hao thấp để đạt được năng suất chuyển đổi cao. Chuyển đổi bước sóng b) Chuyển đổi bước sóng dùng điều biên chéo (XPM) Kỹ thuật này sử dụng các thiết bị bán dẫn tích cực như các bộ khuêchs đại quang học và laser bán dẫn.  Bộ khuêch đại quang bán dẫn (SOA) ở chế độ XGM và XPM : Nguyên tắc sử dụng một bộ khuêch dại ở chế độ điều chế chéo độ lợi hay hệ số khuêch đại (XGM) như sau : tín hiệu ngõ vào điều chế độ lợi trong SOA. LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 13 Một tín hiệu sóng liên tục (CW) ở bước sóng ngõ ra mong muốn ( λc ) được điều chế bằng sự thay đổi độ lợi để cho nó mang cùng thông tin với tín hiệu ngõ vào ban đầu. Tín hiệu CW có thể được phóng vào SOA cùng hướng hoặc ngược hướng với tín hiệu vào. XGM cho ra một tín hiệu được chuyển đổi bước sóng đảo ngược lại so với tín hiệu ngõ vào. Phương pháp XGM dễ dàng thực hiện, tuy nhiên nó gặp trở ngại là sự đảo lại của luồng bít được chuyển đổi. Hoạt động của bộ chuyển đổi bước sóng sử dụng SOA trong mode điều chế xuyên pha XPM dựa vào sự phụ thuộc của chỉ số khúc xạ của SOA vào mật đọ sóng mang trong vùng tích cực. Một tín hiệu đi vào sẽ điều chế chỉ số khúc xạ và kết quả là điều chế pha của tín hiệu CW được phép chuyển đổi. Với XPM, tín hiệu ngõ ra được chuyển đổi có thể bị đảo cũng có thể không. XPM mang lại hiệu quả cao hơn so với XGM.  Laser bán dẫn: Sử dụng laser bán dẫn đơn mode, cường độ laser được điều chế bởi ánh sáng tín hiệu ngõ vào thông qua sự bão hòa. Tín hiệu ngõ ra thu được bị đảo so với tín hiệu ngõ vào. Bộ khuêch đại quang Trong quá trình truyền cường độ tín hiệu quang bị suy hao do các hiện tượng vật lý trong sợi quang gây nên. Ngoài ra các thành phần quang khác, như các bộ ghép nối, mối hàn cũng gây ra suy hao. Sau một khoảng cách nhất, suy hao tích lũy làm cho tín hiệu bị yếu dần đến mức dưới độ nhạy của bộ thu quang. Do đó để có thể truyền được tín hiệu quang đi xa, ngoài việc tăng công suất phát ban đầu, ta phải dùng các bộ lặp tái sinh hoặc bộ khuếch đại quang sau một khoảng cách truyền nhất định. Một bộ lặp tái sinh sẽ phải thực hiện biến đổi O/E/O, nên nó sẽ làm hạn chế tính trong suốt đối với đặc tính tín hiệu truyền, đồng thời tăng chi phí bảo trì. Kỹ thuật khuếch đại quang mang lại nhiều thuận lợi hơn các bộ lặp. Bộ khuếch đại quang không phụ thuộc vào tốc bit và các định dạng tín hiệu. Một 14 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON hệ thống sử dụng khuếch đại quang có thể dễ dàng nâng cấp hơn, ví dụ như đến một tốc độ bit cao hơn mà không cần phải thay thế các bộ khuếch đại. Hơn nữa, các bộ khuếch đại quang có một băng thông khá rộng nên có thể được dùng khuếch đại đồng thời nhiều tín hiệu WDM. Nếu không với mỗi bước sóng ta phải có một bộ lặp. Điều này cho thấy các bộ khuếch đại quang thật sự cần thiết cho các hệ thống ghép kênh theo bước sóng. Ở đây ta sẽ xem xét hang loại khuếch đại quang cơ bản: EDFA ( Eribium-Doped Fiber Amplifiers) và SOA (Sermiconductor Optical Amplifiers) • Bộ khuếch đại EDFA Bộ khuếch đại quang EDFA hoạt động trong dải từ 1530nm đến 1560nm. Cấu tạo EDFA gồm một đoạn silica ma phần lõi được cấy vào các ion E3+ của nguyên tố Eribi. ở đầu cuối sợi quang, một laser phát đi một tín hiệu (pumped signal) vào sợi quang. Để kết hợp tín hiệu gốc đặt ở đầu vào với tín hiệu laser, người ta dùng một bộ ghép phụ được đặt trước đoạn cáp. Thông thường sẽ có một bộ cách ly được dùng trước ngõ vào hoặc ngõ ra của bộ khuyếch đại để ngăn cản sự phản xạ ngược trở lại vào trong bộ khuếch đại. Cấu tạo bộ khuêch đại EDFA Tín hiệu bơm kích thích các nguyên tử Er3+ đến một mức năng lượng cao hơn. Sự chuyển dịch mức năng lượng của điện tử từ cao xuống thấp sẽ phát ra một photon, được goi là bức xạ tự phát nếu như không có bất cử một tác động nào khác chen vào, hoặc bức xạ kích thích do sự có mặt của các photon chứa năng lượng bằng năng lượng dịch chuyển. Thời gian sống của các điện tử ở mức năng lượng cao vào khoảng 10 -9s đảm bảo cho các ion E3+ LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 15 đợi để được khuếch đại tín hiệu bằng bức xạ kích thích. Khi tín hiệu đầu vào được bơm vào EDFA, nó kích thích sự phát xạ của ánh sáng từ các ion ở trạng tháI kích thích, do vậy khuếch đại công suất tín hiệu. Hầu hết các EDFA được bơm bằng laser với bước sóng 980nm hoặc 1480nm. Bước sóng 980nm cho hiệu suất độ lợi khoảng10dB/mW, trong khi bước sóng 1480nm cho hiệu suất khoảng 5dB/mW. Một hạn chế của khuếch đại quang là độ lợi phổ không đồng đều. Độ lợi phổ EDFA được vẽ trong hình 1.6 dưới đây. Ngoài ra, các bộ khuếch đại cũng khuếch đại nhiễu như tín hiệu, và vùng tích cực của bộ khuếch đại cũng tự động phát ra các photon và vùng tích cực của bộ khuếch đại cũng tự động phát ra các photon, làm hạn chế hiệu suất của bộ khuếch đại. Đường cong độ lợi khuếch đại theo bước sóng Một số phương pháp làm phẳng độ lợi của EDFA đã được nghiện cứu như sử dụng bộ lọc quanh tần số 1530nm để nén đỉnh trong vùng này. Tuy nhiên khi có nhiều bộ khuếch đại EDFA được ghép liên tầng, một đỉnh khác xuất hiện quanh bước sóng 1560nm, lúc đó một bộ lọc ở tần số 1560nm đực sử dụng. Một phương pháp khác là hiệu chỉnh công suất phát đầu vào để cho công suất trên mọi bước sóng nhận được ở bên thu như nhau. Cách này được áp dụng trong mạng vòng Ring WDM. 16 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON • Bộ khuếch đại quang bán dẫn SOA Về cơ bản bộ khuếch đại SOA (Semiconductor Optical Amplifier) có cấu tạo là một ghép nối P-N (xem hình 1.7). Lớp giữa được hình thành ở mối nối hoạt động như là một vùng tích cực. Ánh sáng được khuếch đại do sự phát xạ kích thích khi nó lan truyền qua vùng tích cực này. Đối với một bộ khuếch đại, hai đầu cuối của vùng tích cực được phủ một lớp không phản xạ để loại bỏ gợn sóng trong độ lợi của bộ khuếch đại. Sơ đồ khối của một bộ khuếch đại bán dẫn Hai dạng Laser bán dẫn cơ bản là Fabry-Perot Amplifier và TravellingWave Amplifier (TWA). Sự khác nhau cơ bản giữa hai loại này là tính phản xạ của hai gương đầu cuối. Tính phản xạ của Fabry-Perot khoảng 30%, của TWA khoảng 0.01%. Tính phản xạ cao hơn trong Fabry-Perot gây ra cộng hưởng trong bộ khuếch đại làm cho dải thông hẹp khoảng 5GHz. Vì vậy TWA thích hợp hơn Fabry –Perot dùng cho các mạng WDM. Ngày nay các bộ khuếch đại bán dẫn có thể đạt được độ lợi 25dB với một độ bão hoà là 10dBm, độ nhạy phân cực là 1dB và phạm vi băng thông 40nm. Một thuận lợi của các bộ khuếch đại bán dẫn là khả năng tích hợp chúng vào các thành phần khác. LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 17 1.2 Cấu trúc mạng DWDM Trong phần này ta sẽ đi tìm hiểu cấu trúc tổng quát của một mạng WDM. Cấu trúc của mạng được mô tả trong hình 1.8 gồm các thiết bị đầu cuối (OLT), các bộ ghép kênh xen/tách quang (OADM) và các bộ kết nối chéo quang OXC liên kết với nhau qua các kết nối sợi quang. Hình vẽ không chỉ ra các bộ khuếch đại quang, được triển khai dọc theo tuyến truyền dẫn nhằm đảm bảo công suất quang tại đầu thu. Ngoài ra, trong các OLT, OADM, OXC cũng có thể tích hợp các bộ khuếch đại quang bên trong để bù suy hoa. ở đây, OLT được triển khai rộng rãi, OADM được triển khai ở phạm vi nhỏ hơn và OXC chỉ mới bắt đầu được triển khai. Cấu trúc mạng này liên kết các mạng thuộc các loại khác nhau như mạng vòng (Ring), mạng mắt lưới (mesh). Một số đặc điểm đáng chú ý của kiến trúc này:  Sử dụng lại bước sóng: Trên hình 5.1 ta thấy nhiều lightpath trong mạng có thể sử dụng cùng bước sóng khi chúng không trung nhau trên bất cứ tuyến nào. Khả năng sử dụng lại này cho phép mạng hỗ trợ một số lớn các lightpath sử dụng một số giới hạn các bước sóng.  Chuyển đổi bước sóng: Lightpath có thể trải qua nhiều chuyển đổi bước sóng dọc theo lộ trình (route) của nó. Chuyển đổi bước sóng có thể cải thiện hiệu quả sử dụng các bước sóng trong mạng. Chuyển đổi bước sóng cũng cũng cần thiết ở những phần giáp danh mạng ngoài nhằm đưa các tín hiệu từ các nguồn bên ngoài vào bước sóng phù hợp để sử dụng bên trong mạng.  Tính trong suốt: Nghĩa là các lightpath có thể mang dữ liệu với các tốc độ bit, định dạng khác nhau.  Mang tính chuyển mạch kênh: Các lightpath được cung cấp ở lớp quang có thể được thiết lập và kết thúc theo yêu cầu. Điều này giống như việc thiết lập và giải phóng các kênh trong mạng chuyển mạch kênh. 18 Đề tài: Nghiên cứu phân bổ tối ưu bộ chuyển đổi bước sóng trong mạng AON  Khả năng dự phòng: Mạng có thể được cấu hình sao cho trong trường hợp bị đứt một lightpath nào đó, các ligthpath có thể được định tuyến lại bằng các đường thay thế một cách tự động. Cấu trúc mạng định tuyến bước sóng DWDM Thiết bị đầu cuối OLT Thiết bị đầu cuối là phần tử mạng tương đối đơn giản xét về mặt cấu trúc. Chúng được dùng ở đầu cuối của một liên kết điểm-điểm để ghép và phân kênh các bước sóng. Hình 1.9 mô tả ba phần tử chức năng bên trong một OLT gồm: bộ tiếp sóng(transponder), bộ ghép kênh bước sóng (Wavelength Multiplexer) và một bộ khuếch đại quang không được vẽ ra trên hình. Bộ tiếp sóng có chức năng biến đổi tín hiệu đi vào từ người sử dụng sang một tín hiệu phù hợp sử dụng trong mạng và tương tự theo chiều ngược lại. Giao diện giữa người sử dụng và bộ tiếp sóng có thể thay đổi phụ thuộc vào người sử dụng, tôc độ bit và khoảng cách hoặc suy hao giữa người dùng và bộ chuyển tiếp. Giao diện phổ biến nhất là SONET/SDH. LUẬN VĂN THẠC SỸ Chuyên ngành: Điện tử-Viễn thông 19 Cấu trúc một thiết bị đầu cuối OLT Tín hiệu có thể cần được chuyển sang một bước sóng thích hợp trong mạng quang. Các bước sóng tạo ra bởi bộ tiếp sóng tuân theo các tiêu chuẩn của ITU trong cửa sổ 1.55micromet, trong khi tín hiệu đến có thể là tín hiệu 1,3micromet. Bộ tiếp sóng có thể thêm vào phần vào đầu (overhead) nhằm mục đích quản lý mạng. Nó cũng có thể thêm thông tin sửa lỗi FEC, đặc biệt cho các tín hiệu 10Gbps và các tốc độ cao hơn. Trong một số trường hợp, việc làm thích nghi chỉ cho hướng đi vào và bước sóng ITU ở hướng ngược lại được gửi trực tiếp đến thiết bị người sử dụng. Trong một số trường hợp khác, ta có thể tránh sử dụng bộ tiếp sóng bằng cách thực hiện chức năng thích nghi bên trong thiết bị người sử dụng như phân tử mạng SONET có chỉ ra trong hình 1.9. Tín hiệu ra khỏi bộ tiếp sóng được ghép kênh với các tín hiệu khác ở các bước sóng khác nhau sử dụng bộ ghép kênh theo bước sóng phát ra trên một sợi quang. Thêm vào đó, có thể phải sử dụng bộ khuếch đại quang để đẩy công suất tín hiệu lên trước khi chúng được gửi đến bộ phân kênh, rồi truyền tới bộ tiếp sóng hoặc trực tiếp đến thiết bị người sử dụng. OLT cũng là đầu cuối của một kênh giám sát quang OSC. OSC được mang trên một bước sóng riêng, tách biệt với các bước sóng mang lưu lượng. 20
- Xem thêm -

Tài liệu liên quan