Đăng ký Đăng nhập
Trang chủ Nghiên cứu khai phá luật kết hợp trong cơ sở dữ liệu địa lý...

Tài liệu Nghiên cứu khai phá luật kết hợp trong cơ sở dữ liệu địa lý

.DOC
87
71
77

Mô tả:

http://www.ictu.edu.vn i MỤC LỤC TRANG Trang phụ bìa Lời cảm ơn.....................................................................................................................i Lời cam đoan................................................................................................................ii Mục lục........................................................................................................................iii Danh mục các ký hiệu, các chữ viết tắt......................................................................iv Danh mục các bảng.....................................................................................................vi Danh mục các hình (hình vẽ, ảnh chụp, đồ thị...)......................................................vii MỞ ĐẦU......................................................................................................................1 CHƯƠNG 1: TỔNG QUAN VỀ DỮ LIỆU KHÔNG GIAN VÀ KHAI PHÁ DỮ LIỆU KHÔNG GIAN................................................................................................4 1.1. Cơ sở dữ liệu địa lý..........................................................................................4 1.1.1. Quan hệ không gian và ràng buộc toàn vẹn không gian...............................6 1.1.2. Phụ thuộc địa lý.............................................................................................8 1.1.3. Geo-Ontology và ràng buộc toàn vẹn không gian......................................10 1.2. Luật kết hợp...................................................................................................11 1.3. Luật kết hợp không gian.............................................................................17 1.4. Tình hình nghiên cứu về khai phá luật kết hợp không gian....................18 1.5. Khai phá luật kết hợp trong cơ sở dữ liệu địa lý.......................................21 1.5.1. Phụ thuộc địa lý giữa đối tượng đích và đối tượng liên quan....................21 1.5.1.1. Phụ thuộc địa lý và luật không đáng quan tâm...................................21 1.5.1.2. Phụ thuộc địa lý và kết nối không gian...............................................24 1.5.2. Phụ thuộc địa lý giữa các đối tượng liên quan............................................26 1.5.3. Phụ thuộc địa lý giữa các đối tượng liên quan ở các mức khác nhau........28 CHƯƠNG 2: MỘT SỐ THUẬT TOÁN KHAI PHÁ LUẬT KẾT HỢP KHÔNG GIAN.........................................................................................................34 2.1. Giới thiệu........................................................................................................34 http://www.ictu.edu.vn 2.2. ii Tiền xử lý dữ liệu không gian phục vụ cho khai phá dữ liệu...................36 2.2.1. Tiền xử lý dữ liệu, thuật toán cắt tỉa dữ liệu không gian đầu vào..............37 2.2.2. Đánh giá thuật toán cắt tỉa dữ liệu không gian đầu vào..............................40 2.3. Các thuật toán khai phá luật kết hợp không gian.....................................41 2.3.1. Thuật toán tạo tập thường xuyên.................................................................41 2.3.1.1. Thuật toán Apriori – KC......................................................................42 2.3.1.2. Đánh giá thuật toán Apriori – KC........................................................46 2.3.2. Thuật toán tạo tập thường xuyên không dư thừa cực đại...........................47 2.3.2.1. Phụ thuộc địa lý và tập thường xuyên đóng........................................48 2.3.2.2. Thuật toán Max-FGP...........................................................................50 CHƯƠNG 3: CÀI ĐẶT CHƯƠNG TRÌNH THỬ NGHIỆM.............................53 3.1. Giới thiệu........................................................................................................53 3.2. Lựa chọn công nghệ......................................................................................53 3.2.1. Công cụ biên tập, lưu trữ và thể hiện các tầng dữ liệu bản đồ...................53 3.2.2. Ngôn ngữ lập trình và hệ quản trị CSDL....................................................55 3.3. Thiết kế chương trình...................................................................................56 3.4. Dữ liệu thử nghiệm........................................................................................58 3.5. Cài đặt chương trình.....................................................................................59 3.5.1. Dữ liệu đầu vào............................................................................................60 3.5.2. Mô đun tiền xử lý dữ liệu không gian.........................................................61 3.5.3. Các thuật toán khai phá luật kết hợp không gian........................................65 3.6. Đánh giá kết quả thử nghiệm.......................................................................67 KẾT LUẬN................................................................................................................67 TÀI LIỆU THAM KHẢO.......................................................................................70 PHỤ LỤC...................................................................................................................73 http://www.ictu.edu.vn iii http://www.ictu.edu.vn iv MỞ ĐẦU 1. Đặt vấn đề Những tiến bộ trong các công nghệ CSDL và các kỹ thuật thu thập dữ liệu như đọc mã số mã vạch, viễn thám, ghi nhận thông tin từ các vệ tinh,… đã thu gom được một lượng lớn dữ liệu trong các CSDL khổng lồ. Việc dữ liệu tăng lên một cách dữ dội đòi hỏi phải được khai phá để trích chọn ra các tri thức hữa ích phục vụ cho công tác chuyên môn. Chính điều này đã dẫn đến sự ra đời của một lĩnh vực mới đầy hứa hẹn gọi là khai phá dữ liệu hay khai phá tri thức trong các CSDL. Khai phá tri thức trong các CSDL có thể được định nghĩa là khai phá tri thức đáng quan tâm, tiềm ẩn và chưa biết trước trong các CSDL lớn [21]. Khai phá dữ liệu là sự kết hợp của một số lĩnh vực bao gồm học máy, các hệ thống CSDL, thể hiện dữ liệu, thống kê và lý thuyết thông tin. Đã có nhiều nghiên cứu về khai phá dữ liệu trong các CSDL quan hệ và giao dịch, nhưng đối với các CSDL không gian vấn đề khai phá dữ liệu vẫn còn là những thách thức cần được giải quyết. Dữ liệu không gian là dữ liệu liên quan đến các đối tượng trong không gian. Một CSDL không gian lưu trữ các đối tượng không gian bao gồm các kiểu dữ liệu không gian và các quan hệ không gian giữa các đối tượng. Dữ liệu không gian mang thông tin hình học và khoảng cách thường được tổ chức theo các cấu trúc chỉ mục không gian và truy cập bằng các phương pháp truy cập không gian. Chính các đặc trưng khác biệt này của các CSDL không gian đã đặt ra nhiều trở ngại nhưng cũng mang đến nhiều cơ hội cho khai phá tri thức từ CSDL không gian. Khai phá dữ liệu không gian hay khai phá tri thức trong CSDL không gian là trích trọn ra các tri thức tiềm ẩn, các quan hệ không gian hay các mẫu chưa rõ lưu trữ trong các CSDL không gian [21]. http://www.ictu.edu.vn v Các nghiên cứu trước đây về học máy, các hệ thống CSDL và thống kê đã đặt nền móng cho nghiên cứu khai phá tri thức trong các CSDL. Và những tiến bộ của các CSDL không gian như cấu trúc dữ liệu không gian, lập luận không gian, tính toán hình học,… đã mở đường cho khai phá dữ liệu không gian. Trở ngại lớn nhất trong khai phá dữ liệu không gian là hiệu quả của các thuật toán khai phá dữ liệu không gian do lượng dữ liệu không gian khổng lồ, các kiểu dữ liệu không gian và các phương pháp truy cập không gian phức tạp. Các phương pháp khai phá dữ liệu không gian tập trung theo ba hướng chính là khai phá luật kết hợp không gian, phân lớp không gian và phân cụm không gian. Với mong muốn nghiên cứu về khai phá luật kết hợp không gian, luận văn đi sâu tìm hiểu một lĩnh vực nhỏ trong không gian đó là không gian địa lý. 2. Mục tiêu của luận văn Luận văn tập trung nghiên cứu về các kỹ thuật khai phá luật kết hợp không gian trong CSDL địa lý nhằm trích rút ra các dữ liệu địa lý có ích tiềm ẩn bên trong các kho tri thức địa lý khổng lồ. Cụ thể luận văn hướng vào các công việc: - Thu thập một số lớp dữ liệu bản đồ (bao gồm cả dữ liệu hình học và dữ liệu thuộc tính) để thử nghiệm với thuật toán khai phá luật kết hợp không gian. - Nghiên cứu một vài thuật toán tiền xử lý dữ liệu phục vụ cho khai phá dữ liệu không gian và một vài thuật toán khai phá luật kết hợp truyền thống để mở rộng áp dụng trên dữ liệu địa lý. - Cài đặt chương trình thử nghiệm thuật toán lựa chọn nhằm khai phá luật kết hợp với dữ liệu hình học và dữ liệu thuộc tính của một số lớp bản đồ. 3. Tóm tắt nội dung luận văn Phần còn lại của luận văn được tổ chức như sau: Chương 1: Tổng quan về dữ liệu không gian và khai phá luật kết hợp không gian. Bao gồm các phần như: Giới thiệu khái quát về dữ liệu địa lý, luật kết hợp, http://www.ictu.edu.vn vi luật kết hợp không gian, những vấn đề khó khăn trong khai phá luật kết hợp không gian. Chương 2: Một số thuật toán khai phá luật kết hợp không gian. Bao gồm: các phương pháp tiền xử lý dữ liệu không gian phục vụ khai phá dữ liệu và các phương pháp khai phá luật kết hợp không gian trên cả dữ liệu hình học và dữ liệu thuộc tính. Chương 3: Cài đặt chương trình thử nghiệm. Bao gồm mô tả bài toán, xây dựng dữ liệu thử nghiệm, thiết kế chương trình, cài đặt thuật toán và đánh giá kết quả thử nghiệm. Kết luận trình bày những nghiên cứu về khai phá luật kết hợp không gian, những đóng góp của luận văn và những định hướng nghiên cứu sắp tới. http://www.ictu.edu.vn vii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT CSDL GKB OGC GIS GeoARM SQL JDBC ODBC GUI ER OO GPS Max-FGP Cơ sở dữ liệu Geographic Knowledge Base Open Gis Consortium Geographic information system Geographic Association Rule Miner Structured Query Language Java Database Connectivity Open Database Connectivity Graphical User Interface Entity Relationship Object Oriented Global Positioning System Maximal Frequent Geographic Patterns http://www.ictu.edu.vn viii DANH MỤC CÁC BẢNG Bảng 1.1: Tập dữ liệu đã được tiền xử lý cho khai phá tập thường xuyên và luật kết hợp không gian...................................................................................................22 Bảng 1.2: Các tập thường xuyên có độ hỗ trợ 50%.................................................22 Bảng 1.3: Các tập thường xuyên và các luật có các phụ thuộc...............................23 Bảng 1.4: Các tập thường xuyên đóng.....................................................................24 Bảng 1.5:Các quan hệ topo theo ngữ cảnh của các đối tượng địa lý......................24 Bảng 1.6: Các quan hệ topo khả năng sử dụng trong khai phá dữ liệu...................25 Bảng 1.7: Các tập thường xuyên có độ hỗ trợ = 50%.............................................27 Bảng 1.8: Các luật kết hợp tạo ra từ các tập thường xuyên có kích thước 2,3,4 có chứa phụ thuộc.........................................................................................................28 http://www.ictu.edu.vn ix DANH MỤC CÁC HÌNH Hình 1.1: Lưu trữ dữ liệu địa lý trong các CSDL quan hệ............................................4 Hình 1.2: Quan hệ không gian tiềm ẩn...............................................................................5 Hình 1.3: Quan hệ không gian có các phụ thuộc địa lý đã biết.......................................6 Hình 1.4: Các quan hệ không gian.................................................................................7 Hình 1.5: Một phần lược đồ CSDL địa lý mức khái niệm và logic..............................9 Hình 1.6: Thể hiện của geo-ontology..........................................................................11 Hình 1.7: Tập dữ liệu có 6 bộ và các tập thường xuyên với minsup = 50%..............13 Hình 1.8: Tập dữ liệu có 6 bộ và các tập thường xuyên đóng có minsup=50%.........15 Hình 1.9: Quan hệ khoảng cách trong thực tế và quan hệ giữa các điểm trung tâm................................................................................................................................19 Hình 1.10: Phân cấp khái niệm của nguồn nước.........................................................29 Hình 1.11: a) Tập dữ liệu có nguồn nước ở mức 2 và b) Các tập thường xuyên với minsup=30% ...............................................................................................................31 Hình 1.12: a) Tập dữ liệu có nguồn nước ở mức 3 và b) Các tập thường xuyên với minsup 30%..................................................................................................................33 Hình 2.1. Sơ đồ khai phá luật kết hợp không gian từ các CSDL địa lý......................25 Hình 2.2: Giả mã của thuật toán trích chọn các phụ thuộc từ lược đồ CSDL............36 Hình 2.3: Giả mã của thuật toán tiền xử lý dữ liệu ....................................................38 Hình 2.4. Tập dữ liệu có 6 bộ và các tập thường xuyên với minsnup= 50%.............40 Hình 2.5: Đồ thị thể hiện các tập thường xuyên có phụ thuộc {D} (trái) và các tập thường xuyên không có phụ thuộc {D} (phải)......................................................41 Hình 2.6: Thuật toán Apriori – KC tạo các tập thường xuyên không có các phụ thuộc đã biết.................................................................................................................43 Hình 2.7: Đồ thị thể hiện các tập thường xuyên có phụ thuộc {A, W} (trái) và các tập thường xuyên không có phụ thuộc {A, W} (phải)................................................46 http://www.ictu.edu.vn x Hình 2.8: Đồ thị thể hiện các tập thường xuyên có phụ thuộc {D} và {A, W} (trái) và các tập thường xuyên không có phụ thuộc {D} và {A, W} (phải).......................47 Hình 2.9: Các tập thường xuyên và các tập thường xuyên đóng................................48 Hình 2.10: Đồ thị thể hiện các tập thường xuyên đóng có các phụ thuộc đã biết (trái) và các tập thường xuyên đóng không có các phụ thuộc đã biết (phải)..............49 Hình 2.11: Đồ thị thể hiện các tập thường xuyên không có phụ thuộc đã biết và các tập thường xuyên không dư thừa cực đại không có các phụ thuộc đã biết (phải)......51 Hình 2.12: Giả mã của thuật toán Max-FGP...............................................................52 Hình 3.1: Quá trình khai phá luật kết hợp từ CSDL địa lý của chương trình Wekageo................................................................................................................................57 Hình 3.2: Một lược đồ CSDL địa lý............................................................................58 Hình 3.3: Cấu trúc lưu trữ dữ liệu dịa lý trong OGC..................................................61 Hình 3.4: Giao diện kết nối CSDL..............................................................................61 Hình 3.5: Giao diện tiền xử lý dữ liệu địa lý...............................................................62 Hình 3.6: Giao diện tạo các cặp phụ thuộc địa lý........................................................63 Hình 3.7: Message khi không tìm thấy quan hệ không gian.......................................64 Hình 3.8: Message khi file .arff đã được tạo ra...........................................................65 Hình 3.9: Giao diện thẻ Association các thuật toán khai phá luật kết hợp.................66 Hình 3.10: Giao diện xuất kết quả của thuật toán khai phá luật kết hợp không gian ..............................................................................................................................66 http://www.ictu.edu.vn 1 CHƯƠNG 1: TỔNG QUAN VỀ DỮ LIỆU KHÔNG GIAN VÀ KHAI PHÁ DỮ LIỆU KHÔNG GIAN 1.1. Cơ sở dữ liệu địa lý CSDL địa lý lưu trữ các thực thể trong thế giới thực hay còn gọi là các đối tượng địa lý thuộc một vùng nghiên cứu nào đó. Các đối tượng địa lý chứa cả các thuộc tính không gian (tọa độ địa lý x,y) và các thuộc tính phi không gian (tên, dân số,…). Đó là hai thành phần chính của dữ liệu không gian. Dữ liệu địa lý của các đối tượng địa lý thường được lưu trữ trong các CSDL quan hệ hoặc CSDL quan hệ đối tượng. Hình 1.1 thể hiện dữ liệu địa lý được lưu trữ trong CSDL quan hệ, trong đó các đối tượng địa lý như đường, nguồn nước và siêu thị là các quan hệ khác nhau (các bảng CSDL), chúng có cả các thuộc tính không gian (dữ liệu hình học) và các thuộc tính phi không gian (dữ liệu thuộc tính). a) Duong Gid Name Shape 1 Trần Duy Hưng Multiline[(x1,y1),(x2,y2),...] 2 Bưởi Multiline[(x1,y1),(x2,y2),...] b) NguonNuoc Gid Name Shape 1 Hồ Hoàn Kiếm Multiline[(x1,y1),(x2,y2),...] 2 Sông Tô Lịch Multiline[(x1,y1),(x2,y2),...] c) SieuThi Gid Name Shape 1 Big C Thăng Long Point[(x1,y1)] 2 Plaza Tràng Tiền Point[(x1,y1)] Hình 1.1: Lưu trữ dữ liệu địa lý trong các CSDL quan hệ Ví dụ đặc trưng không gian Siêu thị Big C Thăng Long có dữ liệu hình học là điểm được biểu diễn trong CSDL là cặp tọa độ, dữ liệu thuộc tính có thể là số loại mặt hàng kinh doanh, doanh thu hàng ngày... của cửa hàng. http://www.ictu.edu.vn 2 Ví dụ khác là đặc trưng không gian đường phố Trần Duy Hưng (Hà Nội), có dữ liệu hình học là tập các điểm để tạo nên đường gấp khúc, dữ liệu thuộc tính có thể là số làn xe, chiều dài của đường phố... Các thuộc tính không gian của các đối tượng địa lý (hình 1.1) có các quan hệ không gian: gần (close), xa (far), chứa (contains), cắt (intersects). Do đó, các đối tượng gần nhau trong thế giới thực thường có ảnh hưởng lẫn nhau hay phụ thuộc lẫn nhau. Đây chính là đặc trưng của dữ liệu địa lý trong khai phá dữ liệu và cũng là sự khác biệt của việc khai phá dữ liệu không gian so với các phương pháp khai phá dữ liệu truyền thống. Quá trình trích chọn quan hệ không gian sẽ tạo ra rất nhiều kết hợp không gian mà có thể được người sử dụng quan tâm hoặc không quan tâm. Hình 1.2 là ví dụ về các quan hệ không gian tiềm ẩn giữa các siêu thị, các trạm ATM và các đường phố, không có một mối quan hệ rõ ràng nào giữa các dữ liệu này. Tuy nhiên, trong thực tế những người đi mua hàng ở siêu thị hay tìm đến các các trạm ATM gần đó để rút tiền nên việc trích chọn ra các quan hệ không gian giữa các trạm ATM, các siêu thị và đường sẽ được quan tâm trong quá trình khai phá dữ liệu. Nói cách khác, chúng có sự phụ thuộc địa lý giữa các đối tượng không gian. Hình 1.2: Quan hệ không gian tiềm ẩn http://www.ictu.edu.vn 3 Hình 1.3 là hai ví dụ về các quan hệ không gian trong đó thể hiện các phụ thuộc địa lý đã biết. Hình 1.3 (trái) cho thấy cầu vượt luôn cắt đường còn cầu luôn cắt các sông, trong đó cả cầu vượt và cầu đều có cùng ngữ nghĩa là nối các đường. Hình 1.3 (phải) có một phụ thuộc địa lý đã biết là mỗi siêu thị đều nằm trên ít nhất một đường. Hình 1.3: Quan hệ không gian có các phụ thuộc địa lý đã biết Khác biệt chính giữa các ví dụ ở hình 1.2 và hình 1.3 là: hình 1.3 chứa các quan hệ không gian đã biết. Ví dụ: is_a(Cau_vuot)intersects(Duong) hoặc is_a(Sieu_thi)intersects(Duong). Còn hình 1.2 chứa các quan hệ không gian tiềm ẩn có thể được quan tâm trong quá trình khai phá dữ liệu. Các phụ thuộc địa lý đã biết là các quan hệ không gian bắt buộc thể hiện các ràng buộc toàn vẹn không gian được sử dụng để đảm bảo sự thống nhất của dữ liệu. Chúng thường được thể hiện rõ trong các lược đồ CSDL địa lý. 1.1.1. Quan hệ không gian và ràng buộc toàn vẹn không gian Có ba kiểu quan hệ không gian chính là: quan hệ khoảng cách, quan hệ hướng và quan hệ topo. Quan hệ khoảng cách dựa trên khoảng cách Euclid giữa 2 đối tượng địa lý (hình 1.4a). Đặt dist là hàm khoảng cách, operator là toán tử thuộc tập {<, >,<=, >=, http://www.ictu.edu.vn 4 =}, d là một số thực, A và B là hai đối tượng địa lý. Khi đó khoảng cách giữa A và B được biểu diễn bởi hàm dist(A,B) có giá trị là d. Quan hệ hướng thể hiện vị trí của đối tượng này so với các đối tượng khác trong quan hệ không gian (hình 1.4b). Quan hệ topo có kiểu đặc trưng điển hình là giao giữa hai đối tượng địa lý và chúng bất biến trên các phép biến đổi hình học như quay và co giãn. Có nhiều phương pháp để xác định các quan hệ topo giữa các điểm, đường, vùng. Hầu như, chúng đều dựa trên mô hình giao nhau như: bên trong và đường bao hoặc bên trong, bên ngoài và đường bao [15]. Phép giao là sự phối hợp của các toán tử logic và(  ) và or(  ). Các mô hình giao nhau xác định 8 quan hệ topo nhị phân là: cắt (crosses), chứa (contains), trong (within), bao (covers), bao bở (-coveredBy), trùng (equals), không nối (disjoint), chồng (overlaps) [28]. Quan hệ topo cũng có thể được xác định theo phương pháp tích phân hoặc phương pháp mở rộng chiều. Các phương pháp này xác định 6 quan hệ không gian là: crosses, contains, within, equals, disjoint, overlaps (hình 1.4c). Quan hệ topo mức cao là không nối (disjoint) và nối (connected). Khi các đối tượng được nối với nhau thì chúng chỉ có các quan hệ là: crosses, contains, within, covers, coveredBy, equals, overlaps. Hình 1.4: Các quan hệ không gian Quan hệ không gian giữa hai đối tượng địa lý có thể thuộc một trong các dạng: khả năng (possible), bắt buộc (mandatory) và cấm (prohibited). Quan hệ khả http://www.ictu.edu.vn 5 năng là quan hệ có thể tồn tại hoặc không tồn tại trong CSDL (Ví dụ: đường cắt sông, thành phố có các nhà máy). Quan hệ bắt buộc và quan hệ cấm thể hiện ràng buộc toàn vẹn không gian trong CSDL nhất quán [p37.45]. Ràng buộc toàn vẹn không gian chứa các tính chất riêng của dữ liệu địa lý và các quan hệ không gian để đảm bảo cũng như duy trì chất lượng và sự nhất quán của các đối tượng địa lý trong CSDL địa lý. Ràng buộc toàn vẹn không gian giữa hai đối tượng địa lý A và B có thể được xác định bởi các quan hệ thông qua các ràng buộc toán học. Ví dụ, quan hệ bắt buộc giữa siêu thị và đường có thể được thể hiện bởi quan hệ 1-1 (một-một) hoặc 1-n (một-nhiều) có nghĩa là mỗi siêu thị phải liên quan đến ít nhất một đường. Quan hệ bắt buộc thể hiện phụ thuộc địa lý đã biết, mà phụ thuộc địa lý đã biết lại tạo ra các mẫu đã biết, chúng không được quan tâm trong khai phá luật kết hợp không gian. 1.1.2. Phụ thuộc địa lý Trong không gian địa lý, ”mỗi đối tượng đều có quan hệ đến các đối tượng khác nhưng những đối tượng gần thì có quan hệ mật thiết hơn những đối tượng xa”[p186, 29]. Tuy nhiên có một số đối tượng luôn có quan hệ với các đối tượng khác không phụ thuộc vào khoảng cách. Khi đó, chúng được gọi là một phụ thuộc địa lý. Định nghĩa 1 (Phụ thuộc địa lý): là quan hệ không gian bắt buộc giữa hai đối tượng địa lý A và B, trong đó mỗi trường hợp của A phải liên quan với ít nhất một trường hợp của B. Phụ thuộc địa lý gọi là đã biết khi chúng được thể hiện rõ ràng trong lược đồ CSDL địa lý để đảm bảo sự toàn vẹn không gian của dữ liệu địa lý. Lược đồ CSDL địa lý là sự mở rộng của lược đồ quan hệ thực thể (ER) hoặc lược đồ hướng đối tượng (OO) để xử lý các kiểu dữ liệu địa lý. Trong các lược đồ CSDL địa lý, các phụ thuộc địa lý là quan hệ không gian (Ví dụ: giáp, chứa) hoặc là quan hệ 1-1 hay 1-n giữa các bảng dữ liệu. http://www.ictu.edu.vn 6 Hình 1.5 là ví dụ thể hiện một phần của lược đồ CSDL địa lý mức khái niệm và một phần của lược đồ mức logic tương ứng cho CSDL quan hệ và CSDL hướng đối tượng. Trong lược đồ thể hiện các quan hệ bắt buộc (ví dụ: siêu thị và đường, đường và thành phố, nguồn nước và thành phố), còn các quan hệ khả năng không thể hiện các phụ thuộc đã biết nhưng có thể là đáng được quan tâm trong khai phá tri thức thì không được thể hiện (ví dụ: siêu thị và nguồn nước). Ở mức logic quan hệ bắt buộc thể hiện bởi quan hệ 1-1 hoặc 1-n của các khóa ngoại trong CSDL địa lý quan hệ hoặc thể hiện bởi con trỏ trỏ tới các lớp trong CSDL địa lý hướng đối tượng. Một phần của lược đồ ER Creat Table Duong (duongid integer, ten varchar(30), geometry integer, Primary Key (duongid)) Creat Table SieuThi (sieuthiid integer, ten varchar(30), diachi varchar(30), geometry integer, Primary Key (sieuthiid) Foriegn Key (duongid) reference Duong) Một phần của lược đồ OO Public class Duong{ private varchar(30) ten; private integer geometry; public Duong() { } } Public class SieuThi{ private varchar(30) tene; private varchar(30) diachi; private integer geometry; Duong Duong public SieuThi() { } } Hình 1.5: Một phần lược đồ CSDL địa lý mức khái niệm và logic http://www.ictu.edu.vn 7 1.1.3. Geo-Ontology và ràng buộc toàn vẹn không gian Năm 1993, Gruber [24] đưa ra một định nghĩa về ontology: “Một ontology là một đặc tả rõ ràng, mang tính hình thức của một khái niệm có thể chia sẻ”. Định nghĩa của Gruber về ontology là một định nghĩa chung của ontology, ontology có thể được định nghĩa theo những ngữ cảnh cụ thể và có những đặc điểm sau:  Các ontology được dùng để miêu tả một miền xác định.  Các thuật ngữ và các quan hệ của các thuật ngữ được miêu tả rõ ràng trong miền dữ liệu đó.  Tồn tại một cơ chế để tổ chức các thuật ngữ (ví dụ cấu trúc phân cấp).  Có sự thống nhất giữa những người dùng về ý nghĩa của các thuật ngữ được sử dụng trong miền. Gần đây, khái niệm ontology đã được sử dụng nhiều trong các lĩnh vực khác nhau như: khoa học máy tính, trí tuệ nhân tạo, CSDL, mô hình khái niệm,... Do đó, có nhiều ontology được đưa ra và cũng nhiều mô hình, ngôn ngữ, công cụ được phát triển. Chaves đã định nghĩa được một geo-ontology cho quản trị dữ liệu của nước Bồ Đào Nha và một siêu mô hình (meta-model) tên là GKB, đây chính là điểm khởi đầu cho việc định nghĩa một ontology cho dữ liệu địa lý [14]. Trong geo-ontology, các ràng buộc toàn vẹn không gian được thể hiện bởi các thuộc tính của dữ liệu địa lý. Chúng được xem như là các thuộc tính giới hạn và được xác định như một quan hệ không gian và phi không gian với các ràng buộc nhỏ nhất và lớn nhất tương ứng,... Ví dụ: khái niệm đảo là một khu đất có nước bao quanh, có quan hệ 1-1 với khái niệm nước. Hình 1.6 là ví dụ của một geo-ontology định nghĩa về các quan hệ topo khác nhau để minh họa xem các ràng buộc ngữ nghĩa bắt buộc được thể hiện như thế nào. http://www.ictu.edu.vn 8 Trong ví dụ ở hình 1.6 bus stop (trạm xe buýt) và gas station (trạm xăng) có một ràng buộc bắt buộc với road (đường) vì mỗi trạm xe buýt và mỗi trạm xăng phải nằm trên (touch) ít nhất một đường nào đó. Tuy nhiên, đường không nhất thiết phải có trạm xe buýt hay trạm xăng. Sự kết hợp một chiều thể hiện quan hệ bắt buộc mà các trạm xe buýt và trạm xăng phải có với đường. Để đánh giá số lượng các phụ thuộc đã biết trong các geo-ontology, chúng ta phân tích geo-ontology đầu tiên của Bồ Đào Nha tên là geo-net-pt01 [14]. Mặc dù, không phải tất cả các thành phần của miền địa lý được định nghĩa trong geo-netpt01 nhưng ở đây cũng có nhiều phụ thuộc 1-1 và 1-n. Kho geo-ontology lưu trữ tại 3 mức thông tin: mức quản trị (geoadministrative), mức vật lý (geo-physical) và mức mạng (network). Mức quản trị lưu trữ thông tin quản trị về phân chia phạm vi và gồm các đối tượng địa lý như các đô thị (municipality), các đường (road),... Mức vật lý lưu trữ các đối tượng như các lục địa (continent), các đại dương (ocean), các hồ (lake), các vịnh (bay),... Mức mạng lưu trữ các dữ liệu phi không gian và các quan hệ của tầng quản trị như dân số của một thành phố. Geo-net-pt01 có 58 đối tượng địa lý và 55 quan hệ 1-1. Hình 1.6: Thể hiện của geo-ontology http://www.ictu.edu.vn 1.2. 9 Luật kết hợp Luật kết hợp là một biểu thức có dạng: XY, trong đó X và Y là tập các mục cùng xuất hiện trong một bộ cho trước [3]. Bài toán luật kết hợp thông thường được đặc tả hình thức như sau: - Cho một tập mục F = {f 1, f2,..., fk,…, fn} và bộ dữ liệu  là tập các dòng (còn gọi là các giao tác) W, trong đó W là một tập mục (bộ) và thỏa mãn W  F; W là một véc tơ nhị phân mà phần tử w[k]=1 nếu W chứa thuộc tính fk và w[k]=0 trong trường hợp ngược lại. - Trong mỗi giao tác sẽ có đúng một dòng trong tập dữ liệu được khai phá. Xét X là một tập của F, W chứa X nếu với  fk  X đều có w[k]=1. Tương tự Y là một tập của F, W chứa Y nếu với  fk  Y đều có w[k]=1. - Luật kết hợp là một biểu thức có dạng XY, trong đó X, Y  F; X, Y≠ Ø và X  Y=Ø. - Độ hỗ trợ (support) s của một tập mục X là phần trăm số dòng X xuất hiện như là một tập con so với số dòng của tập mục. Độ hỗ trợ của luật XY được ký hiệu là s(X  Y). - Luật XY thỏa mãn tập  với độ tin cậy 0  c  1 nếu có ít nhất c% các trường hợp của  thỏa mãn cả X và Y, được ký hiệu là c(XY)=s(X  Y)/s(X). Bài toán khai phá luật kết hợp được thực hiện qua hai bước [3]: - Bước 1 Tìm tất cả các tập mục thường xuyên: một tập mục là thường xuyên nếu độ hỗ trợ của nó lớn hơn hoặc bằng một ngưỡng nào đó gọi là minsup. - Bước 2 Tạo luật mạnh (luật có độ tin cậy cao): luật là mạnh nếu độ hỗ trợ của nó lớn hơn hoặc bằng độ hỗ trợ nhỏ nhất minsup và độ tin cậy của nó thì lớn hơn hoặc bằng một ngưỡng nào đó gọi là minconf. http://www.ictu.edu.vn 10 Nếu tập thuộc tính Z là tập thường xuyên thì tất cả các tập con của nó đều là tập thường xuyên. Nếu tập thuộc tính Z không phải là tập thường xuyên thì tất cả các tập chứa nó cũng không phải là tập thường xuyên. Nếu tập Z thỏa mãn ràng buộc về độ hỗ trợ thì tất cả các luật được tạo ra từ tập Z cũng thỏa mãn ràng buộc về độ hỗ trợ [3]. Thuật toán khai phá luật kết hợp Apriori tạo ra các tập ứng viên và sau đó tính mức độ thường xuyên của chúng để tạo ra các tập thường xuyên. Việc tạo ra các tập ứng viên được thực hiện bằng cách duyệt đa cấp trên tập dữ liệu. Đầu tiên, tính độ hỗ trợ của các phần tử riêng lẻ để xác định các tập thường xuyên (gọi là tập mục k thường xuyên). Các bước con, nhóm các tập thường xuyên Lk-1 vào các tập Ck có k phần tử. Tính độ hỗ trợ của từng tập ứng viên, nếu độ hỗ trợ lớn hơn hoặc bằng minsup thì tập đó được coi là tập thường xuyên. Lặp lại quá trình trên cho đến khi tập thường xuyên trong kết quả của bước duyệt là tập rỗng,... Các luật kết hợp được tạo ra từ các tập thường xuyên kết quả đạt minsup. a) Tập dữ liệu b) Các tập thường xuyên với minsup = 50% Tid itemset 1 A, C, D, T, W 2 C, D, W 3 A, D, T, W 4 A, C, D, W 5 A, C, D, T, W 6 C, D, T k Các tập thường xuyên 1 {A}, {C}, {D}, {T}, {W} 2 {A,C}, {A,D}, {A,T}, {A,W}, {C,D}, {C,T}, {C,W}, {D,T}, {D,W}, {T,W} 3 {A,C,D}, {A,C,W}, {A,D,T}, {A,D,W}, {A,T,W}, {C,D,T}, {C,D,W}, {D,T,W} 4 {A,C,D,T}, {A,D,T,W}
- Xem thêm -

Tài liệu liên quan