Tài liệu Ứng dụng mô hình arima trong dự báo lạm phát việt nam

  • Số trang: 26 |
  • Loại file: PDF |
  • Lượt xem: 76 |
  • Lượt tải: 0
thuvientrithuc1102

Đã đăng 15893 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC ĐÀ NẴNG ĐẶNG THỊ NGỌC NIN ỨNG DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO LẠM PHÁT VIỆT NAM Chuyên ngành: Tài chính – Ngân hàng Mã số : 60.34.20 TÓM TẮT LUẬN VĂN THẠC SĨ QUẢN TRỊ KINH DOANH Đà Nẵng – Năm 2015 Công trình được hoàn thành tại ĐẠI HỌC ĐÀ NẴNG Người hướng dẫn khoa học: TS. ĐINH BẢO NGỌC Phản biện 1: TS. Đặng Tùng Lâm Phản biện 2: GS.TS. Dương Thị Bình Minh Luận văn đã được bảo vệ trước Hội đồng chấm Luận văn tốt nghiệp Thạc sĩ Quản trị kinh doanh họp tại Đại Học Đà Nẵng vào ngày 26 tháng 01 năm 2015. Có thể tìm hiểu Luận văn tại: - Trung tâm Thông tin - Học liệu, Đại học Đà Nẵng - Thư viện trường Đại học Kinh tế, Đại học Đà Nẵng 1 MỞ ĐẦU 1. Tính cấp thiết của đề tài Lạm phát thường có tác động tiêu cực đến phát triển kinh tếxã hội. Tuy nhiên, nếu nền kinh tế thích ứng được với sự thay đổi của lạm phát thì có thể hạn chế thiệt hại do lạm phát gây ra cũng như khai thác mặt tích cực của lạm phát trong một số trường hợp. Điều này đòi hỏi lạm phát phải được dự đoán trước. Song, những biến động kinh tế trong và ngoài nước sẽ có những ảnh hưởng không nhỏ đến mục tiêu lạm phát từ nay đến năm 2015. Mục tiêu Kế hoạch Phát triển Kinh tế - xã hội năm 2014 và dự kiến cho năm 2015 của Bộ kế hoạch và Đầu tư là kiểm soát lạm phát ở mức khoảng 7% năm 2014 và khoảng 5% năm 2015. Theo dự báo của Ernst & Young (2/2014), lạm phát Việt Nam năm 2014 là 6.5% và năm 2015 là 6%. Dựa trên nhận định nhu cầu tiêu dùng trong nước giảm, nguồn cung thực phẩm cao và giá nhiên liệu toàn cầu ổn định, Ngân hàng Phát triển Châu Á (ADB) lại đưa ra kì vọng về lạm phát Việt Nam trong năm 2014 là khoảng 4.5% và năm 2015 là 5.5%. Gần đây nhất, trong Báo cáo triển vọng kinh tế khu vực Đông Á Thái Bình Dương, Ngân hàng thế giới (WB) dự báo lạm phát Việt Nam là 4.5% năm 2014 và 5% năm 2015. Trước những nhận định khác nhau như vậy về lạm phát của Việt Nam năm 2014, 2015, việc xây dựng một mô hình phù hợp để dự báo lạm phát Việt Nam là một điều cần thiết, nhằm đưa ra con số dự báo độc lập với các dự báo đã dược công bố, hỗ trợ các nhà hoạch định chính sách cũng như các doanh nghiệp có căn cứ lập kế hoạch phát triển cùng những giải pháp thích hợp để phòng ngừa và tối thiểu hóa thiệt hại do lạm phát gây ra. Lạm phát có thể dược dự báo bằng các mô hình như: Mô hình đường cong Phillips, mô hình lý thuyết tiền tệ truyền thống, mô hình hiệu chỉnh sai số, mô hình Tự hồi quy tích hợp trung bình trượt 2 (ARIMA), mô hình Tự hồi quy vecto, … Trong đó, mô hình ARIMA chỉ dùng các giá trị trong quá khứ của chính biến số cần dự báo nên nó được dùng khá phổ biến và tỏ ra hiệu quả hơn trong việc dự báo ngắn hạn các chuỗi thời gian như tỉ giá, lạm phát, tăng trưởng, … so với các mô hình khác. Do vậy, đề tài: “Ứng dụng mô hình ARIMA trong dự báo lạm phát Việt Nam” được lựa chọn để tiến hành nghiên cứu. 2. Mục tiêu nghiên cứu - Hệ thống lại cơ sở lý luận cơ bản về lạm phát và mô hình ARIMA. - Tổng quan thực tiễn lạm phát ở Việt Nam trong giai đoạn từ tháng 1/2005 đến tháng 10/2014, để thấy được phần nào quy luật diễn biến phức tạp của lạm phát tại một nước đang phát triển như nước ta. - Xây dựng mô hình ARIMA phù hợp để dự báo lạm phát Việt Nam trong thời gian tới từ tháng 11/2014 đến tháng 6/2015. Từ đó, đề xuất một số khuyến nghị đối với Chính phủ và Ngân hàng Nhà nước trong điều hành chính sách vĩ mô. 3. Câu hỏi nghiên cứu 4. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu: Đề tài tập trung nghiên cứu việc vận dụng mô hình ARIMA xem xét chuỗi chỉ số giá tiêu dùng CPI (chỉ số được sử dụng để phản ánh lạm phát ở Việt Nam) của cả nước được quan sát theo tháng từ tháng 1/2005 đến tháng 6/2014 nhằm dự báo lạm phát Việt Nam từ tháng 7/2014 đến tháng 6/2015. Trong đó, kết quả dự báo các tháng 7, 8, 9 và 10/2014 được so sánh với giá trị thực để đánh giá dự báo. Phạm vi nghiên cứu: Để xây dựng mô hình ARIMA cho lạm phát Việt Nam, đề tài chỉ sử dụng các dữ liệu chuỗi thời gian trong quá khứ của chỉ số 3 CPI từ tháng 1/2005 đến tháng 6/2014. Trên cơ sở mô hình xây dựng được, nghiên cứu đưa ra dự báo lạm phát Việt Nam trong ngắn hạn, từ tháng 11/2014 đến tháng 6/2015. Như đã nói ở trên, các tháng 7/2014-10/2014 được dùng để đánh giá dự báo. 5. Phương pháp nghiên cứu: Đề tài vận dụng phương pháp Box-Jenkins xây dựng mô hình ARIMA dự báo lạm phát với quy trình gồm 4 bước: Nhận dạng mô hình; Ước lượng mô hình; Kiểm tra mô hình và Dự báo. Dữ liệu mẫu được thu thập và tính toán trên cơ sở nguồn dữ liệu sơ cấp từ Tổng cục Thống kê Việt Nam kết hợp phương pháp nội suy.Công cụ hỗ trợ cho nghiên cứu là phần mềm Excel và Eview. Ngoài ra, các phương pháp khác như: phương pháp định tính, phân tích thống kê mô tả, tổng hợp, so sánh cũng được sử dụng nhằm làm rõ những vấn đề nghiên cứu. 6. Bố cục của đề tài Chương 1: Cơ sở lý luận về lạm phát và mô hình ARIMA. Chương 2: Thiết kế nghiên cứu dự báo lạm phát Việt Nam bằng mô hình ARIMA. Chương 3: Kết quả nghiên cứu dự báo lạm phát Việt Nam và một số khuyến nghị. 7. Ý nghĩa khoa học và thực tiễn của đề tài 4 CHƯƠNG 1 CƠ SỞ LÝ LUẬN VỀ LẠM PHÁT VÀ MÔ HÌNH ARIMA 1.1. CƠ SỞ LÝ LUẬN VỀ LẠM PHÁT 1.1.1. Khái niệm về lạm phát Lạm phát là sự gia tăng liên tục của mức giá chung hay sự giảm giá liên tục sức mua của đồng tiền. Đây là khái niệm hiện nay được hầu hết tác giả trong và ngoài nước sử dụng. Với khái niệm này, biểu hiện của lạm phát là giá cả của hầu hết các hàng hóa trong nền kinh tế tăng lên một cách đồng thời và liên tục trong một khoảng thời gian đủ dài để có thể nhận rõ xu hướng này. Lạm phát không phải là hiện tượng giá cả của một vài hàng hóa hay nhóm hàng hóa nào đó tăng lên mà là sự tăng lên của mức giá chung của nền kinh tế. Ngoài ra, việc tăng giá mang tính đột biến hay ngắn hạn không được xem là biểu hiện của lạm phát. 1.1.2. Phân loại lạm phát a. Phân loại lạm phát theo căn cứ định lượng b. Phân loại lạm phát theo căn cứ định tính 1.1.3. Đo lường lạm phát Lạm phát được đo lường bằng chỉ tiêu tỉ lệ lạm phát, thể hiện qua chỉ số giá cả. Chỉ số giá cả là tỉ lệ giữa mức giá cả trung bình ở kỳ tính toán so với mức giá cả trung bình ở kỳ gốc của một nhóm hàng hóa nhất định. Tỉ lệ lạm phát = [mức giá cả chung trung bình (t) – mức giá cả chung trung bình (t0)] / mức giá cả chung trung bình (t0). Chỉ số giá tiêu dùng (Consumer Price Index – CPI) được sử dụng để tính tỉ lệ lạm phát của phần lớn quốc gia trên thế giới. 5 1.1.4. Tác động của lạm phát a. Tác động tiêu cực của lạm phát b. Tác động tích cực của lạm phát 1.2 MỘT SỐ MÔ HÌNH NGHIÊN CỨU VỀ LẠM PHÁT 1.2.1. Một số mô hình lý thuyết về lạm phát a. Mô hình đường cong Phillips b. Mô hình lạm phát do chi phí đẩy c. Mô hình lạm phát do cầu kéo d. Mô hình lạm phát theo quan điểm kì vọng e. Mô hình lạm phát theo trường phái tiền tệ 1.2.2. Một số mô hình định lượng dự báo lạm phát phổ biến a. Mô hình dự báo chuỗi thời gian b. Mô hình nhân quả c. Mô hình mạng thần kinh (Neural Network) 1.3. CƠ SỞ LÝ LUẬN VỀ MÔ HÌNH ARIMA 1.3.1. Giới thiệu chuỗi thời gian trong kinh tế a. Định nghĩa và các thành phần của chuỗi thời gian Chuỗi thời gian là một dãy các giá trị của một đại lượng nào đó được quan sát theo trình tự thời gian. Ta đặt Yt là giá trị quan sát của chuỗi ở thời đoạn (hoặc thời điểm) t, với t =1; 2; 3; …; n. Các thành phần của dữ liệu chuỗi thời gian trong kinh tế gồm: - Thành phần xu thế (Trend component). - Thành phần mùa (Seasonality). - Thành phần chu kì (Cyclical). - Thành phần ngẫu nhiên (Irregular). b. Quá trình ngẫu nhiên(Stochastic process) * Định nghĩa quá trình ngẫu nhiên: * Một số quá trình ngẫu nhiên giản đơn: - Nhiễu trắng (White noise): 6 Nhiễu trắng là một quá trình ngẫu nhiên có trung bình bằng 0, phương sai đồng nhất và không tương quan. - Bước ngẫu nhiên (Random walk): - Bước ngẫu nhiên với bước nhảy (Random walk with drift): c. Định nghĩa chuỗi thời gian dừng Quá trình ngẫu nhiên {Yt} được xem là dừng mạnh (dừng theo nghĩa hẹp) nếu {Yt} có quy luật phân phối xác suất độc lập với thời gian, tức là trung bình và phương sai của quá trình không thay đổi theo thời gian và hiệp phương sai giữa hai thời đoạn chỉ phụ thuộc vào khoảng cách độ trễ về thời gian giữa các thời đoạn này chứ không phụ thuộc vào thời điểm thực tế mà hiệp phương sai được tính. Quá trình được gọi là dừng yếu (dừng theo nghĩa rộng) khi thỏa mãn điều kiện (1.8) dưới đây: ì E (Yt ) = m , "t ï íVar (Yt ) < ¥, "t ïCov (Y , Y ) = g ( k ) t t -k î (1.8) Chuỗi thời gian không thỏa mãn cả 3 điều kiện ở (1.8) là chuỗi không dừng. Theo định nghĩa về quá trình dừng, ta thấy nhiễu trắng là chuỗi dừng, bước ngẫu nhiên không có tính dừng. 1.3.2. Một số công cụ cơ bản trong phân tích chuỗi thời gian a. Toán tử trễ và toán tử sai phân b. Hàm tự tương quan (ACF) c. Hàm tự tương quan riêng phần (PACF) 1.3.3 Tổng quan về mô hình tự hồi quy tích hợp trung bình trượt (ARIMA) Một phương pháp rất phổ biến trong dự báo chuỗi thời gian là lập mô hình tự hồi quy tích hợp trung bình trượt. Mô hình tự hồi 7 quy tích hợp trung bình trượt (Autoregressive Intergrated Moving Average – ARIMA) là mô hình dự báo chuỗi thời gian đơn biến được Box, G.E.P., và G.M Jenkins giới thiệu vào năm 1976 dựa trên ý tưởng cho rằng, chuỗi thời gian có thể được giải thích bằng cách kết hợp các hành vi hiện tại và trong quá khứ với các yếu tố ngẫu nhiên (gọi là nhiễu) ở hiện tại và quá khứ. Thực chất, ARIMA là tổng hợp của các mô hình: mô hình tự hồi quy (AR), mô hình tích hợp (I) và mô hình trung bình trượt (MA). Chuỗi dữ liệu nghiên cứu bằng mô hình ARIMA phải có tính dừng. a. Mô hình tự hồi quy (AR) Quá trình chuỗi tự hồi quy bậc p được kí hiệu là AR(p) có phương trình (1.19): Yt = m + f1 Yt-1 + f 2 Yt-2 + … + f p Yt-p + e t (1.19) trong đó e t là nhiễu trắng. b. Mô hình trung bình trượt (MA) Quá trình trung bình trượt bậc q được kí hiệu là MA(q) có phương trình (1.23): Yt = m + q1 e t -1 + q 2 e t - 2 + … + q q e t - q + e t (1.23) trong đó e t là nhiễu trắng. c. Mô hình Tự hồi quy tích hợp trung bình trượt (ARIMA) Mô hình tự hồi quy bậc p trung bình trượt bậc q [kí hiệu là ARMA (p, q)] là mô hình tổng hợp từ AR(p) và MA(q) có phương trình (1.27) sau: Yt = m + f1 Yt-1+ f 2 Yt-2 +…+ f p Yt-p + q1 e t -1 + q 2 e t - 2 +… + q q e t -q + e t (1.27) trong đó e t là nhiễu trắng. ARMA(p, q) có thể viết lại dưới dạng toán tử trễ ở phương trình (1.28): (1 – f1 L – f 2 L2 - … - f p Lp)Yt = m + (1 + q1 L + q 2 L2 + … + q q Lq) e t (1.28) 8 Mô hình ARMA chỉ áp dụng để nghiên cứu các chuỗi thời gian dừng. Tuy nhiên trong thực tế, phần lớn các chuỗi thời gian là chuỗi không dừng, ta có thể lấy sai phân d lần (1-L)d để biến đổi chuỗi Yt thành chuỗi dừng. Khi đó, chuỗi Yt được xem là chuỗi tích hợp bậc d, kí hiệu là I(d). Áp dụng chuỗi ARMA(p, q) cho chuỗi tích hợp bậc d, ta được chuỗi tự hồi quy tích hợp trung bình trượt, và mô hình là ARIMA(p, d, q), có dạng như phương trình (1.29) sau: f p (L)(1 – L)dYt = q q (L) e t (1.29) trong đó e t là nhiễu trắng và d là bậc sai phân của Yt . Trường hợp chuỗi Yt có yếu tố mùa với chu kì mùa là s thời đoạn, phương pháp đơn giản nhất để loại bỏ yếu tố mùa trong chuỗi là lấy sai phân thứ s của chuỗi Yt (hay còn được gọi là sai phân mùa (1-LS)). Áp dụng chuỗi ARIMA(p, d, q) cho chuỗi sai phân mùa bậc D, tự hồi quy mùa bậc P, trung bình trượt mùa bậc Q, ta được mô hình ARIMA(p, d, q)(P, D, Q)s có dạng như phương trình (1.30): f p (L) F P (Ls)(1 – L)d (1- Ls)D Yt = q q (L) Q Q (Ls) e t + m (1.30) trong đó e t là nhiễu trắng. Hàm tự tương quan và hàm tự tương quan riêng phần của mô hình ARIMA phức tạp hơn so với mô hình AR và MA. KẾT LUẬN CHƯƠNG 1 9 CHƯƠNG 2 THIẾT KẾ NGHIÊN CỨU DỰ BÁO LẠM PHÁT VIỆT NAM BẰNG MÔ HÌNH ARIMA 2.1. TỔNG QUAN VỀ LẠM PHÁT VIỆT NAM 2.1.1. Cách thức đo lường lạm phát tại Việt Nam 2.1.2. Tình hình lạm phát Việt Nam trong giai đoạn từ năm 2005 đến tháng 10/2014 2.2. CƠ SỞ ĐỀ XUẤT VẬN DỤNG MÔ HÌNH ARIMA TRONG DỰ BÁO LẠM PHÁT VIỆT NAM 2.2.1. Sự cần thiết phải áp dụng mô hình định lượng trong dự báo lạm phát tại Việt Nam 2.2.2. Ưu điểm của mô hình ARIMA so với các mô hình khác và sự phù hợp của mô hình ARIMA với thực tiễn Việt Nam 2.2.3. Một số nghiên cứu thực nghiệm về dự báo lạm phát bằng mô hình ARIMA * Nghiên cứu ở nước ngoài: * Nghiên cứu tại Việt Nam: Như vậy, trước sự cần thiết phải ứng dụng phương pháp định lượng vào dự báo lạm phát tại Việt Nam, với những ưu cùng tính hiệu quả trong dự báo ngắn hạn và sự phù hợp với thực tiễn Việt Nam, mô hình ARIMA là một lựa chọn thích hợp. Bên cạnh đó, các nghiên cứu thực nghiệm trước đây cũng cho thấy tính ứng dụng cao của phương pháp Box-Jenkins. Do đó, đề tài vẫn sử dụng phương pháp này để lập mô hình và dự báo lạm phát Việt Nam trong 12 tháng tới. 2.3. THIẾT KẾ NGHIÊN CỨU DỰ BÁO LẠM PHÁT VIỆT NAM BẰNG MÔ HÌNH ARIMA 2.3.1. Phương pháp nghiên cứu Đề tài sử dụng phương pháp Box-Jenkins để xây dựng mô hình ARIMA dự báo lạm phát Việt Nam. Phương pháp này tiến hành 10 dự báo lạm phát chỉ dựa trên việc xem xét chính chuỗi giá trị lạm phát trong quá khứ. Box – Jenkins (1976) đã đưa ra quy trình dự báo đối với dữ liệu chuỗi thời gian bằng mô hình ARIMA gồm các bước sau: Bước 1: Nhận dạng mô hình; Bước 2: Ước lượng mô hình; Bước 3: Kiểm định mô hình; Bước 4: Dự báo. Nếu mô hình ước lượng được không thỏa mãn các kiểm định ở bước 3 thì ta phải tìm mô hình khác bằng cách quay lại bước 1. Quá trình này được lặp lại cho đến khi ta chọn được mô hình phù hợp nhất để tiến hành dự báo. Dữ liệu được nghiên cứu theo phương pháp Box – Jenkins phải là chuỗi dừng. Do vậy, trước khi nhận dạng mô hình, ta cần phải xem xét dữ liệu chuỗi lạm phát có dừng hay không và biến đổi thành chuỗi dừng nếu chưa dừng. a. Xem xét tính dừng của chuỗi dữ liệu Để nhận biết tính dừng của một chuỗi thời gian, đề tài sử dụng đồng thời đồ thị của chuỗi thời gian, biểu đồ hàm tự tương quan mẫu (SAC) và kiểm định nghiệm đơn vị của Dickey-Fuller. b. Nhận dạng mô hình Nhận dạng mô hình ARIMA là tìm các giá trị thích hợp cho các tham số không mùa: p, d, q và các tham số mùa (nếu có): P, D, Q. d là số lần lấy sai phân thông thường và D là số lần lấy sai phân mùa để biến đổi chuỗi trở thành chuỗi dừng. Việc xác định các giá trị p, q, P, Q dựa vào đặc điểm của hàm SAC và hàm SPAC. - Nếu SAC giảm đột ngột, hàm SAC không có ý nghĩa thống kê kể từ bậc k và hàm SPAC giảm dần thì chọn mô hình MA(q), với q ≥ k. - Nếu SPAC giảm đột ngột, hàm SPAC không có ý nghĩa thống kê kể từ bậc k và hàm SAC giảm dần thì chọn mô hình AR(p), với p ≥ k. - Nếu SAC và SPAC đều giảm dần thì chọn mô hình ARMA(p, q). Việc khảo sát trên SAC và SPAC tại các độ trễ là bội số của 11 độ dài mùa S sẽ giúp kết luận các giá trị P, Q phù hợp cho mô hình. Nói cách khác, với chuỗi lạm phát quan sát theo tháng, ta cần nghiên cứu đồng thời chiều hướng của SAC và SPAC của chuỗi dữ liệu ở những độ trễ nhỏ hơn 12 (không mùa) cũng như ở những độ trễ 12, 24, 36 và 48 (mùa). c. Ước lượng mô hình Bước tiếp theo, đề tài sử dụng phương pháp ước lượng bình phương tối thiểu để ước lượng các tham số f , q của mô hình ARIMA nhận dạng được. d. Kiểm định mô hình - Kiểm định phần dư là nhiễu trắng: Phương pháp tốt nhất để kiểm định sự phù hợp của mô hình là kiểm tra phần dư của mô hình có phải là nhiễu trắng không (Bruce and Richard). Nếu phần dư là nhiễu trắng thì chấp nhận mô hình. Trong trường hợp ngược lại, đề tài phải tiến hành lại từ bước nhận dạng mô hình. Các kiểm định được sử dụng là kiểm định Ljung-Box (LB) với trị thống kê Q, hoặc kiểm định LM. - Kiểm định các hệ số của mô hình phải khác 0: Khi phần dư là nhiễu trắng thì ta có thể sử dụng kiểm định Student với thống kê t để xem xét các tham số trong mô hình có ý nghĩa thống kê hay không. - Kiểm tra hiện tượng thừa biến trong mô hình: Đề tài sử dụng ma trận tự tương quan cho các tham số ước lượng để kiểm tra có tồn tại hiện tượng thừa tham số hay không. Sau tất cả các kiểm định trên, nếu tồn tại nhiều hơn một mô hình đúng, ta sẽ lựa chọn mô hình có các tiêu chuẩn thông tin AIC, SIC, RMSE cực tiểu. Trong trường hợp 3 tiêu chuẩn trên không đồng thời cực tiểu, mô hình có AIC nhỏ nhất sẽ được lựa chọn (TS. Nguyễn Thống, 2000). - Kiểm định tính ổn định cấu trúc của mô hình: Đề tài sử dụng kiểm định Chow với trị thống kê F để xem 12 liệu có sự thay đổi về mặt cấu trúc của mô hình giữa các giai đoạn khác nhau của chuỗi dữ liệu lạm phát (do thay đổi chính sách hoặc cú sốc kinh tế) hay không. Nếu có sự thay đổi cấu trúc giữa các thời kì, đề tài sẽ thực hiện dự báo theo 2 hướng, dự báo mô hình ban đầu và dự báo mô hình kể từ điểm gãy cuối cùng. Từ đó, ta so sánh và đưa ra nhận định mô hình nào là mô hình phù hợp nhất để dự báo lạm phát Việt Nam. e. Dự báo Bước cuối cùng, dựa vào mô hình ARIMA xây dựng được, đề tài tiến hành xác định giá trị dự báo điểm và khoảng tin cậy của dự báo cho chuỗi lạm phát bằng phần mềm Eviews với độ tin cậy là 95% và k=1.96 như sau:Ù Dự báo điểm: Yt Ù Ù Ù Khoảng tin cậy: Yt -k s (e t ) < Yt < Yt + k s (e t ) (2.11) 2.3.2. Phương pháp thu thập và xử lí số liệu Đề tài tiến hành nghiên cứu dự báo lạm phát Việt Nam theo phương pháp Box-Jenkins. Theo đó, lạm phát Việt Nam được dự báo dựa trên việc nghiên cứu động thái của chính chuỗi lạm phát trong quá khứ. Việt Nam sử dụng chỉ số giá tiêu dùng CPI để phản ánh lạm phát. Bên cạnh đó, mô hình ARIMA đòi hỏi chuỗi thời gian phải có ít nhất 50 quan sát, đặc biệt đối với các chuỗi thời gian có thành phần mùa thì chuỗi dữ liệu phải được quan sát từ 3 đến 10 năm. Do vậy, dữ liệu phục vụ cho đề tài là chuỗi số liệu CPI được lấy theo tháng từ tháng 1/2005 đến tháng 6/2014 sau khi đã xử lí sơ bộ. Số liệu CPI được thu thập từ Tổng cục thống kê Việt Nam. Để đảm bảo tính nhất quán của dữ liệu đầu vào cho mô hình, CPI từ tháng 1/2005 đến tháng 10/2009 được đưa về giá trị có cùng năm gốc tính toán gần đây nhất của các tháng còn lại là năm 2009 bằng phương pháp nội suy. KẾT LUẬN CHƯƠNG 2 13 CHƯƠNG 3 KẾT QUẢ NGHIÊN CỨU DỰ BÁO LẠM PHÁT VIỆT NAM VÀ MỘT SỐ KHUYẾN NGHỊ 3.1. THỐNG KÊ MÔ TẢ DỮ LIỆU Mẫu thống kê trong nghiên cứu này gồm 114 quan sát (Bảng 1-Phụ lục 2), là các giá trị CPI theo tháng (đã được đưa về giá trị tính toán so với năm gốc chung là năm 2009) từ tháng 1/2005 đến tháng 6/2014, bốn tháng còn lại là tháng 7, 8, 9, 10/2014 được sử dụng để đánh giá dự báo. Chuỗi CPI có tính xu thế và có dấu hiệu của tính mùa thể hiện qua đồ thị của chuỗi CPI ở hình 3.1. Kết quả kiểm định Jarque-Bera ở bảng 3.2 với mức ý nghĩa 5% cho thấy chuỗi CPI không tuân theo phân phối chuẩn. Các chỉ số thống kê mô tả ở bảng 3.1 cũng chứng tỏ chuỗi CPI luôn biến động và có xu hướng lệch phải. 3.2. KẾT QUẢ NGHIÊN CỨU 3.2.1. Kiểm định tính dừng của chuỗi dữ liệu Chuỗi CPI có tính xu thế, nên nhìn nhận một cách trực quan thì chuỗi CPI không dừng. Biểu đồ tự tương quan của CPI ở hình 3.2 và kiểm định ADF ở bảng 3.3 ở mức ý nghĩa 5% cho kết luận chuỗi CPI không dừng. Để giảm tính xu thế, trước hết chuỗi CPI được lấy logarith (kí hiệu là logCPI). Chuỗi logCPI không dừng thể hiện qua biểu đồ tự tương quan của logCPI ở hình 1 (phụ lục 1) và kiểm định ADF ở bảng 3.4. Để có chuỗi dừng, ta lấy sai phân bậc 1 của logCPI được chuỗi d_log CPI có đồ thị ở Hình 3.3 dưới đây: 14 .04 .03 .02 .01 .00 -.01 05 06 07 08 09 10 11 12 13 D_LOGCPI Hình 3.3: Đồ thị chuỗi d_logCPI Ta có thể thấy qua Hình 3.3, chuỗi d_logCPI biến động theo thời gian, nhưng giá trị trung bình của chuỗi d_logCPI không thay đổi theo thời gian và chuỗi có phương sai giới hạn. Đây là những đặc trưng của một chuỗi dừng, nên chuỗi d_logCPI có thể là chuỗi dừng. Hình 3.4: Giản đồ tương quan của chuỗi d_logCPI Sự giảm nhanh về giá trị 0 sau 3 độ trễ đầu tiên của SAC ở Hình 3.4 cùng kiểm định APF cho thấy chuỗi d_logCPI là chuỗi dừng. Vậy, mô hình sẽ được ước lượng với sai phân bậc 1 của chuỗi logCPI là chuỗi d_logCPI. 3.2.2. Nhận dạng mô hình Hình 3.4 cho thấy SPAC có đỉnh cao ở độ trễ 1, có ý nghĩa thống kê và sau đó giảm đột ngột về 0, kết hợp với SAC giảm dần 15 nhanh theo dạng hàm mũ giảm, ta có thể kết luận tạm thời là chuỗi d_logCPI tuân theo mô hình tự hồi quy bậc p=1. Biểu đồ SAC ở Hình 3.4 cũng cho thấy có đỉnh cao ở độ trễ 36, trong khi ta đã biết chuỗi d_logCPI là chuỗi thời gian quan sát theo tháng, cùng với đồ thị Hình 3.3 đã trình bày nên yếu tố mùa chu kì 12 tháng có thể tồn tại trong mô hình. Điều này gợi ý rằng thành phần MA mùa cần được xem xét trong mô hình với các bậc Q = {1; 2; 3}. Tương tự, SPAC cũng tồn tại những đỉnh cao tại độ trễ 13; 25. Do đó, thành phần AR mùa bậc P = {1; 2} cũng được nhận dạng thử. Như vậy, mô hình nhận dạng có thể phù hợp cho chuỗi logCPI là mô hình tự hồi quy tích hợp trung bình trượt có tính mùa ARIMA(p, d, q)(P, D, Q)s với các dạng thử nghiệm: ARIMA(1; 1; 0)(1; 0; 1)12, ARIMA(1; 1; 0)(2; 0; 1)12, ARIMA(1; 1; 0)(1; 0; 2)12, ARIMA(1; 1; 0)(2; 0; 2)12, ARIMA(1; 1; 0)(1; 0; 3)12, ARIMA(1; 1; 0)(2; 0; 3)12. 3.2.3. Ước lượng và kiểm định mô hình Ta ước lượng các mô hình ARIMA đã nhận dạng thử bằng phương pháp ước lượng bình phương tối thiểu. Từ các kết quả ước lượng ở bảng 3 đến bảng 8 (phụ lục 2), qua kiểm định Fisher, cả 6 mô hình được nhận dạng đều có ý nghĩa thống kê với mức ý nghĩa 5%. Bên cạnh đó, hệ số R2 điều chỉnh của 6 mô hình đều lớn hơn 50%, chứng tỏ mô hình có độ phù hợp tương đối với dữ liệu. So sánh các thông số phổ biến của mô hình được tổng hợp ở Bảng 3.5, mô hình ARIMA(1; 1; 0)(2; 0; 3)12 có R2 điều chỉnh lớn nhất và các giá trị AIC, SIC, RMSE nhỏ nhất nên đây là mô hình phù hợp với logCPI nhất. 16 Bảng 3.5: Các thông số thống kê của các mô hình R2 hiệu Mô hình AIC SIC chỉnh ARIMA(1; 1; 0)(1; 0; 1)12 0.631391 -7.53960 -7.43539 ARIMA(1; 1; 0)(2; 0; 1)12 0.657757 -7.53964 -7.39888 ARIMA(1; 1; 0)(1; 0; 2)12 0.627511 -7.51960 -7.38934 ARIMA(1; 1; 0)(2; 0; 2)12 0.709460 -7.69282 -7.52391 ARIMA(1; 1; 0)(1; 0; 3)12 0.724342 -7.81123 -7.65492 ARIMA(1; 1; 0)(2; 0; 3)12 0.767785 -7.90640 -7.70930 RMSE 0.00538 0.00527 0.00536 0.00483 0.00459 0.00429 Ta kiểm tra độ phù hợp của mô hình ARIMA(1; 1; 0)(2; 0; 3)12 qua các kiểm định sau: * Kiểm định phần dư có phải là nhiễu trắng hay không. Hình 3.5: Giản đồ tương quan của chuỗi phần dư mô hình ARIMA(1; 1; 0)(2; 0; 3)12. Trên biểu đồ tự tương quan của chuỗi phần dư ở Hình 3.5, gần như tất cả p-value của trị thống kê Q đều lớn hơn 0.05 ở mức ý nghĩa 5%, nên ta chấp nhận giả thiết H0 về kiểm định đồng thời tất cả hệ số tự tương quan bằng giá trị 0 của kiểm định LB. Hơn nữa, kết quả kiểm định Breusch-Godfrey LM và kiểm định ARCH LM ở bảng 3.7 ở mức ý nghĩa 5% đều có giá trị p-value > 0.05 cho phép ta 17 chấp nhận giả thiết H0 ở cả hai kiểm định này. Do đó, phần dư của mô hình là nhiễu trắng. * Kiểm định các hệ số của mô hình: Phần dư của mô hình là nhiễu trắng nên ta có thể sử dụng kiểm định Student với thống kê t để kiểm định ý nghĩa thống kê của các biến trong mô hình. Dựa vào kết quả ước lượng mô hình ARIMA(1; 1; 0)(2; 0; 3)12, ở bảng 3.6 kiểm định t chỉ ra biến SMA(12) và SMA(36) không có ý nghĩa thống kê trong mô hình với mức ý nghĩa 5%. Ta tiến hành ước lượng lại mô hình sau khi lần lượt loại bỏ các biến SMA(12), SMA(36) ở bảng 3.8 và bảng 3.9, rồi kiểm định lại độ phù hợp của các mô hình mới bằng các kiểm định LB, kiểm định LM. Cuối cùng, mô hình phù hợp tìm được là ARIMA(1; 1; 0)(2; 0; 2)12 nhưng không có biến SMA(12) có kết quả ước lượng ở bảng 3.9, kết quả kiểm định LM ở bảng 3.10 và biểu đồ tự tương quan ở hình 3 (phụ lục 1). Bảng 3.10: Kết quả Kiểm định ARCH LM và kiểm định BreushGodfrey LM của mô hình ARIMA(1; 1; 0)(2; 0; 2)12 đã bỏ biến SMA(12) Kiểm định Statistics P-value ARCH LM 0.000132 0.990861 Breush-Godfrey LM 0.273937 0.761082 * Kiểm định hiện tượng thừa tham số: Ma trận tương quan ở bảng 3.11 của các ước lượng tham số của dữ liệu d_logCPI cho ra kết quả rất nhỏ. Do đó, hiện tượng thừa tham số không tồn tại trong mô hình đã lựa chọn. Như vậy, sau tất cả các kiểm định, mô hình phù hợp nhất cho chuỗi logCPI là: ARIMA(1; 1; 0)(2; 0; 2)12 đã loại bỏ biến SMA(12). d_logCPIt = 0.001659 + 0.769721 d_logCPIt-1 +0.197787 d_logCPIt(3.1) 12 + 0.452955d_logCPIt-24 – 0.880079 e t - 24 + e t 18 3.2.4. Kiểm định tính ổn định cấu trúc của mô hình: Trong giai đoạn 2005-2010, tăng trưởng cung tiền M2 và tăng trưởng tín dụng của Việt Nam là khá cao. Trước tình hình lạm phát quý I/2011 ở mức cao (bình quân hơn 2%/tháng), ngày 24/2/2011, Chính phủ ban hành Nghị quyết số 11/NQ-CP về những giải pháp chủ yếu tập trung kiềm chế lạm phát, ổn định kinh tế vĩ mô, bảo đảm an sinh xã hội. Và ngày 1/3/2011, chỉ thị 01/CT-NHNN triển khai thực hiện Nghị quyết 11 mới ra đời. Đông thời, Ngân hàng Nhà nước đã bơm tiền ra thị trường bằng các kênh chính thức và sau đó bằng các biện pháp nghiệp vụ đã thu tiền về nhanh, làm cho cung tiền danh nghĩa thì lớn, nhưng tiền (nhất là tiền mặt) thực sự tham gia lưu thông thì ít hơn. Những động thái này đã làm thay đổi chiều hướng diễn biến của lạm phát trong thời gian tiếp theo. Tuy nhiên, theo nhiều nghiên cứu thực nghiệm, như nghiên cứu “Nghiên cứu lạm phát tại Việt Nam theo phương pháp SVAR” của PGS. TS. Nguyễn Thị Liên Hoa (2013), phản ứng của CPI trước các cú sốc trong chính sách tiền tệ rất mạnh nhưng CPI không phản ứng ngay lập tức mà trễ khoảng 6 tháng và tác động này là dai dẳng. Như vậy, phải sau 6 tháng kể từ lúc triển khai thực hiện, tức là đến tháng 9/2011 thì những thay đổi trong chính sách trên mới chính thức phát huy hiệu quả. Do vậy, đề tài tiến hành kiểm định mô hình vừa xây dựng được ở phần trên có thay đổi cấu trúc qua 2 thời kì sau hay không bằng kiểm định Chow: - Thời kì 1: 01/2005-08/2011. - Thời kì 2: 09/2011-06/2014. Bảng 3.12: Kết quả kiểm định Chow cho mô hình ARIMA(1; 1; 0)(2; 0; 2)12 đã loại bỏ biến SMA(12) Kiểm định F-statistic P-value Kiểm định Chow 14.62295 0.000 Qua kết quả của kiểm định Chow ở bảng 3.12, ta thấy mô hình
- Xem thêm -