Đăng ký Đăng nhập

Tài liệu Day so bien doi uoc luong

.PDF
5
171
125

Mô tả:

www.VNMATH.com biến đổi, khai triển và ước lược để tìm giới hạn dãy tổng laisac biên soạn Trong các kì thi Oluympic , HSG ta thường thấy có nhiều bài toán tìm giới hạn dãy tổng. Đôi lúc, để giải được dạng này ta phải biến đổi từ điều kiện giả thiết đã cho của dãy, từ đó khai triển và ước lược để đưa về dãy tổng cần tìm đơn giản hơn , ta có thể tính được giới hạn của nó . Dưới đây là các bài toán của tác giả và sưu tầm lấy từ tạp chí Toán Học và Tuổi Trẻ để minh họa cho chuyên đề này. 1 Bài 1:Xét dãy số (xn ) (n=1,2,3.....) được xác định bỡi :x1 = 2 và xn+1 = (x2n + 1) với 2 mọi n =1,2,3... 1 1 1 + + .... + . Đặt Sn = 1 + x1 1 + x2 1 + xn Tính phần nguyên của S2009 và tính giới hạn của Sn khi n tăng lên vô hạn. HD:Ta có thể tổng  quát bài toán như sau:  u1 = a Cho dãy un thỏa mãn u2 − (b + c)un + c2  un+1 = n b−c n P 1 1 1 = − . Tính chứng minh Sn = u1 + c un+1 + c i=1 ui + b u2 − (b + c)un + c2 Thật vậy, ta biến đổi un+1 = n b−c (un + b)(un + c) u2n − (b + c)un + bc = ⇒ un+1 + c = b−c b−c 1 1 1 1 1 1 = − ⇒ = − ⇒ un+1 + c un + c u n + b un + b un + c un+1 + c Khai triển và ước lược dãy: 1 1 1 = − u1 + b u1 + c u2 + c 1 1 1 = − u +b u2 + c u3 + c .2 . . 1 1 1 = − un + b un + c un+1 + c 1 1 − Do đó Sn = u1 + c un+1 + c Vận dụng:Ta có thể giải bài toán trên bằng phép biến đổi này (b=1,c=-1) 1 1 1 Khi đó Sn = − =1− u 1 − 1 un − 1 un − 1 1 2 Mà un+1 − un = (un − 1) > 0 , ∀n ∈ N ∗ ⇒ un là dãy tăng ⇒ 2 = u1 ≤ u2 ≤ u3 ≤ .... 2 Giả sử limun = a(a > 2) ⇒ 2a = a2 + 1 ⇒ a = 1 (vô lí) 1 =0 Vậy limun = ∞ ⇒ lim un − 1 1 1 < 1 và limSn = 1 Do đó phần nguyên S2009 = 0 vì 0 < u2009 − 1 www.VNMATH.com n 1 P u1 = 2009 Tính lim . Bài 2: Cho dãy un thỏa mãn: . un+1 = u2n − un + 1 i=1 un HD: Ta có un+1 − un = (un − 1)2 > 0 , ∀n ∈ N ∗ ⇒ un là dãy tăng Giả sử (un ) có giới hạn. Đặt limun = L(L > 2009) Ta có L = L2 − L + 1 ⇒ L = 1 (vô lí) 1 ⇒ limun = ∞ ⇒ lim = 0 un 2 còn có u = u − un + 1 ⇒ un+1 − 1 = un (un − 1) Ta n+1 n 1 1 1 1 = = − ⇒ un+1 − 1 un (un − 1) un − 1 u n 1 1 1 − Vậy = un un − 1 un+1 − 1 Khai triển và ước lược ta có : 1 1 1 − = u1 u1 − 1 u2 − 1 1 1 1 − = u u2 − 1 u3 − 1 .2 . . n 1 P 1 1 1 1 1 Sn = − ⇒ limSn = lim( − )= = u1 − 1 un+1 − 1 2009 − 1 un+1 − 1 2008 i=1 ui , n = 1, 2, 3... được Bài 3: Cho dãy số x xác định như sau: p n x1 = 1 và xn+1 = xn (xn + 1)(xn + 2)(xn + 3) + 1 với n = 1, 2, ... n P 1 Đặt yn = , (n = 1, 2, ....) .Tính giới hạn của yn khi n dần đến vô tận. i=1 xi + 2 HD:p Ta có: p p xn+1 = (x2n + 3xn )(x2 + 3xn + 2) + 1 = t(t + 2) + 1 = (t + 1)2 = x2n + 3xn + 1 trong đó 0 < t = x2n + 3xn . Xét xn+1 − xn = (xn + 1)2 > 0, ∀n ∈ N ∗ ⇒ (xn ) là dãy tăng Giả sử :limxn = a(a > 1) ⇒ a = a2 + 3a + 1 , vô nghiệm(vì a>1) ⇒ limxn = ∞ 1 1 1 1 1 1 1 = 2 = − ⇒ = − xn+1 + 1 xn + 3xn + 2 xn + 1 x n + 2 xn + 2 xn + 1 xn+1 + 1 Khai triển và ước lược ta có: 1 1 1 = − x1 + 2 x1 + 1 x2 + 1 1 1 1 = − x +2 x2 + 1 x3 + 1 .2 . . 1 1 1 − )= . ⇒ limyn = lim( x1 + 1 xn+1 + 1 2 a1 = 1; a2 = 3 Bài 4: Cho dãy số an xác định bỡi: n=1,2,3... an+2 = 2an+1 − an + 1 1 1 1 + + ... + . Khi n dần đến vô tận. Tính giới hạn tổng Sn = a1 a2 an n(n + 1) . 2 Thật vậy: Theo phương pháp qui nạp. Ta nhận thấy a1 , a2 đúng HD: Cách 1: Ta chứng minh :an = 2 Giả sử ak = k(k + 1) 2 www.VNMATH.com (k + 1)(k + 2) . Ta có ak+1 = 2ak − ak−1 + 1 = 2 Theo nguyên lí qui nạp ta có điều chứng minh. 1 1 n(n + 1) 1 Vậy:an = ⇒ ) = 2( − 2 an n n+1 1 2n ⇒ limSn = lim2(1 − ) = lim =2 n+1 n+1 Cách 2: Từ giả thiết suy ra an+2 − an+1 = an+1 + 1 . . . a3 − a2 = a2 − a1 + 1 cộng lại ta có:an = an−1 + n = (an−2 + n − 1) + n..... n(n + 1) ⇒an = 1 + 2 + 3 + ..... + n = 2 5: dãy số (u xác định như sau: Cho ) được Bài n  n 1 P u1 = 1 ∀n = 1, 2, 3....... Tính lim un+1 = 1 + u1 .u2....un i=1 ui HD: Ta có u1 = 1 ⇒ u2 = 2, un+1 = 1 + u1.u2...un−1.un = 1 + (un − 1).un ⇒ un+1 = u2n − un + 1 Chứng minh được (un ) là dãy tăng và limun = ∞ Ta còn có un+1 − 1 = un (un − 1)∀n ≥ 2 1 1 1 1 = = − ∀n ≥ 2 ⇔ un+1 − 1 un (un − 1) un − 1 u n 1 1 1 − ∀n ≥ 2 = ⇔ un un − 1 un+1 − 1 1 1 1 1 Từ đó Sn = + + + ... + u 1 u2 u3 un 1 1 1 1 1 1 1 − + − + ... + − ⇔ Sn = + u 1 u2 − 1 u 3 − 1 u 3 − 1 u 4 − 1 un − 1 un+1 − 1 1 1 1 1 − =2− ⇔ Sn = + u1 u2 − 1 un+1 − 1 un+1 − 1 1 =0 Do đó limSn = 2 vì lim un+1 − 1 √ Bài 6: Cho dãy số un thỏa mãn u1 = 2009; un+1 = un ( un + 1)2 ;với n= 1, 2, 3.... n P 1 Tính lim √ ui + 1 i=1 √ √ √ √ HD: Ta có un+1 = un ( un + 1)2 ⇒ un+1 = un ( un + 1) 1 1 1 1 1 1 1 =√ −√ ⇒√ =√ −√ =√ √ ⇒√ un+1 un ( un + 1) un un + 1 un + 1 un un+1 Khai triển và ước lược ta suy ra kết quả 2008 2008 ,xn+1 = (1 − xn )(1 − xn−1 )...(1 − x1); Bài 7: Cho dãy số (xn ) định bởi x1 = 2009 2009 n P n=1,2,3... Tính lim x2i i=1 2008 (1 − xn )(1 − xn−1 )...(1 − x1) 2009 2 = (1 − xn ).xn ⇒ xn = xn − xn+1 HD: Ta có xn+1 = ⇒ xn+1 3 Khai triển và ước lược ta có: n P 2008 www.VNMATH.com Sn = x2i = x1 − xn+1 ⇒ limSn = 2009 i=1 1 với n = 1, 2, 3.... Bài 8: Cho dãy số (un ) có un = n(n + 1)(n + 2)......(n + 2008) n P Tính lim ui i=1 n! 1 (n − 1)! (n − 1)! n + 2008 − n . − ]. =[ (n + 2008)! 2008 (n + 2007)! (n + 2008)! 2008 1 n! 1 ] [ − Cho n = 1, 2, 3, .....2008 , rồi cộng lại ta được. Sn = 2008 2008! (n + 2008)! n! 1 Mà lim = lim =0 (n + 2008)! (n + 1)(n + 2).....(n + 2008) 1 n! 1 1 ⇒ Sn = lim ]= [ − 2008 k! (n + 2008)! 2008.2008! k P i , k=1, 2, 3.... Bài 9: Cho dãy xk , với xk = i=1 (i + 1)! √ Tính lim n xn1 + xn2 + .... + xn2009 HD: Số hạng un = k+1 > 0. Do đó dãy trên tăng. Suy ra 0 < x1 < x2 < ..... < x2009 (k + 2)! hay xn2009 < xn1 + xn2 + .... + xn2009 < 2009xn2009 √ 1 suy ra x2009 < n xn1 + xn2 + ... + xn2009 < 2009 n x2009 (*) 1 1 k = − Mặt khác ta có: (k + 1)! k! (k + 1)! 1 1 Từ đó suy ra xk = 1 − ⇒ x2009 = 1 − (k + 1)! 2010! 1 p 1 1 n < xn1 + xn2 + ... + xn2009 < 2009 n (1 − ) Thay kết quả này vào (*) ta có: 1 − 2010! 2010! 1 1 1 1 ) = lim 2009 n (1 − )=1− . Nhưng vì lim(1 − 2010! 2010! 2010! √ 1 . Vậy theo định lí kẹp ta có:lim n xn1 + xn2 + ... + xn2009 = 1 − 2010! HD: Vì xk+1 −xk = Bài cấp số cộng. Bài 10: Cho  x, y, z là ba góc thỏa mãn điều kiện 0 ≤ x ≤ y ≤ z ≤ 2π cos x + cos y + cos z = 0 sin x + sin y + sin z = 0 Chứng minh rằng ba số x, y, z lập thành một cấp số cộng . HDTừ giả thiết của hệ suy ra  cos x + cos y = − cos z sin x + sin y = − sin z 1 Bình phương hai vế tương ứng , rồi cộng lại ta có cos(x − y) = − 2 1 Hoàn toàn tương tự ta cũng có cos(y − z) = cos(z − x) = − 2 2π 4π ; . Vì 0 ≤ y − x; z − x; z − y ≤ 2π ⇒y-x, z-y, z-x nhận một trong hai giá trị 3 3 4 nhưng vì z-x=(z-y)+(y-x) nên chỉ có thể xảy ra z − x = www.VNMATH.com 4π 2π ;z − y = y − x = . 3 3 Suy ra điều phải CM. B C A Bài 11: Trong tam giác ABC có cot( ); cot( ); cot( ) lập thành một cấp số cộng. 2 2 2 Tìm góc lớn nhất của tam giác đó. A C B ) = cot( ) + cot( ). 2 2 2 C A Biến đổi đưa về 3tan( ).tan( ) = 1 2 2 C A A A Từ đó cot( ).cot( ) = 3 ⇔ cot( )[cot( + 2] = 3 2 2 2 2 A Giải phương trình này ta được một nghiệm thích hợp cot( ) = 1. 2 Vậy góc lớn nhất của tam giác bằng 900 1 1 1 + Bài 12: Tìm giá trị nhỏ nhất của biểu thức P = 6 + 6 cos a cos b cos6 c π Trong đó ba số a, b, c lập thành một cấp số cộng với công sai bằng . 3 π π HD:Theo giả thiết thì a = b − và c = b + . 3 3 Đặt cos2 b = t, 0 < t ≤ 1 và cos3 b = m, 0 < m ≤ 1 thì π cos3 a = cos3 ( − b) = cos2 3b = m; 3 π cos3 c = cos3 ( + b) = cos2 3b = m; 3 Và (4cos3 b − 3cosb)2 = cos2 b(4cos2 b − 3)2 = m Hay phương trình 16t3 − 24t2 + 9t − m = 0, 0 < m ≤ 1 có các nghiệm π π t1 = cos2 b, t2 = cos2 ( − b), t3 = cos2 ( + b) 3 3 Suy ra phương trình mu3 − 9u2 + 24u − 16 = 0 có các nghiệm 1 1 1 , u3 = . , u2 = u1 = π π 2 cos b cos2 ( − b) cos2 ( + b) 3 3 Khi đó P = u31 + u32 + u33 . Sử dụng hệ thức Vi-et và đẳng thức u31 + u32 + u33 = (u1 + u2 + u3)3 − 3(u1 + u2)(u2 + u3)(u4 + u4), ta thu được: 9 9 9 9 P = ( )3 − 3( − u1 )( − u2 )( − u3 ) m m m m 16 9 3 2 ≥ 9, (do0 < m ≤ 1). Hay P = P (x) = x − 8x + x, x = 3 m 16 > 0,mọi x≥ 9 nên P(x) đồng biến Nhận xét rằng hàm số này có P’(x)== 3x2 − 16x + 3 trong [9; + ∝). Suy ra minP = P(9) = 129, đạt được khi m = 1 π Hay cos2 3b = 1 ⇔ sin3b = 0 ⇔ b = k . 3 π π Do đó a = (k − 1) , c = (k + 1) ,, k là số nguyên. 3 3 HD:Ta có 2cot( hết 5
- Xem thêm -

Tài liệu liên quan