Đăng ký Đăng nhập
Trang chủ Nghiên cứu mô hình tẩy xạ bề mặt một số vật liệu và thiết bị trong lò phản ứng v...

Tài liệu Nghiên cứu mô hình tẩy xạ bề mặt một số vật liệu và thiết bị trong lò phản ứng và nhà máy điện hạt nhân bằng phương pháp điện hóa

.DOCX
35
269
106

Mô tả:

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA VẬT LÝ – VẬT LÝ KỸ THUẬT NGÀNH KỸ THUẬT HẠT NHÂN KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Tên đề tài: NGHIÊN CỨU MÔ HÌNH TẨY XẠ BỀ MẶT NHIỄM BẨN BẰNG PHƯƠNG PHÁP ĐIỆN HÓA SVTH: Nguyễn Anh Tân CBHD: TS. Lê Công Hảo CBPB: TS. Huỳnh Trúc Phương Tp. Hồ Chí Minh, Năm 2016. LỜI CẢM ƠN Để hoàn thành khóa luận này, em đã nhận được sự hướng dẫn, giúp đỡ và góp ý tận tình của Quý Thầy Cô thuộc Bộ môn Vật lý hạt nhân, khoa Vật lý & Vật lý kỹ thuật, trường Đại học Khoa học Tự nhiên Tp. Hồ Chí Minh. Đầu tiên, con xin gửi lời cảm ơn sâu sắc nhất đến gia đình, vì công ơn sinh thành dưỡng dục và đã tạo mọi điều kiện có thể để con được bước đến giảng đường đại học. Tôi xin chân thành cảm ơn Thầy Lê Công Hảo đã dành rất nhiều thời gian và tâm huyết để truyền đạt cho tôi kiến thức lẫn kỹ năng thực nghiệm. Tôi xin gửi lời cảm ơn Quý Thầy Cô trong hội đồng đã dành nhiều thời gian đọc và có những ý kiến đóng góp quý báu vào khóa luận này. Tôi xin gửi lời biết ơn sâu sắc đến Quý Thầy Cô thuộc Bộ môn Vật lý Hạt nhân đã tạo mọi điều kiện cho tôi trong suốt khóa học. Tôi xin cảm ơn đến toàn thể các bạn trong lớp chuyên ngành Kỹ thuật hạt nhân khóa K12 đã giúp đỡ tôi rất nhiều trong suốt thời gian qua. Mặc dù đã có nhiều cố gắng hoàn thiện khóa luận, tuy nhiên không thể tránh khỏi những thiếu sót, rất mong nhận được những đóng góp quý báu của Quý Thầy Cô và các bạn. Em xin chân thành cảm ơn. Tp. Hồ Chí Minh, tháng 7 năm 2016 Nguyễn Anh Tân MỤC LỤC: LỜI CẢM ƠN MỤC LỤC.........................................................................................................................i DANH MỤC CÁC BẢNG BIỂU...................................................................................ii DANH MỤC CÁC HÌNH VẼ.......................................................................................iii LỜI MỞ ĐẦU..................................................................................................................1 CHƯƠNG 1- TỔNG QUAN..........................................................................................3 1.1 Đối tượng nghiên cứu......................................................................................3 1.2 Điện hóa...........................................................................................................4 CHƯƠNG 2- TẨY XẠ....................................................................................................6 2.1 Chất thải phóng xạ...........................................................................................6 2.2 Nhiễm bẩn phóng xạ bề mặt............................................................................7 2.3 Tẩy xạ...............................................................................................................8 2.3.1 Khái niệm...........................................................................................8 2.3.2 Hệ số tẩy xạ......................................................................................10 2.3.3 Tẩy xạ bằng phương pháp điện hóa.................................................12 CHƯƠNG 3- THỰC NGHIỆM ..................................................................................17 3.1 Vật liệu và dụng cụ........................................................................................17 3.2 Thực nghiệm.................................................................................................18 3.3 Kết quả...........................................................................................................21 KẾT LUẬN VÀ KIẾN NGHỊ......................................................................................29 TÀI LIỆU THAM KHẢO............................................................................................30 1 DANH MỤC CÁC BẢNG BIỂU Bảng 3.1. Các giá trị đo suất liều của phông...............................................................22 Bảng 3.2. Giá trị đo suất liều mẫu 1 trước khi tẩy......................................................22 Bảng 3.3. Giá trị đo suất liều mẫu 1 sau khi tẩy.........................................................23 Bảng 3.4. Giá trị đo suất liều mẫu 2 trước khi tẩy......................................................23 Bảng 3.5. Giá trị đo suất liều mẫu 2 sau khi tẩy.........................................................24 Bảng 3.6. Giá trị đo suất liều mẫu 3 trước khi tẩy......................................................25 Bảng 3.7. Giá trị đo suất liều mẫu 3 sau khi tẩy.........................................................25 Bảng 3.8. Giá trị đo suất liều mẫu 4 trước khi tẩy......................................................26 Bảng 3.9. Giá trị đo suất liều mẫu 4 sau khi tẩy.........................................................26 Bảng 3.10. Giá trị đo suất liều van trước khi tẩy..........................................................27 Bảng 3.11. Giá trị đo suất liều van sau khi tẩy..............................................................27 2 DANH MỤC CÁC HÌNH VẼ Hình 2.1 Sơ đồ nguyên lý tẩy xạ điện hóa bằng phương pháp ngâm..........................13 Hình 2.2 Sơ đồ tái sinh axit photphoric.......................................................................14 Hình 2.3 Sơ đồ nguyên lý tẩy xạ điện hóa bằng phương pháp di chuyển cực âm......15 Hình 3.1 Thanh inox 304 mô phỏng thanh điều khiển................................................17 Hình 3.2 Van điều khiển...............................................................................................18 Hình 3.3 Hòa dung dịch nhiễm bẩn và ngâm mẫu.......................................................18 Hình 3.4 Sau khi ngâm được một thời gian.................................................................19 Hình 3.5 Muối bám vào thanh ion và van....................................................................19 Hình 3.6 Mô phỏng tẩy xạ điện hóa bằng phương pháp di chuyển cực âm................20 Hình 3.7 Thanh ion và van sau khi tẩy xạ....................................................................21 Hình 3.8 Suất liều các mẫu trước và sau khi tẩy xạ.....................................................28 3 LỜI MỞ ĐẦU Tính đến ngày 11/3/2014, trên toàn thế giới đã có 31 quốc gia có nhà máy điện hạt nhân với 435 lò phản ứng đang hoạt động và cung cấp 372GW công suất điện. Mỗi năm các nhà máy điện hạt nhân đã cung cấp khoảng 11,5% tổng sản lượng điện của thế giới và gấp hơn 3 lần tổng sản lượng điện của Pháp và Đức từ tất cả các nguồn cộng lại, là nguồn phụ tải vững chắc và không gây phát thải khí độc hại nhà kính CO2. Khoảng 72 lò với 68 GW đang xây dựng ở 15 nước, tương đương 20% công suất hiện có và hơn 160 lò phản ứng đã lên kế hoạch xây dựng một cách chắc chắn, tương đương một nửa công suất hiện có. Ngoài ra, còn khoảng 240 lò phản ứng nghiên cứu và hơn 180 lò phản ứng hạt nhân khác cung cấp năng lượng cho khoảng 150 tàu và tàu ngầm ở 56 nước khác nhau [4]. Vấn đề xử lý hiệu quả chất thải phóng xạ cũng như cơ chế tài chính cho xử lý chất thải phóng xạ sinh ra trong quá trình vận hành lò phản ứng hạt nhân hiện nay đang là vấn đề nan giải của cả thế giới. Nhiều tính toán cho thấy, trung bình 1 tổ máy của nhà máy điện hạt nhân 1.000 MW, hàng năm thải ra 30 m 3 – 50 m3 chất thải phóng xạ hoạt độ thấp, trung bình và 30 tấn nhiên liệu đã cháy. Với chất thải phóng xạ hoạt độ thấp và trung bình thì ít nguy hiểm, dễ bảo quản, sau 200-300 năm có thể coi như rác thải bình thường; còn đối với nhiên liệu hạt nhân đã cháy thì thông lệ thế giới vẫn đang làm là cất giữ toàn bộ khối nhiên liệu đã cháy, để chờ có biện pháp xử lý thích hợp trong tương lai. Tuy nhiên, các chất thải phóng xạ truyền thống đang lưu giữ trong hầm, kho chứa của nhà máy điện hạt nhân ngày càng lớn, đã và đang trở thành thách thức của mỗi quốc gia và làm đau đầu các nhà quản lý và nhà khoa học. Bởi chất thải này chứa nhiều sản phẩm phân hạch và hạt nhân siêu Uranium có hoạt độ phóng xạ cao và chu kỳ bán hủy dài, các chất phóng xạ này chiếm khoảng 3% khối lượng nhiên liệu đã cháy [7]. Việt Nam hiện đang trong giai đoạn phát triển cơ sở hạ tầng, chuẩn bị các điều kiện cần thiết để xây dựng và vận hành những tổ máy phát điện hạt nhân đầu tiên tại tỉnh Ninh Thuận. Tạo điều kiện triển khai hiệu quả vấn đề trên, ngày 11/12/2014, Thủ tướng Chính phủ đã phê duyệt Quyết định số 2241/QĐ-TTg, phê duyệt Kế hoạch tổng thể phát triển cơ sở hạ tầng điện hạt nhân giai đoạn đến năm 2020. Theo 1 dự kiến, nguyên liệu đầu vào sản xuất điện hạt nhân sẽ được nhập khẩu mà cụ thể đối với nhà máy điện hạt nhân Ninh Thuận 1, do Nga cung cấp công nghệ thì sẽ nhập từ Nga, nhà máy số 2 sẽ nhập từ Nhật Bản. Đối với nhà máy số 1, hiện tại có hai khả năng xử lý nguồn chất thải phóng xạ sau khi sử dụng, một là nhiên liệu đã cháy chuyển về Nga xử lý sau đó chuyển về Việt Nam lưu giữ, hai là thuê gửi ngay tại Nga. Bên cạnh đó, cả hai nước Nga và Nhật đều cam kết hỗ trợ giúp đỡ Việt Nam xử lý nguyên liệu đã qua sử dụng [7]. Khi nhà máy điện hạt nhân hoặc lò phản ứng ngưng hoạt động hoặc bảo trì thì việc tẩy xạ một số linh kiện, thiết bị là một điều thiết yếu để có thể tái sử dụng vào mục đích và tiếp kiệm chi phí xử lý. Việc tẩy xạ cũng giúp tránh việc chôn cất chất thải phóng xạ có thể gây nguy hiểm cho môi trường nếu rò rỉ. Với mục đích phục vụ cho nhu cầu xử lý các vật liệu, thiết bị trong lò phản ứng hạt nhân Đà Lạt và xa hơn nữa là nhà máy điện hạt nhân Ninh Thuận, thì em chọn đề tài này để xây dựng được mô hình tẩy xạ một số bề mặt của vật liệu, thiết bị trong lò phản ứng và tính hệ số tẩy xạ của phương pháp tẩy xạ điện hóa. Nội dung khóa luận được chia thành 3 chương:  Chương 1: Giới thiệu tổng quan  Chương 2: Tổng quan về nhiễm bẩn và tẩy xạ  Chương 3: Thực nghiệm Kết luận và kiến nghị 2 CHƯƠNG 1 TỔNG QUAN 1.1. Đối tượng nghiên cứu Do sự gia tăng lò phản ứng của một số nhà máy điện hạt nhân, một lượng lớn các chất thải kim loại đã được tạo ra từ việc duy trì các thành phần thiết bị đã bị lão hóa trong một số nhà máy điện hạt nhân cũ. Một phần đáng kể của các chất thải kim loại bị nhiễm bẩn được xem là có chất gây nhiễm bẩn phóng xạ chỉ trên bề mặt kim loại, có thể dễ dàng loại bỏ bằng cách áp dụng kỹ thuật tẩy xạ thích hợp. Các lò phản ứng làm mát bằng nước thường hình thành 2 loại oxit trên bề mặt bên trong ống lò phản ứng: một là lớp dính bên trong được hình thành bởi việc ăn mòn kim loại nền, và một lớp bên ngoài bám tương đối yếu được hình thành bởi sự lắng đọng hoặc kết tủa của cặn từ nước làm mát. Nhiễm bẩn trong lò phản ứng nước sôi và lò phản ứng nước áp lực chủ yếu gây ra bởi các hạt nhân ăn mòn có nguồn gốc: 60Co, 58Co, 54Mn, 51Cr và 59Fe. Tùy thuộc vào tỷ lệ nhiên liệu, các loại phân hạch sẽ góp phần vào các liều lượng. Hầu hết các loại nhiểm bẩn này nằm trong các lớp oxit bên trong đường ống của các thiết bị ví dụ như: thép không gỉ có chứa cobalt-60 và nickel-63 hoặc các chất thải phóng xạ lỏng, các bộ lọc và các loại nhựa trao đổi ion bị nhiễm xạ bởi các sản phẩm phân hạch từ vòng tuần hoàn chứa chất làm mát, các van ống, các bộ phận của máy bơm, thanh điều khiển, mạch thiết bị… Đối với bẩn bề mặt bê tông do ô nhiễm nguồn nước, hạt nhân tan trong nước, chẳng hạn như 137Cs, có thể thấm sâu vào bê tông. Phương pháp duy nhất để loại bỏ nhiễm bẩn như vậy là cắt giảm hoặc mài đi lớp bề mặt của bê tông có chứa phóng xạ. Đối với hệ thống thông gió, các nhiễm bẩn bề mặt thường không dính chặt, mặc dù có các màng dầu đặt bên trong ống dẫn, đặc biệt ở cuối hệ thống quạt. Khi hệ thống ống xả hoạt động ở áp suất thấp, chúng có xu hướng hút bụi và các sol khí, những thứ có thể chứa hoạt độ phóng xạ. Lắng đọng có xu hướng bám vào đường ống làm việc dẫn đến dòng khí lưu thông khó khăn. Đối với động cơ và các thiết bị đo đạc, vv… nhiễm bẩn không khí bám vào các chi tiết hay mạch điện thường là 3 vấn đề lớn. Nhiễm bẩn này thường có thể loại bỏ nếu tiếp cận được. Nếu động cơ và thiết bị tinh vi cần thiết để tái sử dụng thì quá trình tẩy xạ siêu âm và Freon (chất làm lạnh) đôi khi được sử dụng [1]. Bằng cách tái sử dụng chất thải kim loại loại được tẩy xạ xuống mức an toàn, lượng chất thải kim loại phóng xạ từ nhà máy điện hạt nhân có thể được giảm đáng kể. Các quá trình tẩy xạ để loại bỏ các nhiễm bẩn bề mặt của chất thải kim loại phóng xạ là các quá trình vật lý, hóa học và tẩy xạ điện hóa. Trong số các quá trình nêu trên, quá trình điện hóa có rất nhiều ứng dụng để tẩy xạ chất thải kim loại phóng xạ vì thời gian phản ứng nhanh chóng và hiệu quả tẩy xạ cao [1]. 1.2. Điện hóa Điện hóa là tên gọi một lĩnh vực trong hóa học nghiên cứu về mối liên hệ giữa các quá trình hóa học và dòng điện. Một phản ứng hóa học xảy ra khi có dòng điện chạy qua, hay qua phản ứng hóa học có một hiệu điện thế, đây là những quá trình điện hóa. Trong các quá trình này luôn tồn tại đồng thời hai hiện tượng: ôxi hóa và ôxi hóa khử (phản ứng ôxi hóa khử) [6]. 1.2.1. Lịch sử phát triển  Năm 1799: Alexandro Volta lần đầu tiên chế tạo ra pin hoạt động được, trước đấy Luigi Galvani đã có nhiều thí nghiệm trên đùi ếch, các cơ chúng co lại khi chạm vào kim loại khác nhau  Năm 1832: Michael Faraday phát hiện ra định luật cơ bản về điện hóa  Năm 1929: Jaroslav Heyrovský nghiên cứu về phương pháp cực phổ và nhận được giải Nobel hóa học cho công trình này vào năm 1959  Năm 1969: tế bào nhiên liệu hiđrô đã được nghiên cứu và dùng trong chương trình Apollo, chúng không chỉ là nguồn điện mà còn cung cấp cả nước cho phi hành đoàn. 1.2.2. Ứng dụng điện hóa  Sản xuất các kim loại như kali, nhôm,… hay các nguyên tố halogen như clo, flo,… thông qua quá trình điện phân, điện hóa. 4  Sản xuất các nguồn điện di động như pin, ắc quy, tế bào nhiên liệu,...  Phân tích chất hóa học trong hóa phân tích, ví dụ trong phương pháp cực phổ  Dùng trong kỹ thuật mạ điện 1.2.3. Cơ sở hóa học Trong các ôxít kim loại có liên kết ion, ví dụ CaO thì Ca cho e- và đóng vai trò là chất bị ôxi hóa và O nhận e- là chất ôxi hóa được minh họa ở các công thức dưới: Ôxi hóa: Ca → Ca2+ + 2e- (1.1) Ôxi hóa khử: O + 2e- → O2- (1.2) Phản ứng ôxi hóa khử: Ca + O → Ca2+ + O2- (1.3) Khi mở rộng các khái niệm này ra đối với quá trình ôxi hóa thì: chất A cho ne- thành An+. Còn đối với quá trình ôxi hóa khử: chất B nhận ne - thành Bn-, khi đó phản ứng ôxi hóa khử A + B → An+ + Bn-. Khi A và B đều là kim loại thì có phản ứng ôxi hóa khử An+ + B → A + Bn+. Nếu phản ứng này là liên tục thì có 1 dòng chuyển động của ne- hay 1 dòng điện giữa A và B. Nếu các ion này có mặt trong 1 điện trường thì dưới tác dụng của lực tĩnh điện, các ion có điện tích âm sẽ di chuyển và tụ lại trên cực dương anôt, còn ion dương thì về cực âm catôt. 1.2.4. Tẩy gỉ Bề mặt kim loại nền thường phủ một lớp oxit dày, gọi là gỉ. Tẩy gỉ hóa học cho kim loại đen thường dùng axit loãng H 2SO4 hay HCl hoặc hỗn hợp của chúng. Khi tẩy thường diễn ra đồng thời 2 quá trình: hòa tan oxit và kim loại nền. Tẩy gỉ điện hóa là tẩy gỉ hóa học đồng thời có sự tham gia của dòng điện. Có thể tiến hành tẩy gỉ catot hoặc tẩy gỉ anot. Tẩy gỉ anot lớp bề mặt sẽ rất sạch và hơi nhám nên lớp mạ sẽ gắn bám rất tốt. Tẩy gỉ catot sẽ sinh ra H, có tác dụng khử một phần oxit. Tẩy gỉ bằng catot chỉ áp dụng cho vật mạ bằng thép cacbon, còn với vật mạ Ni, Cr thì hiệu quả không cao. 1.2.5. Tẩy bóng điện hóa và hóa học Tẩy bóng điện hóa cho độ bóng cao hơn gia công cơ học. Lớp mạ trên nó gắn bám tốt, tinh thể nhỏ, ít lỗ thủng và tạo ra tính chất quang học đặc biệt. Khi tẩy bóng điện hóa thường mắc vật tẩy với anot đặt trong một dung dịch đặc biệt. Do tốc 5 độ hòa tan của phần lồi lớn hơn của phần lõm nên bề mặt được san bằng và trở nên nhẵn bóng. Cơ chế tẩy bóng hóa học cũng giống tẩy bóng điện hóa. Khi tẩy bóng hóa học cũng xuất hiện lớp màng mỏng cản trở hoặc kìm hãm tác dụng xâm thực của dung dịch với kim loại tại chỗ lõm. CHƯƠNG 2 TẨY XẠ 2.1. Chất thải phóng xạ Chất thải phóng xạ là chất thải có chứa chất phóng xạ. Chất thải phóng xạ thường là sản phẩm phụ của nhà máy điện hạt nhân và các ứng dụng khác của phân hạch hạt nhân hoặc công nghệ hạt nhân, chẳng hạn như nghiên cứu và y học. Chất thải phóng xạ nguy hiểm cho hầu hết các hình thức sống và môi trường, và được quy định bởi các cơ quan chính phủ để bảo vệ sức khỏe con người và môi trường [6]. Hoạt độ phóng xạ giảm theo thời gian, do đó, chất thải thường bị cô lập và được lưu trữ trong một khoảng thời gian cho đến khi nó không còn là mối nguy hiểm nữa. Thời gian lưu trữ phụ thuộc vào loại chất thải. Mức độ chất thải được tính theo mức độ phóng xạ trên một đơn vị khối lượng. Chất thải có độ phóng xạ thấp (chẳng hạn như một số chất thải y tế hoặc chất thải phóng xạ công nghiệp) được lưu trữ cho các giờ, vài ngày trong khi chất thải có độ phóng xạ cao (như nhiên liệu hạt nhân đã qua hoặc sản phẩm phụ của hạt nhân tái chế) phải được lưu trữ cho một năm hoặc hơn. Các phương pháp chính để quản lý chất thải phóng xạ là phân loại và lưu trữ chất thải, xử lý bề mặt và một số chất thải trung gian, chôn sâu hoặc chuyển hóa các chất thải có mức phóng xạ cao. Một bản tóm tắt về lượng chất thải phóng xạ và phương pháp quản lý đối với các nước phát triển được trình bày và xem xét định kỳ trong Công ước chung về an toàn quản lý nhiên liệu đã qua sử dụng và sự an toàn của công tác quản lý chất thải phóng xạ của Cơ quan Năng lượng Nguyên tử Quốc tế (IAEA). Chất thải phát sinh tại nhà máy điện hạt nhân 6 Chất thải phóng xạ hoạt độ thấp và trung bình tại nhà máy điện hạt nhân được sinh ra bởi sự nhiễm xạ của các vật liệu khác nhau với các hạt nhân phóng xạ được tạo ra do sự phân hạch và kích hoạt trong các lò phản ứng hoặc thoát ra từ bề mặt nhiên liệu hoặc các tấm ốp. Các hạt nhân phóng xạ chủ yếu phân rã và tập trung vào trong hệ thống nước làm mát lò phản ứng và được lưu trữ trong bể nhiên liệu đã qua sử dụng. Các chất thải chính phát sinh trong quá trình hoạt động của một nhà máy điện hạt nhân là những thành phần được loại ra trong quá trình tiếp nhiên liệu, bảo dưỡng (chủ yếu là chất rắn bị kích hoạt, ví dụ như thép không gỉ có chứa cobalt-60 và nickel-63) hoặc các chất thải phóng xạ lỏng, các bộ lọc và các loại nhựa trao đổi ion bị nhiễm xạ bởi các sản phẩm phân hạch từ vòng tuần hoàn chứa chất làm mát. Để giảm số lượng chất thải phải lưu trữ tạm thời và giảm thiểu chi phí chôn cất, tất cả các nước đang thực hiện các biện pháp giảm thiểu khối lượng chất thải sinh ra tại bất kỳ công đoạn nào mà có thể thực hiện được. Giảm thiểu khối lượng chất thải là đặc biệt hiệu quả đối với chất thải có hoạt độ thấp. Tổng lượng chất thải phóng xạ mức thấp và trung bình thải ra từ hoạt động của nhà máy điện hạt nhân thay đổi phụ thuộc vào dạng của lò phản ứng, trình độ công nghệ tại thời điểm xây dựng lò, trình độ vận hành, công nghệ xử lý chất thải phóng xạ đi kèm theo nhà máy... Theo báo cáo của các chuyên gia Nhật Bản thì mỗi năm, một tổ máy (1000 MWe) thải ra khoảng 600-800 thùng chất thải phóng xạ (dung tích 200 lít); tuy nhiên, theo báo cáo của các chuyên gia Hàn Quốc và Slovakia thì mỗi năm một tổ máy (1000 MWe) chỉ thải ra khoảng 250 thùng chất thải (dung tích 200 lít) [5]. 2.2. Nhiễm bẩn phóng xạ bề mặt Sự nhiễm bẩn là sự lắng đọng của các nguyên tố phóng xạ hoặc các hợp chất từ một môi trường gây nhiễm bẩn như khí, hóa chất, vật lý hay cách khác, trên bề mặt của các thành phần, hệ thống và cấu trúc trong cơ sở hạt nhân. Các đặc tính của sự nhiễm bẩn liên quan chặt chẽ với tính chất và đặc điểm của bề mặt và các môi trường gây nhiễm bẩn. Trong các bề mặt kim loại thường có tồn tại một sự tương đồng hóa học với các yếu tố gây nhiễm bẩn (ví dụ như đối với các cation kim loại 7 trong nước) có thể gây ra sự khuếch tán của nó vào lớp kim loại nền, do đó trở nên rất khó khăn để loại bỏ [1]. Sự nhiễm bẩn có thể được phân thành ba loại: - Nhiễm bẩn bám tự do (free contamination): là loại nhiễm bẩn có thể được loại bỏ bằng cách thổi đơn giản, hút chân không hoặc các phương pháp - tương tự. Nhiễm bẩn bám yếu (loose contamination): là loại nhiễm bẩn có thể được - loại bỏ bằng các kỹ thuật làm sạch chung. Nhiễm bẩn cố định (fixed contaminaiton): là loại nhiễm bẩn không thể được loại bỏ mà không cần loại bỏ các lớp bề mặt. Trong các hệ thống lò phản ứng, nhiễm bẩn phóng xạ bề mặt bên trong chủ yếu do lắng đọng từ nước làm mát lò phản ứng của các hạt neutron kích hoạt và các nguyên tố hòa tan, các sản phẩm phân hạch và các đồng vị có số nguyên tử cao hơn urani, khi vỏ bọc nhiên liệu bị hư hại. Các lớp lắng đọng trở thành một phần của lớp oxit, hình thành ở bên trong đường ống. Lớp này có một cấu trúc phức tạp, và phụ thuộc vào một loạt các thông số như hóa chất làm mát, nhiệt độ của sự hình thành, vật liệu hệ thống, thời gian hoạt động, vv. Trong một thời gian dài, các hạt nhân phóng xạ trong lớp lắng đọng có thể khuyếch tán nhẹ vào kim loại nền hoặc xâm nhập vào các đường ống. 2.3. Tẩy xạ 2.3.1. Khái niệm Tẩy xạ là việc loại bỏ bằng hóa học, vật lý hoặc các phương pháp khác, chất phóng xạ bề mặt từ cả hai bề mặt bên trong và bên ngoài của các thành phần, các hệ thống và cấu trúc trong cơ sở hạt nhân. Thông thường tẩy xạ và làm sạch được coi là các quy trình riêng biệt mặc dù chúng thường có quá trình vật lý như nhau; sự khác biệt là mức độ làm sạch và nhấn mạnh về các thứ bị loại bỏ. Tẩy xạ là việc loại bỏ các bụi bẩn phóng xạ và oxit từ các bề mặt, trong khi làm sạch thường đề cập đến việc loại bỏ các vật liệu không phóng xạ. Tẩy xạ nên được coi là một phần làm sạch bởi vì, nói chung, chỉ có một phần nhỏ của việc vật liệu bị loại bỏ trong quá trình tẩy xạ phóng xạ. Việc tẩy xạ định kỳ được sử dụng rộng rãi trong cho các bề mặt thường tiếp xúc với các tác nhân nhiễm bẩn (như chất làm mát lò phản ứng, các 8 loại khí, vv) trong khi thuật ngữ làm sạch bề mặt dùng để chỉ nhiễm bẩn nhẹ bởi các sol khí hoặc bằng chất lỏng, vv. Khái niệm về tẩy xạ đã được giới thiệu ở giai đoạn đầu của ngành công nghiệp hạt nhân và đã được sử dụng để mô tả việc giảm mức độ bức xạ trên bề mặt của các thành phần, hệ thống và cấu trúc để cho phép công việc bảo dưỡng, sửa chữa và điều khiển chúng. Tầm quan trọng của tẩy xạ và sự phát triển tất yếu của các quy trình tẩy xạ mới để làm giảm mức độ bức xạ và suất liều cá nhân sẽ ảnh hưởng đến việc khai thác các cơ sở hạt nhân. Trong những năm 1960, tẩy xạ đã là một thực tế phổ biến trong ngành công nghiệp hạt nhân. Giữa những năm 1970, với sự hỗ trợ của các cơ quan quản lý và các ngành công nghiệp, quy trình tẩy xạ trở nên hoàn thiện hơn. Vào cuối những năm 1970, một sự nhu cầu mới được đặt ra là việc các cơ sở hạt nhân ngưng hoạt động và điều này đã giới thiệu một khái niệm mới trong tẩy xạ, không chỉ để giảm mức độ bức xạ, thường là mục tiêu chính của tẩy xạ, mà còn để tạo thuận lợi cho quản lý chất thải và nếu có thể cho phép tái sử dụng vật liệu, linh kiện. Kỹ thuật tẩy xạ có thể được phân loại theo nhiều cách khác nhau tùy thuộc vào mục đích tẩy, ví dụ để giảm suất liều môi trường nơi nhân viên làm việc; tái sử dụng lại các thành phần / hệ thống bị nhiễm bẩn phóng xạ; các loại môi trường tẩy xạ ví dụ hóa chất, cơ khí, điện, vv, và theo tính chất của bề mặt cần thiết để tẩy xạ (ví dụ kim loại, bê tông, bề mặt sơn, vv). Tiêu chí được sử dụng rộng rãi nhất là phân loại môi trường tẩy xạ. Tuy nhiên các phân loại khác nhau đã được đề xuất bởi vì trong nhiều trường hợp không dễ để xác định rõ “môi trường tẩy xạ”. Một số quy trình có thể kết hợp với nhiều môi trường tẩy xạ khác ví dụ như điện hóa, trong đó kết hợp hóa học với điện, hoặc nước áp lực sử dụng với các chất tẩy rửa, nó kết hợp giữa cơ khí và hóa học. Vào năm 1980, bộ năng lượng Mỹ (DOE) đã phân loại kỹ thuật tẩy xạ thành 4 loại: (i) tẩy xạ hóa học, (ii) tẩy xạ không dùng hóa chất, (iii) điện hóa, (iv) siêu âm/tẩy xạ hóa học [3].  Tẩy xạ hoá học: sử dụng hóa chất như: 9 Alkaline permanganat (AP), Ammonium Citrate (AC), EDTA, oxalic acid (OX), Citrox, Sulphuric Acid, axit Clohydric, Nitric Acid, Sulphuric Acid, Phosphoric Acid, oxalic Peroxide (OP), Sulphate, Can - Decon, NS – 1  Nước áp lực  Điện hóa: ngâm và di chuyển cực âm  Tẩy xạ siêu âm 2.3.2. Hệ số tẩy xạ 2.3.2.1. Xác định các thành phần tẩy xạ Trong thực tế, người ta thường rút ra một danh sách ưu tiên các thành phần và hệ thống cần thiết để tẩy xạ. Linh kiện để tẩy xạ nên được xác định càng sớm càng tốt để tránh lãng phí thời gian và tiền bạc vào việc tẩy xạ không cần thiết. Tẩy xạ đơn giản để loại bỏ nhiễm bẩn dính một cách yếu ớt vẫn còn hữu ích bởi vì nó làm giảm việc tiếp xúc với bức xạ và tạo điều kiện xử lý tiếp theo. Trước hết cần phải so sánh hai phương pháp tiếp cận, cụ thể là, tẩy xạ cho việc tháo gở hoàn toàn, hoặc chuyển trực tiếp một số loại đến kho chứa vật liệu phóng xạ. Việc tiếp xúc của các nhân viên và các giá trị tương ứng của mỗi cách tiếp cận phải được xem xét. Ngoài các chỉ tiêu chủ yếu trên, các yếu tố khác cần được xem xét, bao gồm:  Các loại và mức độ nhiễm bẩn;  Hình học của các thành phần;  Khối lượng của các vật được tẩy xạ. Việc cẩn thận để xác định loại và mức độ ô nhiễm phải được xem xét vì các thành phần bị tiếp xúc trong một thời gian dài với áp suất và nhiêt độ cao tẩy xạ khó khăn hơn, trong khi các thành phần nhiễm bẩn khác bằng cách tiếp xúc với không khí, thông qua độ ẩm hoặc các yếu tố khác, rõ ràng là có thể tẩy xạ dễ dàng hơn. Hình học của các thành phần đóng một vai trò quan trọng. Hầu hết quá trình tẩy xạ là không có khả năng đảm bảo loại bỏ hoàn toàn các góc và các lỗ nhỏ vì đây là những điểm mà nhiễm bẩn phóng xạ có thể sẽ cao hơn đáng kể. Với dạng hình học phức tạp, các phép tính cần thiết được tạo ra là bằng chứng cho thấy các giới hạn đã được quan sát có thể không làm được hoặc chỉ có thể được thực hiện rất khó khăn. 10 Khối lượng của các thành phần bị nhiễm bẩn cũng khá quan trọng và thường có hai trường hợp. Thứ nhất, khối lượng rất lớn sẽ không được vận chuyển đến nơi xử lý, trong khi chúng chỉ chứa một vài gram hoặc vài kilogam chất phóng xạ. Thứ hai, với khối lượng phóng xạ lớn thì phải có quy trình tẩy xạ phù hợp. Khi lựa chọn quá trình này, người ta phải đảm bảo rằng thời gian cần thiết để tẩy xạ vẫn nằm trong giới hạn chấp nhận được, vì khi thời gian tẩy xạ tăng thì dẫn đến chi phí vận hành cũng sẽ tăng. Trường hợp số tiền thu được từ việc bán các vật liệu được tẩy xạ là đáng kể thì ta có thể tăng thời gian tẩy xạ để giảm mức phóng xạ xuống mức thấp nhất để an toàn trong việc tái sử dụng các linh kiện đã được tẩy xạ. 2.3.2.2. Hệ số tẩy xạ Hiệu quả của các quá trình tẩy xạ khác nhau đã được đánh giá thông qua các tham số được gọi là “hệ số tẩy xạ”. Nó có nghĩa là việc biễu diễn bằng số về hiệu quả của một quá trình tẩy xạ và nó được tính là tỷ lệ giữa phép đo trước tẩy xạ và sau tẩy xạ, tức là: (2.1) DF  M b  M a Trong đó DF: hệ số tẩy xạ (decontamination factor) và thường lớn hơn 1 Mb là giá trị đo trước khi tẩy xạ (tại một điểm tham chiếu) và M a : là giá trị đo sau khi tẩy xạ (tại cùng một vị trí như Mb). Tính dưới dạng phần trăm, hệ số tẩy xạ có thể được thể hiện như sau:  DF   M b− M a Mb (2.2) Hệ số tẩy xạ có thể được xác định (hoặc tính) bằng hai phương pháp khác nhau. Phương pháp thứ nhất là sử dụng các phép đo suất liều bức xạ. Nó được gọi là “radiation DF” và được định nghĩa là: DF Ra  Ib Ia Trong đó (2.3) Ib là suất liều (bức xạ) “trước” tẩy xạ (tại một vị trí tham chiếu) và I a là suất liều (bức xạ) “sau” tẩy xạ (tại cùng vị trí giống I ). b 11 Định nghĩa này được sử dụng rộng rãi trong tẩy xạ cho nhà máy đang hoạt động, nơi mà các phép đo bức xạ thường là phép đo suất liều diện tích. Đối với trường hợp này, khái niệm "suất liều cá nhân DF" cũng được sử dụng. Trong nhiều trường hợp, các số đo bức xạ có thể được lấy từ các máy đo ở gần hoặc trên bề mặt cần đo. Phương pháp thứ hai là sử dụng các phép đo hoạt độ và được định nghĩa như (2.4): DF De  Ab Aa Trong đó (2.4) Ab là hoạt độ trước khi tẩy xạ (tại một vị trí tham chiếu) và Aa : là hoạt độ sau khi tẩy xạ (tại cùng vị trí tham chiếu). Mỗi giá trị của DF phải được chuyển đổi tới chung một thước đo duy nhất trước và sau khi tẩy xạ. Trong các trường hợp bất kỳ khác, nơi có nhiều phép đo được thực hiện thì cần thiết nên tính toán một “DF trung bình”. Hoạt độ của phông là một tham số phụ thuộc mạnh mẽ vào thao tác đo và kỹ thuật dụng cụ dùng để đo hoạt độ. Đối với đánh giá hệ số tẩy xạ theo (2.3) việc sử dụng các tấm chì để che chắn các nguồn phóng xạ lân cận là điều cần thiết để việc đo các linh kiện, thành phần máy móc cần được tẩy xạ để cung cấp số liệu chính xác hơn. 2.3.3. Tẩy xạ bằng phương pháp điện hóa Tẩy xạ điện hóa có thể được coi cơ bản là tẩy xạ hóa chất được hổ trợ bởi một điện trường (có cách gọi khác đánh bóng điện). Đánh bóng điện là một quá trình được sử dụng rộng rãi trong các ứng dụng công nghiệp phi hạt nhân để sản xuất một bề mặt được đánh bóng trơn tru trên một loạt các kim loại và hợp kim. Nó có thể được coi là đối ngược của mạ điện nghĩa là lớp kim loại được lấy ra từ một bề mặt hơn là thêm vào như là một lớp phủ. Thông thường, các đối tượng được điện hóa sẽ được ngâm trong bể chứa chất dung dịch điện hóa và được sử dụng như cực dương trong pin điện hóa. Phản ứng trên bề mặt vật liệu xảy ra trong một vùng nhất định của điện áp và mật độ dòng điện. Nếu điện áp và mật độ dòng điện quá nhỏ, bề mặt 12 sẽ bị ảnh hưởng không đồng nhất, gây mòn hơn là đánh bóng. Tương tự như vậy điện áp quá cao là nguyên nhân gây ra rỗ xấu trên bề mặt. Axit phosphoric thường được sử dụng như chất điện phân trong đánh bóng vì sự ổn định, an toàn và ứng dụng của nó vào một loại các hợp kim. Hơn nữa, tính chất bốc hơi chậm của axit phosphoric giúp giảm thiểu ô nhiễm không khí, và các đặc điểm phức tốt của axit phosphoric cho các ion kim loại là một yếu tố quan trọng trong việc giảm thiểu tái nhiễm bẩn từ chất điện phân. Điều kiện hoạt động tiêu biểu cho việc tẩy xạ sử dụng axit phosphoric đòi hỏi nhiệt độ dung dịch từ 5 đến 25 0C, nồng độ axit phosphoric từ 40 đến 85%, điện thế điện cực từ 8 đến 12V và mật độ dòng điện từ 5 đến 25 A.cm-2. Tẩy xạ điện hóa có thể được sử dụng để loại bỏ nhiễm bẩn cố định của hợp kim sắt, bao gồm thép không gỉ, đồng, chì, và molypen. Tuy nhiên hiệu quả của tẩy xạ có thể bị giới hạn bởi sự hiện diện của vật liệu bên ngoài trên bề mặt của các vật được tẩy xạ. Vật liệu như dầu, mỡ, oxit (gỉ), và sơn hoặc lớp phủ khác cần phải được loại bỏ trước khi tẩy xạ. Nói chung, có hai phương pháp áp dụng cho điện hóa. Phương pháp phổ biến nhất là ngâm vật được tẩy rửa vào bể chứa với dung dịch điện hóa thích hợp. Phương pháp thứ hai liên quan đến việc sử dụng “in-situ” các thiết bị di động có khả năng tẩy rửa phần bề mặt của vật, bởi vì kích thước hoặc cài đặt, nên không thể tẩy rửa trong bể. 2.3.3.1. Tẩy xạ điện hóa bằng phương pháp ngâm trong bể Nếu anot là vật liệu kim loại hoặc hợp kim, bị nhiễm bẩn phóng xạ trên bề mặt (hoặc kẹt trong những khiếm khuyết bề mặt) thì có thể được loại bỏ và thay thế bởi quá trình hòa tan bề mặt sử dụng dòng điện. Quá trình phản ứng rất mịn (0,02-0,03 mm), bề mặt cần tẩy xạ không phản ứng và không hấp thụ tái nhiễm bẩn trong quá trình hoạt động lâu hơn. Thực nghiệm cho thấy rằng điện hóa là một kỹ thuật hiệu quả để loại bỏ cả nhiễm bẩn phóng xạ cố định và vết nhiễm bẩn nhỏ, khá nhanh và dễ dàng kiểm soát. Catôt bình thường là một mảnh đồng, hoặc thép không gỉ, nằm trong dung 13 Hình 2.1: Sơ đồ nguyên lý tẩy xạ điện hóa bằng phương pháp ngâm. dịch điện hóa và cách vật được tẩy khoảng 30-100 mm. Ngoài ra đối với vật cần tẩy xạ đặc biệt, các thành của bể điện hóa cũng có thể phục vụ như là cực âm. Để kiểm soát hơi nước thoát ra từ quá trình điện hóa một nắp hút được đặt bên cạnh bể điện hóa. Việc đun nóng và khuấy các chất điện hóa và bể rửa là cần thiết. Mỗi lần tẩy xạ trung bình khoảng 5-30 phút, tương ứng với việc loại bỏ 10-50 mm vật liệu bề mặt với mật độ dòng là 2-15 A/dm2. Tẩy xạ điện hóa bằng phương pháp này gây ra một sự gia tăng lượng sắt hòa tan trong axit photphoric. Nếu nồng độ của sắt vượt quá 100 g.dm -3, kết tủa sắt photphat sẽ xảy ra và điều này làm giảm hiệu quả của quá trình tẩy xạ. Vì thế các axit đã được thay đổi hoặc tái tạo định kỳ. Sự tái tạo axit photphoric là dựa trên phản ứng của Fe2+ với axit oxalic (xem hình 2.2). Tuy nhiên, tẩy xạ điện hóa thép tạo ra một tỷ lệ phần trăm sắt cao trong axit photphoric, mà không thể được kết tủa để tạo sắt oxalat. Hình 2.2 trình bày hệ làm giảm lượng Fe 3+ xuống Fe2+. Khi một phần lớn Fe2+ thu được, các axit photphoric phải được trộn với dung dịch axit oxalic. Sắt oxalat được sấy khô và bảo quản để xử lý tiếp theo. Nồng độ ban đầu của axit photphoric có thể đạt lại được nhờ quá trình bốc hơi. 14 Hình 2.2: Sơ đồ tái sinh axit photphoric. Theo thời gian, một số chất điện hóa đã được nghiên cứu và đề xuất thay thế cho axit photphoric và axit sunfuric. Nhu cầu chất điện hóa mới bước đầu đã được nghiên cứu bởi việc xử lý khó khăn axit photphoric và axit sunfuric trong các cơ sở xử lý hiện nay và nhằm tạo ra các chất thải thứ cấp có thể dễ dàng xử lý hơn. 2.3.3.2. Tẩy xạ điện hóa bằng phương pháp di chuyển cực âm Trong các nhà máy điện hạt nhân hoặc cở sở hạt nhân, khi tạm dừng hoạt động để bảo trì, tu sửa máy móc là điều cần thiết, và làm giảm suất liều của các thiết bị bị nhiễm bẩn phóng xạ do hoạt động trong một thời gian dài. Một số thiết bị có cấu tạo đặc biệt, khó khăn cho việc tháo dở để có thể tẩy xạ theo phương pháp ngâm trong bể dung dịch điện hóa, khi đó người ta sẽ sử dụng một phương pháp tẩy xạ tại chổ với thiết bị có thể linh hoạt di chuyển trong không gian nhỏ. Với nơi có suất liều phóng xạ cao, ta có thể sử dụng robot hoặc các thiết bị tự động để thay thế cho nhân viên tẩy xạ, hạn chế tiếp xúc giữa nhân viên làm việc và môi trường có độ phóng xạ cao. Với phương pháp tẩy xạ điện hóa tại chổ, bề mặt của vật được tẩy xạ ngập trong chất điện hóa thông qua một chổ trống giữa cực âm của thiết bị tẩy xạ và bề mặt của vật (cực dương). 15 Hình 2.3: Sơ đồ nguyên lý tẩy xạ điện hóa bằng phương pháp di chuyển cực âm.
- Xem thêm -

Tài liệu liên quan