Đăng ký Đăng nhập
Trang chủ Đồ án phương pháp đa cực nhanh trong tính toán trường điện từ...

Tài liệu Đồ án phương pháp đa cực nhanh trong tính toán trường điện từ

.PDF
68
356
55

Mô tả:

Đồ Án Phương pháp đa cực nhanh trong tính toán trường điện từ
Phương pháp đa cực nhanh trong tính toán trường điện từ Lời nói đầu Sự phát triển nhanh chóng của công nghệ thông tin, đặc biệt là sự xuất hiện của các hệ thống siêu máy tính có tốc độ tính toán nhanh đã mở ra một phƣơng pháp mới trong nghiên cứu khoa học. Các kỹ thuật sử dụng máy vi tính nhằm giải quyết các vấn đề vật lý thay cho các phƣơng pháp cũ đã rất phát triển. Trong lĩnh vực nghiên cứu điện từ trƣờng, sử dụng phƣơng pháp đa cực nhanh (FMM) trên máy tính nhằm giải quyết nhanh các bài toán dữ liệu đầu vào khổng lồ đã đóng một vai trò vƣợt trội hơn so với các phƣơng pháp khác. Phƣơng pháp đa cực nhanh là một kỹ thuật toán học đƣợc phát triển để tăng tốc độ tính toán trong vấn đề N-body. Thuật toán thực hiện bằng cách mở rộng hàm Green sử dụng sự mở rộng đa cực, trong đó cho phép một nhóm các nguồn nằm gần nhau và đối xử với họ nhƣ thể họ là một nguồn duy nhất. FMM cũng đã đƣợc áp dụng trong việc tăng tốc độ tính toán của phƣơng pháp Moment (MOM) cũng nhƣ áp dụng cho vấn đề tính toán trƣờng điện từ. Năm 1985, FMM lần đầu tiên đƣợc giới thiệu bởi Greengard và Rokhlin, dựa trên việc mở rộng đa cực của các phƣơng trình Helmholtz dạng vector. Nếu FMM đƣợc áp dụng một cách có thứ bậc, nó có thể cải thiện sự phức tạp của tích vector ma trận từ O(N2) xuống O(N). FMM cũng đã đƣợc áp dụng một cách hiệu quả trong các bài toán tƣơng tác Coulomb hay động lực học phân tử. FMM đƣợc coi là một trong những thuật toán hàng đầu của thế kỷ 20 Mục đích chính của đồ án này là nghiên cứu các bƣớc thực hiện phƣơng pháp đa cực nhanh, từ đó sử dụng phần mềm Matlab tính toán các thông số về thời gian, tốc độ tính toán trong bài toán tƣơng tác trƣờng điện từ. Em xin cảm ơn các thầy cô giáo trong khoa Điện tử - Viễn thông, cũng nhƣ các thầy cô giáo tại trƣờng Đại học Bách Khoa Hà Nội đã truyền đạt những kiến thức quý báu, cần thiết của một kỹ sƣ tƣơng lai, giúp em chuẩn bị bƣớc vào môi trƣờng nghiên cứu hay làm việc sau này. Đặc biệt, em xin gửi lời cảm ơn sâu sắc tới TS. Phạm Thành Công, thầy Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 1 Phương pháp đa cực nhanh trong tính toán trường điện từ giáo trực tiếp hƣớng dẫn em làm đồ án tốt nghiệp, đã góp ý và cho em những lời khuyên quí báu. Bên cạnh đó, em cũng chân thành cảm ơn PGS. Đào Ngọc Chiến đã định hƣớng nghiên cứu cho em về đề tài này và nhiệt tình giúp đỡ em về mọi mặt, tạo điều kiện cho em đƣợc học tập, nghiên cứu và làm đồ án tại phòng Nghiên cứu và Phát triển Truyền thông CRD – phòng 607, 608 thƣ viện Tạ Quang Bửu. Cuối cùng, em xin cảm ơn tới gia đình và bạn bè đã tạo nguồn khích lệ lớn giúp em hoàn thành đồ án. Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 2 Phương pháp đa cực nhanh trong tính toán trường điện từ Tóm tắt đồ án Mục đích của đồ án là nghiên cứu về phƣơng pháp đa cực nhanh trong tính toán trƣờng điện từ. Từ đó đƣa ra chƣơng trình tính toán các thông số về thời gian thực thi, tốc độ tính toán…bằng chƣơng trình Matlab đối với phƣơng pháp đa cực nhanh và đối với cách tính cổ điển. Cụ thể, đồ án sẽ đƣa ra lý thuyết cơ bản về trƣờng điện từ (Hệ phƣơng trình Maxwell, định lý Green,…), các bƣớc thực hiện tính toán trƣờng điện từ bằng phƣơng pháp đa cực nhanh. Cuối cùng, đồ án sẽ đƣa ra các chƣơng trình tính toán: điện thế, vi phân điện thế, thời gian thực thi, tốc độ tính toán, dung lƣợng bộ nhớ sử dụng… bằng Matlab, và so sánh các kết quả theo cách tính bằng FMM và cách tính cổ điển. Đồ án đƣợc trình bày trong 3 chƣơng: Chƣơng 1: Lý thuyết cơ bản về trƣờng điện từ Chƣơng 2: Lý thuyết về phƣơng pháp đa cực nhanh Chƣơng 3: Tính toán và mô phỏng bằng Matlab Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 3 Phương pháp đa cực nhanh trong tính toán trường điện từ Abstract The purpose of my thesis is research about Fast Multipole Method (FMM) in calculating electromagnetics field. It present programmes to compute parameters about the execution time, calculating speed…with Matlab. Namely, this thesis introduces a brief review of electromagnetics (Maxwell equations, Green’s function…), the steps for calculating electromagnetics by FMM. At the end, it presents programmes to compute and model: the potential, the gradient of the potential, the execution time, calculating speed …with Matlab and analyses the results by using different methods: FMM and classic method. My thesis includes 3 chapters, in which: Chapter 1: Basical theory about Electromagnetics Chapter 2: Theory about Fast Multipole Method Chapter 3: Computing and modeling with Matlab Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 4 Phương pháp đa cực nhanh trong tính toán trường điện từ Mục lục Danh mục các hình vẽ ....................................................................................................... 6 Danh mục các bảng........................................................................................................... 7 Danh sách các từ viết tắt ................................................................................................... 8 Chƣơng 1: LÝ THUYẾT CƠ BẢN VỀ TRƢỜNG ĐIỆN TỪ ........................................... 9 1.1 Hệ phƣơng trình Maxwell .................................................................................... 9 1.2 Phƣơng trình thế ................................................................................................ 11 1.3 Điều kiện biên của bề mặt .................................................................................. 15 1.4 Định lý Green, hàm Green, và nghiệm cơ bản.................................................... 17 1.4.1 Định lý Green ............................................................................................. 17 1.4.2 Sự tƣơng đƣơng vector định lý Green.......................................................... 20 1.4.3 Hàm Green .................................................................................................. 21 1.4.4 Nghiệm cơ bản ............................................................................................ 24 1.4.5 Biểu diễn phƣơng trình tích phân với điểm quan sát nằm trên biên.............. 26 Chƣơng 2. THUẬT TOÁN KHAI TRIỂN ĐA CỰC NHANH ....................................... 31 2.1 Thuật toán khai triển đa cực nhanh (FMM) ........................................................ 31 2.1.1 Giới thiệu phƣơng pháp FMM..................................................................... 31 2.1.2 Phƣơng pháp FMM trong bài toán tính cƣờng độ điện ................................ 32 2.1.3 Các bƣớc thực hiện phƣơng pháp FMM ...................................................... 39 CHƢƠNG 3.................................................................................................................... 51 TÍNH TOÁN VÀ MÔ PHỎNG BẰNG MATLAB ......................................................... 51 3.1 Kí hiệu các thông số.............................................................................................. 51 3.1.1 Các thông số đầu vào. ...................................................................................... 51 3.1.2: Các thông số đầu ra ........................................................................................ 51 3.2 Xây dựng và tính toán cho mô hình điểm nguồn và đích nằm trong hình tròn ....... 51 3.2.1 Giá trị các tham số đầu vào. ............................................................................. 51 3.2.1Giá trị các tham số đầu ra ................................................................................. 53 Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 5 Phương pháp đa cực nhanh trong tính toán trường điện từ 3.3 Xây dựng và tính toán cho mô hình điểm nguồn và đích nằm trong hình vuông. ... 60 3.3.1Giá trị các tham số đầu vào. .............................................................................. 60 3.3.2Giá trị các tham số đầu ra. ................................................................................ 60 Kết luận .......................................................................................................................... 67 Tài liệu tham khảo: ......................................................................................................... 68 Danh mục các hình vẽ Chƣơng 1 Hình 1.1 Điều kiện biên. ................................................................................................. 16 Hình 1.2 Miền khối bao quanh bởi mặt kín. .................................................................... 19 Hình 1.3 Hai loại hàm giới hạn. ...................................................................................... 26 Hình 1.4 Trục toạ độ của hàm giới hạn cho không gian 2 chiều. ..................................... 29 Chƣơng 2 Hình 2. 1 Hai tập hợp hạt đủ xa trên mặt phẳng ............................................................. 35 Hình 2. 2 Dịch chuyển tâm của khai triển đa cực. .......................................................... 38 Hình 2. 3 Ý tƣởng tính lực xấp xỉ trong FMM ............................................................... 40 Hình 2. 4 Phân mảnh không gian và chỉ số thứ tự Morton, L=2 ..................................... 41 Hình 2. 5 Ví dụ về phân mảnh không gian và đánh số hộp, L=3 .................................... 41 Hình 2. 6 Một vài mức phân chia trong FMM ................................................................ 42 Hình 2. 7 Các miền xếp theo thứ bậc không gian ........................................................... 44 Hình 2. 8 Pha M2M trong thuật toán FMM. ................................................................... 45 Hình 2. 9 Danh sách hàng xóm và danh sách tƣơng tác. ................................................. 45 Hình 2. 10 Pha M2L trong thuật toán FMM. .................................................................. 46 Hình 2. 11 Pha L2L trong thuật toán FMM. ................................................................... 47 Chƣơng 3 Hình 3. 1 Vị trí điểm nguồn, điểm đích trong mô hình 1 ................................................ 53 Hình 3. 2 Cƣờng độ điện thế tại 1 số điểm nguồn trong mô hình 1 ................................. 55 Hình 3. 3 Giá trị điện thế tại 1 số điểm đích trong mô hình 1 ......................................... 57 Hình 3. 4 Thời gian tính toán theo 2 cách....................................................................... 58 Hình 3. 5 Số phép tính/s theo 2 cách tính. ...................................................................... 59 Hình 3. 6 Vị trí các điểm nguồn, điểm đích trong mô hình 2 .......................................... 60 Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 6 Phương pháp đa cực nhanh trong tính toán trường điện từ Hình 3. 7 Điện thế tại 1 số điểm nguồn trong mô hình 2 ................................................ 62 Hình 3. 8 Điện thế tại 1 số điểm đích trong mô hình 2 ................................................... 64 Hình 3. 9 Thời gian tính toán khi thay đổi số điểm nguồn trong mô hình 2 .................... 65 Hình 3. 10 Tốc độ tính toán khi thay đổi số điểm nguồn trong mô hình 2 ...................... 66 Danh mục các bảng Bảng 1. 1 Nghiệm cơ bản của các phƣơng trình vi phân trong trƣờng điện từ. ................ 25 Bảng 3. 1: Các thông số đầu vào .................................................................................... 51 Bảng 3. 2: Các thông số đầu ra....................................................................................... 51 Bảng 3. 3: Giá trị các tham số đầu vào trong mô hình 1. ................................................ 53 Bảng 3. 4: Giá trị 1 điện thế 1 số điểm nguồn trong mô hình 1 ....................................... 54 Bảng 3. 5: Giá trị điện thế tại 1 số điểm đích trong mô hình 1. ....................................... 56 Bảng 3. 6: Thời gian tính toán khi thay đổi số điểm nguồn trong mô hình 1 ................... 58 Bảng 3. 7: Tốc độ tính toán khi thay đổi số điểm nguồn trong mô hình 1 ....................... 59 Bảng 3. 8: Giá trị các tham số đầu vào trong mô hình 2. ................................................ 60 Bảng 3. 9: Giá trị điện thế tại 1 số điểm nguồn trong mô hình 2 ..................................... 61 Bảng 3. 10: Giá trị điện thế tại 1 số điểm đích trong mô hình 2 ...................................... 63 Bảng 3. 11: Thời gian tính toán khi thay đổi số điểm nguồn trong mô hình 2 ................. 64 Bảng 3. 12: Tốc độ tính toán khi thay đồi số điểm nguồn trong mô hình 2 ..................... 65 Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 7 Phương pháp đa cực nhanh trong tính toán trường điện từ Danh sách các từ viết tắt FMM Fast multipole method Phƣơng pháp đa cực nhanh SP Space partition Phân mảnh không gian UP Upward pass Pha lên DP Downward pass Pha xuống M2L Multipole to local Chuyển đồi đa cực- địa phƣơng M2M Multipole to multipole Chuyển đồi đa cực- đa cực L2L Local to local Chuyển đồi địa phƣơng- địa phƣơng MoM Method of Moment Phƣơng pháp moment Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 8 Phương pháp đa cực nhanh trong tính toán trường điện từ Chƣơng 1: LÝ THUYẾT CƠ BẢN VỀ TRƢỜNG ĐIỆN TỪ 1.1 Hệ phương trình Maxwell Trong không gian tự do hệ phƣơng trình Maxwell và các phƣơng trình liên quan đƣợc biểu diễn nhƣ sau: Η  D J t (1.1) B t (1.2) E   B  0 (1.3) D  ρ (1.4) B  0 H (1.5) D  0E (1.6) Đối với các vật liệu dẫn điện, định luật bảo toàn điện tích đƣợc biểu diễn bởi quan hệ: J   0 t (1.7) Mật độ dòng J và cƣờng độ điện trƣờng E liên hệ với nhau bởi định luật Ôm : J E Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 (1.8) 9 Phương pháp đa cực nhanh trong tính toán trường điện từ Nếu vật dẫn chuyển động trong từ trƣờng thì điện trƣờng tổng cộng phải bao gồm thêm thành phần E v đƣợc sinh ra do hiệu ứng chuyển động: Ev  v  B (1.9) Trong các phƣơng trình này E , H tƣơng ứng là các véc tơ từ trƣờng và điện trƣờng. B , D là các véc tơ mật độ thông lƣợng từ và mật độ thông lƣợng điện. J là mật độ dòng điện dẫn, ρ là mật độ điện tích. Cuối cùng, ε0, μ0 là hệ số điện môi và hệ số từ thẩm trong không gian tự do,γ là hệ số phụ thuộc tính dẫn điện của môi trƣờng. F/m  0  8,854.1012 0  4 .107 [H/m] Đối với vật liệu điện môi và vật liệu từ thì véc tơ phân cực P và véc tơ từ hoá M đƣợc định nghĩa: P  D 0E M 1 0 (1.10) BH Các phƣơng trình Maxwell đƣợc biểu diễn lại nhƣ sau: E     B  0 0 E  B t   E P  0  J     M  t t   1 0 (1.11) (1.12) B  0 (1.13)     P (1.14) Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 10 Phương pháp đa cực nhanh trong tính toán trường điện từ 1.2 Phương trình thế Trường phụ thuộc thời gian biến đổi nhanh Khi trƣờng phụ thuộc vào thời gian biến đổi nhanh thì điện trƣờng và từ trƣờng ảnh hƣởng tƣơng hỗ lẫn nhau. Trƣờng phân bố phụ thuộc cả vảo thời gian và vị trí, H (r,t), B (r,t). Từ trƣờng thay đổi theo thời gian sinh ra điện trƣờng xoáy và điện trƣờng thay đổi theo thời gian sinh ra từ trƣờng xoáy. Nhƣ vậy điện trƣờng và từ trƣờng sinh ra là đại lƣợng động. Trong môi trƣờng không suy hao và miền nguồn không gian tự do rất dễ dàng nhận thấy rằng E và H thoả mãn phƣơng trình sóng. Đối với E , từ phƣơng trình (1.2) ta có: 2 E  E   2  0 t 2 (1.15) Đây là phƣơng trình sóng của E . Tƣơng tự, ta thu đƣợc phƣơng trình sóng của H từ phƣơng trình (1.1): 2 H 2  H   0 t 2 (1.16) Khi giải phƣơng trình Maxwell để thuận tiện ta định nghĩa hàm vô hƣớng φ và hàm vector thế A thoả mãn : E A   t B   A (1.17) (1.18) Thay (1.17) và (1.18) vào (1.1) và (1.2) ta đƣợc:  2      2    t 2 Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 (1.20) 11 Phương pháp đa cực nhanh trong tính toán trường điện từ 2 A  A   2    J t 2 (1.21) Do E và φ là các hàm tuỳ ý nên ta có thể chọn chúng sao cho : A     t (1.22) Trong môi trƣờng suy hao thì phƣơng trình sóng sử dụng dạng sau :  A       t (1.23) Cuối cùng phƣơng trình sóng thu đƣợc có dạng :  2    2       t  t 2 2 A A  A   2     A t t 2 (1.24) (1.25) Phƣơng trình (1.23) và (1.24) đƣợc dùng để tính toán sóng bức xạ của anten, trƣờng tán xạ của vật liệu và sự truyền sóng trong ống dẫn sóng hay các thiết bị điện tử khác. Trường cân bằng: Khi bài toán đƣợc xét trong điều kiện trƣờng biến đổi theo thời gian rất chậm thì trạng thái cân bằng xấp xỉ đƣợc sử dụng. Tiêu chuẩn đƣợc gọi là chậm nếu nó thoả mãn điều kiện sau:    ω là tần số của tín hiệu hình sin. Tiêu chuẩn này có nghĩa rằng dòng dẫn chiếm ƣu thế và dòng dịch có thể đƣợc bỏ qua. Do đó, từ trƣờng xoáy sinh ra bởi điện trƣờng không tồn tại. Không có mối liên hệ giữa sự thay đổi vị trí và biến đổi theo thời gian của trƣờng. Vì vậy không có sự truyền sóng. Thông thƣờng, trong các bài toán trƣờng cân bằng đại lƣợng E(r , t ) , H(r , t ) , J (r , t ) và  (r , t ) là hàm điều hoà của thời gian. Do đó trƣờng phân bố chỉ phụ thuộc vào vị trí và sự trễ pha tại từng vị trí trong không gian. Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 12 Phương pháp đa cực nhanh trong tính toán trường điện từ Trong trƣờng hợp này các phƣơng trình Maxwell đƣợc rút gọn thành : Η  J (1.26)   E   j B (1.27) B  0 (1.28) D  0 (1.29) Khi μ, γ là hằng số thì E và H tuân theo phƣơng trình truyền parabol:  2 H  j H (1.30)  2 E  j E Trong trƣờng hợp nhƣ vậy để thuận tiện ta giả thiết sự tồn tại của véc tơ từ thế A và véc tơ điện thế T . Việc xác định A và T xuất phát trực tiếp từ hệ phƣơng trình Maxwell   B  0 và   J  0 : B    A  J  T (1.31) Theo định luật Ampe thì mối quan hệ giữa cƣờng độ từ trƣờng H và véc tơ điện thế T là : H  T   (1.32) Trong đó Ω là thế từ vô hƣớng. Phƣơng trình (1.32) đƣợc suy ra từ phƣơng trình (1.26), (1.31) và phƣơng trình     0 . Phƣơng trình vi phân của 2 véc tơ thế có thể thu đƣợc bằng cách thay phƣơng trình (1.17), (1.18) và (1.32) vào hệ phƣơng trình Maxwell, sau vài biến đổi đơn giản ta có hai phƣơng trình sau: Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 13 Phương pháp đa cực nhanh trong tính toán trường điện từ 1       A   j A    J s   (1.33) 1       T   j T  j   0   (1.34) trong đó J s là mật độ dòng mặt. Ứng dụng quan trọng nhất của trạng thái xấp xỉ cân bằng là để xác định sự phân bố của dòng xoáy trong vùng dẫn và trong lõi kim loại. Tuỳ thuộc vào hằng số vật liệu, sự xấp xỉ có thể có giá trị đến khoảng tần số của tia X. Trường tĩnh và gần tĩnh: Các đại lƣợng trƣờng tĩnh ρ, J , E , H là độc lập với thời gian, ví dụ  / t  0 và trƣờng phân bố chỉ là hàm của vị trí. Nếu tần số đủ nhỏ thì điện trƣờng xoáy sinh ra bởi từ trƣờng của dòng dịch là rất nhỏ. Trƣờng phân bố trong trƣờng hợp này thực tế gọi là phân bố tĩnh hay gần nhƣ là tĩnh. Tiêu chuẩn của gần tĩnh là L>> λ trong đó λ là bƣớc sóng, L là kích thƣớc vùng trƣờng. Trong trƣờng hợp trƣờng tĩnh và gần tĩnh hệ phƣơng trình Maxwell đƣợc rút gọn thành :  t E  0 D   J   H  J B  0 J  0 (1.35) (1.36) Dựa vào phƣơng trình   E  0,   B  0 cả điện thế, từ thế vô hƣớng φ, φm và véc tơ từ thế T đƣợc biểu diễn dƣới dạng : E   B A (1.37) H   m Từ phƣơng trình (1.35), (1.36), và (1.37) Ta thu đƣợc hệ phƣơng trình Poisson và Laplace : Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 14 Phương pháp đa cực nhanh trong tính toán trường điện từ   2  A   J  2   (1.38)  2 m  0 Thông thƣờng trong trƣờng tĩnh và gần tĩnh thì tiêu chuẩn Coulomb đƣợc thoả mãn nhƣ sau: A  0 1.3 Điều kiện biên của bề mặt Tại bề mặt của các vật liệu khác nhau dạng tích phân của hệ phƣơng trình Maxwell đƣợc rút gọn lại thành:   n . D1  D 2    n  E1  E 2   0 n . H1  H 2   K  n . J1  J 2    t n . B1  B 2  0 (1.39) Trong đó n là véc tơ chuẩn đơn vị của bề mặt trong hình 1.1, E1 , D1 , B1 , H1 , J1 và E 2 , D 2 , B 2 , H 2 , J 2 , là của trƣờng ở 2 phía của bề mặt, đồng thời E, và σ là mật độ của dòng mặt và thế mặt.  + n K 1, 1, 1 -  2 , 2 , 2 Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 15 Phương pháp đa cực nhanh trong tính toán trường điện từ Hình 1.1 Điều kiện biên. Nếu véc tơ thế điện vô hƣớng đƣợc coi nhƣ là một biến thì điều kiện biên giữa 2 mặt là : 1   2   1  1  2 2    n  n (1.40) Do sự dịch chuyển đối xứng đối với từ trƣờng, điều kiện biên bề mặt là : A1  A 2   1  A1 1 A2   n   n  1 2 (1.41) Nếu các bài toán từ trƣờng đƣợc xét đến trong không gian 3 chiều thì véc tơ từ thế A đƣợc phân tích làm 3 thành phần : A  A n n  At t  A s s Trong đó A n , A t , A s là 3 thành phần của A , t và s là 2 véc tơ đơn vị trực giao với véc tơ chuẩn hƣớng n . Với tiêu chuẩn Coulomb thành phần chuẩn A n thoả mãn: A1n  A 2n Tính liên tục của thành phần tiếp tuyến của cƣờng độ từ trƣờng H đƣợc biểu diễn bằng biểu thức sau:  1   1  n     A1   n     A 2   1   2  (1.42) Phƣơng trình trên có thể đƣợc phân tích thành 2 phƣơng trình :   At   n     At   1  1  2  n   1  An     1  t 2  2 (1.43)  As     A s   1   A n    1      1  n   n  2  s  1 2  2 (1.44) Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 16 Phương pháp đa cực nhanh trong tính toán trường điện từ Phƣơng trình (1.43) và (1.44) chỉ ra rằng các điều kiện biên cho từ trƣờng 3 chiều là phức tạp hơn so với trƣờng vô hƣớng. Do đó sự lựa chọn mô hình toán học xấp xỉ đối với biến chƣa biết và tiêu chuẩn biên là phƣơng pháp chính để giải bài toán trƣờng điện từ trong không gian 3 chiều. 1.4 Định lý Green, hàm Green, và nghiệm cơ bản Phƣơng pháp phƣơng trình tích phân biên phù hợp cho việc phân tích số học của bài toán trƣờng điện từ, do chúng chỉ phụ thuộc duy nhất vào sự mô hình hoá của biên và các bề mặt tiếp giáp. Hàm Green và các nghiệm chung là những hàm cơ bản sử dụng trong phƣơng pháp phƣơng trình tích phân. Những phƣơng trình tích phân của bài toán đƣợc sinh ra từ những phƣơng trình vi phân sử dụng định lý Green. 1.4.1 Định lý Green Định lý Green là một trong những định lý hữu dụng nhất để giải bài toán trƣờng điện từ. Nhiều phƣơng pháp đƣợc đƣa ra trong đó bao gồm cả những phƣơng pháp cổ điển cũng nhƣ các phƣơng pháp số học đều dựa trên định lý Green. Nó có thể thu đƣợc một cách trực tiếp từ lý thuyết phân rã.    Ad   A  d S  (1.45) S Trong đó Ω là miền bao quanh bởi mặt kín S. A là hàm véc tơ của vị trí. Giả thiết u và v là 2 hàm vô hƣớng bất kỳ của vị trí. Nếu u, v cùng vi phân bậc nhất, bậc hai của chúng liên tục trong không gian Ω và trên bề mặt S thì ta có đƣợc biến đổi sau theo định lý Divergence:    (uv)d   (uv)  d S  n  (1.46) S n là chuẩn véc tơ đơn vị ngoài của bề mặt S. Với S = Sn, Sử dụng phƣơng trình véc tơ:   (uv)  u 2v  u  v (1.47) và chú ý rằng: Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 17 Phương pháp đa cực nhanh trong tính toán trường điện từ uv  n  u v n (1.48) định lý Divergence đƣợc chuyển thành dạng :  (u 2  v  u  v)d   u S v dS n (1.49) (Đây là dạng thứ nhất của định lý Green.) Nếu vai trò của u và v trong phƣơng trình (1.49) đƣợc hoán đổi thì kết quả là:  (v 2  u  u  v)d   v S u dS n (1.50) Phƣơng trình này là dạng đối xứng của (1.49) Nếu trừ vế với vế của (1.49) và (1.50) ta đƣợc phƣơng trình sau :  (u 2  u   v v  v 2u )d    u  v dS n n  S (1.51) (Đây là định lý Green dạng thứ 2 thƣờng đƣợc biết đến nhƣ định lý Green). Nó là định lý tích phân bao gồm Gradient của hàm bị tích. Ý nghĩa của định lý Divergence là chuyển từ tích phân khối thành tích phân mặt. Trong trƣờng hợp đặc biệt nếu để u = v và u là nghiệm của phƣơng trình Laplace thì phƣơng trình (1.49) trở thành:  (u)  2 d   u S u dS n (1.52) Ý nghĩa của định lý Green là thế tại một điểm cố định P(r) trong khối Ω có thể đƣợc biểu diễn dƣới dạng tích phân khối cộng với tích phân trên bề mặt S nhƣ sau :  (r )  1 4    (r , ) R d  1  1    1      dS   4 S  R n n  R  (1.53) Đây là phƣơng trình tích phân của thế φ(r) nó không đƣa ra nghiệm của thế. Trong phƣơng trình này ρ(r’) là mật độ điện tích khối, R = |r– r’|, Ω là khối đƣợc bao quanh bởi mặt kín S chỉ ra trong hình 1.2. Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 18 Phương pháp đa cực nhanh trong tính toán trường điện từ z  (x.y,z) S  r  (x’,y’,z’) r’ y x Hình 1.2 Miền khối bao quanh bởi mặt kín. Phƣơng trình (1.53) biểu diễn thế ρ(r) trong khối Ω đƣợc quyết định bởi mật độ khối của nguồn ρ(r’) trong mặt S và thế φ cùng vi phân chuẩn thứ nhất ∂φ/∂n cuả nó trên bề mặt S. Nếu không có điện tích trong khối Ω thì thế trong khối đƣợc quyết định bởi thế φ cùng vi phân chuẩn trên bề mặt S.  (r )  1  1    1      dS   4 S  R n n  R  (1.54) Nhƣ vậy tích phân bề mặt trong phƣơng trình (1.53) biểu diễn sự phân bố của nguồn ngoài mặt S. Hay nói cách khác điều kiện biên biểu diễn sự phân bố của nguồn ngoài mặt S. Kết luận này ngụ ý rằng điều kiện biên có thể được biểu diễn bởi một nguồn ngoài tương đương. Nếu không có nguồn ngoài thì tích phân mặt sẽ biến mất. Kiểm tra lại phƣơng trình (1.51) chỉ ra rằng nếu hàm u là một hàm điều hoà (ví dụ là nghiệm của phƣơng trình Laplace ) và v = 1 thì dạng 2 của định lý Green sẽ rút gọn thành : u  n dS  0 (1.55) S Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 19 Phương pháp đa cực nhanh trong tính toán trường điện từ Điều này có ý nghĩa là nếu u là thế của điện trƣờng và với giả thiết điều kiện biên Neumann u  g thì hàm g phải thoả mãn điều kiện sau: n S  gdS  0 S 1.4.2 Sự tương đương vector định lý Green Trong mục này ta đƣa ra phƣơng trình tích phân trong đó véc tơ thế A đƣợc coi nhƣ chƣa biết. Giả thiết P và Q là hàm véc tơ liên tục của vị trí trong khối kín Ω bao quanh bởi mặt S cả P , Q và vi phân từng phần bậc nhất, bậc hai của nó đều tồn tại trên mặt S và khối Ω. Sử dụng định lý Divergence ta có:    P    Qd   P    QdS  (1.57) S Phân tích tích phân khối sử dụng biến đổi sau:    AB  B A  AB (1.58) Ta thu đƣợc:    P    Q  P      Qd   P    QdS  n  (1.59) S Đây là véc tơ tƣơng tự dạng vô hƣớng của định lý Green dạng thứ nhất. Bằng cách biến đổi tƣơng tự ta cũng thu đƣợc véc tơ tƣơng tự vô hƣớng của định lý Green dạng thứ hai.  Q      P  P      Qd   P    Q  Q    P  ndS  (1.60) S Áp dụng dạng véc tơ của định lý Green phƣơng trình tích phân cho véc tơ thế A là : A( r )  0 J (r ' ) 1 An 1  1  d   A  n     n  A  dS (1.61)    4  R 4 S  R R  R  Sinh viên: Nguyễn Trung Thành – Lớp KSTN – ĐTVT – K52 20
- Xem thêm -

Tài liệu liên quan