Đăng ký Đăng nhập
Trang chủ Kỹ thuật - Công nghệ Điện - Điện tử Bài giảng kỹ thuật đo lường và cảm biến...

Tài liệu Bài giảng kỹ thuật đo lường và cảm biến

.PDF
117
879
89

Mô tả:

bài giảng kỹ thuật đo lường và cảm biến
TRÖÔØNG ÑAÏI HOÏC SÖ PHAÏM KYÕ THUAÄT TP. HOÀ CHÍ MINH KHOA CÔ KHÍ CHEÁ TAÏO MAÙY BOÄ MOÂN CÔ ÑIEÄN TÖÛ -------------------- BAØI GIAÛNG KYÕ THUAÄT ÑO LÖÔØNG VAØ CAÛM BIEÁN TP. HCM 2006 (LƯU HÀNH NỘI BỘ) Chương 1: Những khái niệm và đặc trưng cơ bản của kỹ thuật đo lường và cảm biến................................................................................................................. 2 1.1 Một số định nghĩa và đặc trưng........................................................................ 2 1.2 Phân loại cảm biến.......................................................................................... 11 1.3 Các đại lượng ảnh hưởng................................................................................ 15 1.4 Mạch đo lường và gia công thông tin đo........................................................ 16 1.5 Sai số phép đo và gia công kết quả đo lường ................................................. 17 1.6 Chuẩn cảm biến .............................................................................................. 19 1.7 Độ nhạy........................................................................................................... 20 1.8 Độ tuyến tính .................................................................................................. 21 1.9 Độ nhanh-Thời gian hồi đáp........................................................................... 22 1.10 Giới hạn sử dụng cảm biến........................................................................... 23 1.11 Các mạch giao diện điện tử của các bộ cảm biến......................................... 24 Chương 2: Các chuyển đổi đo lường sơ cấp..................................................... 30 2.1 Khái niệm chung............................................................................................. 30 2.2 Các chuyển đổi điện trở.................................................................................. 33 2.3 Các chuyển đổi điện từ ................................................................................... 43 2.4 Các chuyển đổi tĩnh điện ................................................................................ 58 2.5 Các chuyển đổi nhiệt điện .............................................................................. 73 2.6 Các chuyển đổi hóa điện................................................................................. 84 2.7 Các chuyển đổi điện tử và ion ........................................................................ 96 2.8 Các chuyển đổi lượng tử................................................................................. 99 Chương 3 Cảm biến thông minh..................................................................... 105 3.1 Sự ra đời của cảm biến thông minh.............................................................. 105 3.2 Vi điện tử hóa các chuyển đổi sơ cấp........................................................... 105 3.3 Xử lý sơ bộ kết quả đo trong cảm biến thông minh ..................................... 106 3.4 Cấu trúc của cảm biến thông minh ............................................................... 109 3.5 Một số ví dụ về cảm biến thông minh .......................................................... 110 3.7 Thiết bị đo thông minh và linh hoạt ............................................................. 113 Tài liệu tham khảo.................................................................................................. 1 CHƯƠNG 1: NHỮNG KHÁI NIỆM VÀ ĐẶC TRƯNG CƠ BẢN CỦA KỸ THUẬT ĐO LƯỜNG VÀ CẢM BIẾN 1.1. MỘT SỐ ĐỊNH NGHĨA VÀ ĐẶC TRƯNG 1.1.1. Định nghĩa: Trong thực tế đời sống và sản xuất, việc nắm bắt các thông tin trong quá trình hoạt động của các hệ thống, thiết bị là vô cùng quan trọng và cần thiết. Chỉ khi nắm bắt được các thông số của chúng, nói cách khác là đánh giá định lượng được chúng, chúng ta mới có thể làm chủ được hoàn toàn các thiết bị và hệ thống đó trên phương diện điều chỉnh, điều khiển. Các thông số này thường được thể hiện qua các đại lượng vật lý đặc trưng tương ứng như nhiệt độ, áp suất, lưu lượng... Vì vậy, không có cách nào khác là chúng ta phải có các phương pháp tương ứng để đo lường giá trị của các đại lượng vật lý này. ♦ Đo lường: là một quá trình đánh giá định lượng đại lượng cần đo để có kết quả bằng số so với đơn vị đo. [1] (Như vậy, không phải đại lượng nào cũng có thể đo được một cách trực tiếp vì không có đơn vị mẫu của đại lượng đó để thực hiện so sánh, ví dụ: ứng suất cơ học… Khi đó người ta phải chuyển đổi đại lượng vật lý này sang dạng khác để thực hiện phép đo, ví dụ: chuyển sang dạng điện loadcell cảm biến lực căng và so sánh bằng tương quan điện) ♦ Đo lường học: là ngành khoa học nghiên cứu về các phương pháp để đo các đại lượng khác nhau, về mẫu và đơn vị đo. [1] ♦ Kỹ thuật đo lường: là ngành kỹ thuật nghiên cứu và ứng dụng các thành quả của đo lường học vào phục vụ sản xuất và đời sống. [1] Cảm biến chính là một trong những sản phẩm quan trọng nhất của Kỹ thuật đo lường. Các đại lượng vật lý cần đo được cảm biến biến đổi thành một đại lượng điện tương ứng ở đầu ra. Đại lượng điện này phản ánh các thông tin cần thiết liên quan đến đại lượng cần đo. ♦ Cảm biến: là một thiết bị chịu tác động của đại lượng cần đo m không có tính chất điện và cho ta một đặc trưng mang bản chất điện (điện tích, điện áp, dòng điện hoặc trở kháng…) ký hiệu là s. Đặc trưng điện s là hàm của đại lượng cần đo: s = F(m).[2] Rõ ràng rằng, với mỗi loại cảm biến thì mối quan hệ hàm số này sẽ có một dạng biểu thức hàm khác nhau. Nó phụ thuộc vào các yếu tố cấu thành của cảm 2 biến như: cấu trúc, vật liệu, môi trường … Tuy nhiên để đơn giản trong việc đo lường và xử lý tín hiệu, người ta thường cố gắng chế tạo các loại cảm biến sao cho quan hệ hàm đó là một hàm tuyến tính tức là có hệ số tỷ lệ hằng và đơn trị. Hệ số tỷ lệ đó thường được gọi dưới tên gọi là độ nhạy của cảm biến, ký hiệu S: S= ds ∆s = dm ∆m (1.1) Hệ số S thường phụ thuộc vào các yếu tố: + Sự biến thiên giá trị của đại lượng cần đo (độ tuyến tính của đồ thị biến đổi đại lượng cần đo) và tần số thay đổi của nó (dải thông). + Thời gian sử dụng của cảm biến (độ già hoá) + Ảnh hưởng của các đại lượng vật lý khác (nhiễu từ môi trường xung quanh) 1.1.2. Các đặc trưng của kỹ thuật đo lường: Kỹ thuật đo lường bao gồm các đặc trưng sau: 1.1.2.1. Đại lượng đo (hay tín hiệu đo): ♦ Theo tính chất thay đổi của đại lượng đo có thể chia thành đại lượng đo tiền định và đại lượng đo ngẫu nhiên: a, Đại lượng đo tiền định: là đại lượng đo đã biết trước được quy luật thay đổi của nó theo thời gian nhưng có một hoặc một số thông số cần phải đo. Đó thường là tín hiệu một chiều, xoay chiều hình sin hay xung vuông với các thông số cần đo là biên độ, tần số, góc pha… Ví dụ: đo độ lớn biên độ của tín hiệu hình sin. b, Đại lượng đo ngẫu nhiên: là đại lượng đo có sự biến đổi theo thời gian một cách không có quy luật, nếu lấy bất kỳ giá trị nào của tín hiệu thì đó đều là giá trị ngẫu nhiên. Ví dụ: độ ẩm của không khí. Trong thực tế đa số các dạng tín hiệu đo đều là ngẫu nhiên. Tuy nhiên ở một chừng mực nào đó ta có thể giả thiết rằng trong suốt quá trình diễn ra phép đo, đại lượng đo là tín hiệu thay đổi chậm hoặc không đổi hoặc thay đổi theo quy luật đã biết. Trong trường hợp đại lượng đo ngẫu nhiên biến đổi theo một tần số rất lớn thì không sử dụng được các phép đo thông thường mà phải đo bằng phương pháp đo lường thống kê. 3 ♦ Theo cách biến đổi tín hiệu đo có thể chia thành tín hiệu đo rời rạc (số) và tín hiệu đo liên tục (tương tự): a, Tín hiệu đo liên tục (tương tự): là biến đổi tín hiệu đo thành dạng tín hiệu khác tương tự với nó. Ứng với nó là các thiết bị đo tương tự. Ví dụ: ampemet có kim chỉ đo cường độ dòng điện. b, Đại lượng đo rời rạc (số): là biến đổi tín hiệu đo thành tín hiệu số. Ứng với nó là các thiết bị đo số. ♦ Theo bản chất của đại lượng đo có thể chia thành: a, Đại lượng đo năng lượng: là đại lượng đo mà bản thân nó mang năng lượng như sức điện động, điện trường, từ trường, công suất, … b, Đại lượng đo thông số: là các thông số của mạch điện như điện trở, điện cảm, điện dung hay hệ số từ trường …, hoặc các đại lượng đo vị trí, kích thước … c, Đại lượng đo phụ thuộc thời gian: chu kỳ, tần số, góc pha … d, Đại lượng đo không điện: để thực hiện đo được bằng phương pháp điện đòi hỏi phải có sự chuyển đổi chúng về dạng tín hiệu điện bằng bộ chuyển đổi đo lường sơ cấp. 1.1.2.2. Điều kiện đo: Các thông tin đo lường bao giờ cũng gắn chặt với môi trường sinh ra đại lượng đo. Khi đo phải đảm bảo loại bỏ được các ảnh hưởng của môi trường đến thiết bị đo (những yếu tố khiến cho phép đo không thực hiện được trong điều kiện tiêu chuẩn đã định), đồng thời bản thân thiết bị đo cũng không được gây ảnh hưởng đến (làm biến đổi) đại lượng đo. 1.1.2.3. Đơn vị đo: Là các giá trị mẫu chuẩn về một đại lượng nào đó đã được quốc tế quy định chung cho mọi quốc gia phục vụ cho việc so sánh với giá trị đo được để phép đo đưa ra được thông số cụ thể. Hệ thống đơn vị quốc tế SI gồm 2 nhóm đơn vị: + Đơn vị cơ bản: được thể hiện bằng các đơn vị chuẩn với độ chính xác cao nhất mà khoa học và kỹ thuật hiện đại có thể thực hiện được. Các đơn vị cơ bản được chọn sao cho với số lượng ít nhất mà có thể suy ra các đơn vị kéo theo cho tất cả các đại lượng vật lý. + Đơn vị kéo theo: là đơn vị có liên quan đến các đơn vị cơ bản theo những quy luật xác định bằng công thức. 4 Bảng 1.1: Bảng đơn vị cơ bản và các đơn vị kéo theo. STT Các đại lượng vật lý Tên đơn vị Ký hiệu Met m Kilogram kg Thời gian Giây s Dòng điện Ampe A Nhiệt độ Kelvin K Số lượng vật chất Mol mol Cường độ ánh sáng Candela Cd Tốc độ Mét trên giây m/s Gia tốc Mét trên giây bình phương m/s2 Jun J Newton N Watt W Watt giây W.s Culông C Điện áp, thế điện động Vôn V Cường độ điện trường Vôn trên mét V/m Điện dung Fara F Điện trở Ôm Ω Ôm mét Ω.m Fara trên mét F/m Các đại lượng cơ bản: Độ dài Khối lượng 1 Các đại lượng cơ học: 2 Năng lượng và công Lực Công suất Năng lượng Các đại lượng điện: Điện lượng 3 Điện trở riêng Hệ số điện môi tuyệt đối 5 Các đại lượng từ: 4 Từ thông Webe Wb Cảm ứng từ Tesla T Ampe trên mét A/m Henry H Henry trên mét H/m Luồng (thông lượng) ánh sáng Lumen lm Cường độ sáng riêng (độ chói) Candela trên mét vuông Cd/m2 Độ rọi Lumen trên mét vuông lm/m2 (hay lux) Cường độ từ trường Điện cảm Hệ số từ thẩm Các đại lượng quang: 5 Lumen giây Năng lượng lm.s Bảng 1.2: Bảng các bội và ước số thường dùng của đơn vị cơ bản. Tên của tiếp đầu ngữ Giá trị ước số Ký hiệu Tên của tiếp đầu ngữ Giá trị bội số Ký hiệu pico 10-12 p deca 101 da nano 10-9 n hecto 102 h micro 10-6 µ kilo 103 k mili 10-3 m Mega 106 M centi 10-2 c Giga 109 G dexi 10-1 d Tera 1012 T (Các thông tin kỹ hơn về chuẩn quốc gia, mẫu và một số thiết bị tạo mẫu cho việc đo lường – tham khảo thêm trong tài liệu [2]) 1.1.2.4. Thiết bị đo và phương pháp đo: Thiết bị đo: là thiết bị kỹ thuật dùng để gia công tín hiệu mang thông tin đo thành dạng tiện lợi cho người quan sát. Chúng có các tính chất đo lường học tức là các tính chất ảnh hưởng đến kết quả đo và sai số của phép đo. 6 Phương pháp đo: là cách thức thực hiện quá trình đo, nó phụ thuộc vào phương pháp nhận thông tin và các yếu tố khác như độ lớn đại lượng đo, điều kiện đo, sai số yêu cầu … (xem thêm mục I.1.3) 1.1.2.5. Người quan sát: Đó là người đo và gia công kết quả đo. Nhiệm vụ của người quan sát khi đo là nắm vững phương pháp đo, am hiểu về thiết bị đo mà mình sử dụng, kiểm tra điều kiện đo, phán đoán khoảng đo để chọn thiết bị phù hợp, chọn dụng cụ đo phù hợp sai số yêu cầu và môi trường xung quanh, biết điều khiển quá trình đo để có kết quả mong muốn, nắm được phương pháp gia công kết quả đo để tiến hành gia công kết quả đo. Biết xét đoán kết quả đã đạt yêu cầu hay chưa, có thể đo bằng phương pháp thông thường hay bằng phương pháp thống kê… Có thể nói, sự phát triển của máy tính và kỹ thuật cảm biến ngày nay đã giảm thiểu rất nhiều công việc của người quan sát về quá trình đo và xử lý dữ liệu một cách tự động. Tuy nhiên, kinh nghiệm trong ứng dụng của người quan sát vẫn vô cùng quan trọng trong việc lựa chọn thiết bị và đánh giá độ tin cậy của các thiết bị đo lường đó trong thực tế làm việc. 1.1.2.6. Kết quả đo: Kết quả đo ở một chừng mực nào đó có thể coi là chính xác và giá trị như vậy được gọi là giá trị ước lượng của đại lượng đo (giá trị được xác định bằng thực nghiệm bởi thiết bị đo). Giá trị này gần với giá trị thực ở một điều kiện nào đó có thể coi là thực. Để đánh giá độ lệch giữa giá trị đo được và giá trị thực, người ta đưa ra khái niệm sai số của phép đo (trị tuyệt đối hiệu của 2 giá trị này). Đây chính là thông số cho phép đánh giá phép đo hay thiết bị thực hiện phép đo có đạt yêu cầu không. 1.1.3. Phương pháp đo: Các phương pháp đo có thể phân loại như sau: 1.1.3.1. Phương pháp đo biến đổi thẳng: Sơ đồ cấu trúc của phương pháp này có dạng biến đổi thẳng, tức là không có phản hồi: X BĐ X0 X X0 A/D Nx N0 SSsố Nx/N0 Hình 1.1: Sơ đồ đo biến đổi thẳng 7 Trong đó: X: tín hiệu cần đo X0: tín hiệu mẫu (dùng để chia vạch đơn vị trong thang đo) Nx: thông số quy đổi giá trị độ lớn của tín hiệu cần đo N0: thông số quy đổi giá trị độ lớn của đơn vị đo BĐ: bộ biến đổi A/D: bộ chuyển đổi tín hiệu tương tự sang số SSsố: bộ so sánh số Giá trị đo được là: X = X0.(Nx/N0) Loại dụng cụ đo biến đổi thẳng thường vấp phải nhược điểm là sai số bằng tổng các sai số của các khâu vì vậy thường chỉ dùng ở các nhà máy, xí nghiệp để đo các thông số và kiểm tra các quá trình sản xuất với độ chính xác không cao. 1.1.3.2. Phương pháp đo kiểu so sánh: Sơ đồ cấu trúc của phương pháp này có dạng vòng kín có phản hồi: X SS ∆X BĐ A/D Nx Xk D/A Hình 1.2: Sơ đồ đo kiểu so sánh Trong đó: X: tín hiệu cần đo Xk: lượng mẫu) tín hiệu phản hồi (là tín hiệu so sánh có giá trị tỷ lệ với đại Nx: thông số quy đổi giá trị độ lớn của tín hiệu cần đo BĐ: bộ biến đổi D/A: bộ chuyển đổi tín hiệu số sang tương tự A/D: bộ chuyển đổi tín hiệu tương tự sang số 8 SSsố: bộ so sánh Phép đo sẽ diễn ra cho đến khi tín hiệu phản hồi Xk có giá trị bằng với giá trị của đại lượng cần đo X. Thiết bị đo kiểu này gọi là thiết bị đo kiểu so sánh hay thiết bị bù. Tùy thuộc cách so sánh mà ta có thể phân chia phương pháp đo này thành: 1.1.3.2.1. Kiểu so sánh cân bằng: Là phép so sánh tiến hành sao cho luôn giữ giá trị sai lệch ∆X = 0. Khi đó giá trị đo được của tín hiệu là: X = Xk = Nk.X0. (1.2) Ví dụ: Điện thế kế dạng cầu đo cân bằng. 1.1.3.2.2. Kiểu so sánh không cân bằng: Là phép so sánh tiến hành sao cho luôn giữ giá trị sai lệch ∆X = const ≠ 0. Khi đó giá trị đo được của tín hiệu là: X = ∆X + Xk (1.3) Như vậy, độ chính xác của phép đo sẽ phụ thuộc vào phép đo ∆X: giá trị ∆X càng lớn so với X thì độ chính xác đó càng thấp. (khi ∆X = 0,1X thì chính xác thấp hơn khi ∆X = 0.01X). Ví dụ: ứng dụng trong các phép đo các đại lượng không điện như nhiệt độ, ứng suất (dùng mạch cầu không cân bằng)… 1.1.3.2.3. Kiểu so sánh không đồng thời: Quá trình đo diễn ra như sau: ban đầu cho tín hiệu cần đo X tác động vào hệ thống đo, sau đó lấy 1 tín hiệu mẫu Xk tác động vào hệ thống đo và điều chỉnh Xk sao cho tín hiệu đầu ra cũng giống hệt đối với X, khi đó X = Xk. Kiểu đo này có độ chính xác chỉ phụ thuộc vào phép đo Xk. Ưu điểm của phương pháp này là khi thay tín hiệu đầu vào ta vẫn giữ nguyên các điều kiện làm việc của hệ thống đo và do đó loại bỏ được các ảnh hưởng ngoại lai. Ví dụ: ứng dụng đo dòng điện xoay chiều thông qua dòng điện 1 chiều dựa trên tác dụng hiệu dụng trung gian là tác dụng nhiệt (ampemet nhiệt). 1.1.3.2.4. Kiểu so sánh đồng thời: Phép so sánh này đo đồng thời giá trị của X và Xk, căn cứ vào rất nhiều các cặp điểm trùng nhau để suy ra giá trị cần đo. 9 Ví dụ: Đo quy đổi chiều dài của 1 inch sang mm: ta đặt 2 thước đo song song có gốc 0 trùng với nhau. Đọc được giá trị các điểm vạch chẵn trùng nhau tiếp theo là: 127mm – 5inches; 254mm – 10inches; 381mm – 15inches; … Từ đó suy ra: 1 inch = 127/5 = 254/10 = 381/15 = 25,4 mm Phương pháp này dùng để thử nghiệm các đặc tính của các cảm biến hay của thiết bị đo để đánh giá sai số của chúng. 1.1.4. Hàm truyền của cảm biến: Quan hệ giữa đáp ứng và kích thích của bộ cảm biến có thể cho dưới dạng bảng giá trị, graph hoặc biểu thức toán học. Hàm truyền của cảm biến là biểu diễn toán học của mối quan hệ này. Đó có thể là quan hệ tuyến tính: s = a.m + b (1.4) (a là độ nhạy của cảm biến, b là hằng số bằng tín hiệu ra của cảm biến khi kích thích vào bằng 0) hoặc dạng hàm mũ, hàm loga, hàm luỹ thừa… (các dạng hàm toán học sơ cấp): s = a.ekm (1.5) s = 1 + a.lnm (1.6) s = a0 + a1.mk (1.7) (k là hằng số) Các dạng hàm phi tuyến thường không có dạng hàm toán học sơ cấp nhưng có thể gần đúng bằng các hàm đa thức bậc cao. Ở các hàm phi tuyến, độ nhạy của cảm biến phụ thuộc từng điểm làm việc và có giá trị bằng giá trị của đạo hàm hàm truyền tại điểm làm việc: a= ds dm m0 (1.8) 1.1.5. Độ lớn của tín hiệu vào: Độ lớn của tín hiệu vào là giá trị lớn nhất của tín hiệu vào đặt vào bộ cảm biến mà sai số không vượt quá ngưỡng cho phép. Đối với các bộ cảm biến có đáp ứng phi tuyến, ngưỡng động của kích thích thường được biểu diễn bằng dexibel (bằng logarit của tỷ số công suất hoặc điện áp của tín hiệu ra và tín hiệu vào): 1dB = 10 lg u P2 = 20 lg 2 u1 P1 (1.9) 10 Bảng 1.3: Quan hệ giữa tỷ số điện áp và tỷ số công suất tính theo dexibel Dexibel 0,1 1,0 10 20 30 40 50 60 70 80 90 100 Tỷ số công suất 1,023 1,26 10 100 103 104 105 106 107 108 109 1010 Tỷ số điện áp (dòng điện) 1,012 1,12 3,16 10 31,6 100 316 103 3162 104 3.104 105 1.2. PHÂN LOẠI CẢM BIẾN Cảm biến có thể được phân loại thep nhiều cơ sở khác nhau: 1.2.1. Theo thông số của mô hình mạch thay thế: Cảm biến là một phần tử của mạch điện mà theo nguyên lý chế tạo ta có thể chia ra làm 2 loại cảm biến là cảm biến thụ động và cảm biến tích cực. 1.2.1.1. Cảm biến tích cực: Là loại cảm biến có nguyên lý hoạt động là biến đổi các dạng năng lượng phi điện nào đó thành năng lượng điện với tín hiệu ra là dòng điện, điện áp, điện tích có tỷ lệ tương quan với đại lượng cần đo. Cảm biến loại này dựa trên các hiệu ứng biến đổi sau: 1.2.1.1.1. Hiệu ứng nhiệt điện: Cặp nhiệt điện: 2 đoạn dây kim loại có bản chất hoá học khác nhau được hàn dính cả 2 đầu với nhau tạo thành một vòng kín. Khi nhiệt độ ở 2 đầu nối chênh lệch sẽ xuất hiện một sức điện động tương ứng tỷ lệ trong vòng dây. Tín hiệu này sẽ được đưa vào mạch điện gia công tín hiệu phía sau. 1.2.1.1.2. Hiệu ứng hoả điện: Sử dụng khối tinh thể hoả điện (Sulfat triglycine) tức là khi nhiệt độ 2 bề mặt của khối tinh thể này chênh lệch nhau thì điện tích 2 bề mặt sẽ trái dấu và có độ lớn tỷ lệ thuận với độ phân cực điện hay độ chênh nhiệt độ. Độ chênh lệch điện tích này sẽ được đưa vào mạch điện gia công tín hiệu phía sau dưới hình thức điện tích trên 2 bản cực của tụ điện. (dùng trong việc đo thông lượng bức xạ ánh sáng) 1.2.1.1.3. Hiệu ứng áp điện: Vật liệu áp điện (thạch anh) có tính chất là khi bị lực tác dụng làm biến dạng thì sẽ tạo ra các điện tích trái dấu trên các mặt đối diện có độ lớn tỷ lệ với độ lớn của lực. Độ chênh lệch điện tích này sẽ được đưa vào mạch điện gia công tín hiệu phía sau dưới hình thức điện tích trên 2 bản cực của tụ điện. 11 1.2.1.1.4. Hiệu ứng cảm ứng điện từ: Khi một dây dẫn kín chuyển động trong từ trường không đổi (hoặc khung dây đứng yên trong một từ trường biến thiên) sẽ xuất hiện một suất điện động trong vòng dây tỷ lệ với lượng từ thông cắt ngang vòng dây trong một đơn vị thời gian, nói cách khác là tỷ lệ với tốc độ dịch chuyển của dây dẫn. Độ chênh lệch điện tích này sẽ được đưa vào mạch điện gia công tín hiệu phía sau. (ứng dụng trong đo tốc độ dịch chuyển của vật) 1.2.1.1.5. Hiệu ứng quang điện: Dựa trên nguyên tắc: dưới tác dụng của bức xạ ánh sáng hoặc bức xạ điện từ có bước sóng ngắn hơn giá trị bước sóng ngưỡng của vật liệu, các vật liệu sẽ giải phóng ra các hạt dẫn tự do tạo ra dòng điện dẫn kích hoạt các phần tử tiếp theo trong mạch gia công tín hiệu đo. (ứng dụng trong cảm biến quang bật sáng đèn chiếu công cộng) I.2.1.1.6. Hiệu ứng quang phát xạ điện tử: Dựa trên hiện tượng các điện tử được giải phóng thoát khỏi vật liệu và được thu gom bởi điện trường để tạo ra dòng điện. Tín hiệu này sẽ được đưa vào mạch điện gia công tín hiệu phía sau. 1.2.1.1.7. Hiệu ứng quang điện trong chất bán dẫn: Khi chiếu sáng vào một lớp tiếp giáp P-N thì sẽ làm phát sinh các các cặp điện tử và lỗ trống chuyển động dưới tác dụng của điện trường của lớp chuyển tiếp làm thay đổi hiệu điện thế giữa 2 đầu của lớp chuyển tiếp. Tín hiệu điện áp này sẽ được đưa vào mạch điện gia công tín hiệu phía sau. 1.2.1.1.8. Hiệu ứng quang điện tử: Dựa trên hiện tượng: chiếu bức xạ ánh sáng và từ trường B (nam châm) vuông góc với nhau đồng thời lên một vật liệu bán dẫn thì sẽ hình thành một hiệu điện thế theo phương vuông góc với mặt phẳng tạo bởi phương bức xạ và phương từ trường. Hiệu điện thế này sẽ được đưa vào mạch điện gia công tín hiệu phía sau. (ứng dụng để đo các thông tin chứa đựng trong ánh sáng) 1.2.1.1.9. Hiệu ứng Hall: Một vật liệu bán dẫn dạng tấm mỏng có dòng điện chạy qua khi đặt trong từ trường B có phương tạo với dòng điện I một góc θ, sẽ làm xuất hiện một hiệu điện thế VH có phương vuông góc với mặt phẳng tạo bởi I và B. Hiệu điện thế này sẽ được đưa vào mạch điện gia công tín hiệu phía sau. Độ lớn của VH được xác định theo công thức: 12 VH = KH.I.B.sinθ. (1.10) KH là hệ số phụ thuộc vật liệu và kích thước hình học của mẫu. Hiệu ứng Hall được ứng dụng trong cảm biến xác định vị trí của một vật chuyển động. Người ta gắn một thanh nam châm lên vật đó. Vị trí của vật (và do đó vị trí của thanh nam châm) sẽ xác định giá trị của từ trường B và góc lệch θ tương ứng. Như vậy, VH là một hàm phụ thuộc vào vị trí của vật trong không gian. Chú ý rằng cảm biến vị trí kiểu này không chuyển đổi năng lượng (từ vị trí sang giá trị điện áp) mà năng lượng để tạo tín hiệu điện áp ra là nguồn của dòng điện I chứ không phải là đại lượng cần đo (vị trí). Cảm biến kiểu hiệu ứng Hall là cảm biến tích cực vì thông tin ra liên quan đến sức điện động. 1.2.1.1.10. Các hiệu ứng khác: Ngoài ra còn có các hiệu ứng biến đổi tín hiệu kiểu sinh học như: biến đổi sinh hoá, hiệu ứng trên cơ thể sống, phân tích phổ… 1.2.1.2. Cảm biến thụ động: Là loại cảm biến hoạt động dựa trên nguyên tắc: đại lượng cần đo có tác động ảnh hưởng làm thay đổi giá trị trở kháng của cảm biến và do đó làm thay đổi giá trị kiến tạo mạch điện xử lý gia công thông tin đo phía sau một cách tương ứng. (ví dụ: làm lệch cầu điện trở (vốn cân bằng khi chưa thực hiện phép đo)…) Giá trị trở kháng này thường phụ thuộc đồng thời vào kích thước hình học của mẫu đo và các tính chất điện của vật liệu như điện trở suất ρ, độ từ thẩm µ, hằng số điện môi ε. Trong các phép đo, các thuộc tính này có thể có ảnh hưởng một cách riêng biệt hoặc đồng thời đến trở kháng của cảm biến. ♣Thuộc tính kích thước hình học: thường có ảnh hưởng khi trong quá trình đo vật di chuyển hoặc bị làm biến dạng. + Với vật di chuyển: cảm biến sẽ chứa phần tử động (lõi thép động trong cảm biến cảm ứng, nắp lõi từ cảm biến điện thế, bản cực di động của tụ điện…) và khi phần tử này di chuyển sẽ kéo theo sự thay đổi trở kháng tương ứng. + Với vật chịu biến dạng: cảm biến sẽ chứa phần tử biến dạng chịu tác dụng trực tiếp hoặc gián tiếp của lực tác dụng hoặc các đại lượng dẫn đến lực (áp suất, gia tốc). Ví dụ: bản cực di động của tụ điện chịu tác dụng của áp suất vi sai, cảm biến đo ứng lực có liên quan chặt chẽ đến cấu trúc chịu tác động của ứng suất. ♣Thuộc tính tính chất điện: mỗi vật liệu đều có thể nhạy với các tác động của nhiều đại lượng vật lý khác nhau như ánh sáng, nhiệt độ, áp suất,…Trong thực tế, khi 13 tiến hành đo cảm biến luôn chịu ảnh hưởng tác động của yếu tố môi trường, nếu các vật liệu chế tạo cảm biến nhạy với quá nhiều đại lượng vật lý sẽ làm cho phép đo dễ gặp phải rất nhiều sai số không mong muốn. Vì vậy, cảm biến luôn được chế tạo sao cho chỉ một trong số các đại lượng trên có thể thay đổi trở kháng của nó trong khi những đại lượng còn lại là không đổi. Chỉ khi đó ta mới có tương quan đơn trị giữa trở kháng của cảm biến với giá trị cần đo. 1.2.2. Theo dạng kích thích: Bảng 1.4: Bảng liệt kê các đặc tính của kích thích STT Kích thước Các đặc tính của kích thích 1 Âm thanh Biên pha, phân cực, phổ, tốc độ truyền sóng… 2 Điện Điện tích, dòng điện, điện thế, điện áp, điện trường (biên pha, phân cực, phổ), điện dẫn, hằng số điện môi… 3 Từ Từ trường (biên pha, phân cực, phổ), từ thông, cường độ từ trường, độ từ thẩm… 4 Quang Biên pha, phân cực, phổ, tốc độ truyền,hệ số phát xạ, khúc xạ, hệ số hấp thụ, hệ số bức xạ… 5 Cơ Vị trí, lực, áp suất, gia tốc, vận tốc, ứng suất, độ cứng, mômen, khối lượng, tỷ trọng, vận tốc chất lưu, độ nhớt… 6 Nhiệt Nhiệt độ, thông lượng, nhiệt dung, tỷ nhiệt… 7 Bức xạ Kiểu, năng lượng, cường độ… 1.2.3. Theo tính năng các bộ cảm biến: 14 Bảng 1.5: Bảng liệt kê các tính năng của bộ cảm biến STT Tính năng STT Tính năng 1 Độ nhạy 8 Độ trễ 2 Độ chính xác 9 Khả năng quá tải 3 Độ phân giải 10 Tốc độ đáp ứng 4 Độ chọn lọc 11 Độ ổn định (ngắn hạn và dài hạn) 5 Độ tuyến tính 12 Tuổi thọ 6 Công suất tiêu thụ 13 Điều kiện môi trường 7 Dải tần 14 Kích thước, trọng lượng…… 1.2.4. Theo phạm vi sử dụng các bộ cảm biến: + Cảm biến trong Công nghiệp + Cảm biến trong Nghiên cứu khoa học + Cảm biến trong Môi trường khí tượng + Cảm biến trong Thông tin, viễn thông + Cảm biến trong Nông nghiệp + Cảm biến trong Dân dụng + Cảm biến trong Giao thông + Cảm biến trong Vũ trụ + Cảm biến trong Quân sự… 1.3. CÁC ĐẠI LƯỢNG ẢNH HƯỞNG Các đại lượng ảnh hưởng hay đại lượng nhiễu là các đại lượng có thể tác động đến tín hiệu ở đầu ra của cảm biến đồng thời với đại lượng cần đo. Bao gồm: + Áp suất, gia tốc, dao động (rung): gây ra biến dạng và ứng suất trong một số thành phần của cảm biến khiến tín hiệu hồi đáp bị sai lệch. 15 + Độ ẩm: làm thay đổi tính chất điện của vật liệu như: hằng số điện môi ε, điện trở suất ρ. + Nhiệt độ: làm thay đổi các đặc trưng điện, cơ và kích thước của cảm biến. + Từ trường: có thể gây nên suất điện động cảm ứng chồng lên tín hiệu có ích, làm thay đổi tính chất điện của vật liệu cấu thành cảm biến. + Biên độ và tần số của điện áp nuôi (ví dụ ở biến thế vi sai) ảnh hưởng đến đại lượng điện đầu ra. Trong mọi phép đo, người ta luôn cố gắng tìm cách giảm thiểu nhiều nhất ảnh hưởng của các yếu tố ngoại lai này bằng các biện pháp chống nhiễu trong đo lường như: 1.4. - Sử dụng các biện pháp chống rung, chống từ trường, cách điện… - Ổn định các đại lượng ảnh hưởng ở những giá trị biết trước và chuẩn cảm biến trong các điều kiện đó (ví dụ: bình ổn nhiệt, nguồn điện áp có bộ phận điều chỉnh…) - Sử dụng các sơ đồ ghép nối cho phép cho phép bù trừ ảnh hưởng của đại lượng gây nhiễu. MẠCH ĐO LƯỜNG VÀ GIA CÔNG THÔNG TIN ĐO Mạch đo bao gồm toàn bộ các thiết bị đo (kể cả cảm biến trong đó) cho phép xác định chính xác đại lượng cần đo trong những điều kiện tốt nhất có thể. Tín hiệu tác động vào đầu vào của mạch qua cảm biến (một cách trực tiếp nếu là cảm biến tích cực và gián tiếp thông qua bộ chuyển đổi nếu là cảm biến thụ động) đưa ra ở đầu ra của cảm biến tín hiệu điện mang thông tin của đại lượng cần đo. Tiếp theo, tín hiệu điện này có thể được khuếch đại hoặc tinh lọc, được xử lý tổi ưu hoá … (ở những hệ thống đo đòi hỏi độ chính xác không cao có thể không cần các thiết bị này), sau đó được chuyển đổi thành các dạng có thể đọc được trực tiếp giá trị trước khi được đưa ra đầu ra của mạch. Đầu ra này có thể được ghép nối với bộ hiển thị thông số, có thể ghép nối máy tính, vi xử lý…để tiếp tục xử lý cho các mục đích điều chỉnh của hệ thống… Việc chuẩn hệ đo đảm bảo cho mỗi giá trị chỉ thị ở đầu ra tương ứng với chỉ 1 giá trị đại lượng đo tác động ở đầu vào. Dưới đây là một ví dụ sơ đồ khối cấu trúc của một hệ đo lường điện thế trên bề mặt màng nhạy quang được lắp ráp từ nhiều phần tử: [1] 16 MÁY IN FC D PC 5 ADC CPU 7 PA MÀN HÌNH 1 - Máy phát chức năng 2 - Cảm biến điện tích 3 - Tiền khuếch đại 4 - So pha lọc nhiễu 5 - Khuếch đại 6 - Chuyển đổi số tương tự 7 - Máy tính Hình 1.3: Mạch đo điện thế bề mặt 1.5. SAI SỐ PHÉP ĐO VÀ GIA CÔNG KẾT QUẢ ĐO LƯỜNG Sai số của phép đo là hiệu số giữa giá trị thực và giá trị đo được. Sai số phép đo chỉ có thể được đánh giá một cách ước tính bởi vì không thể biết được giá trị thực của đại lượng đo. Sai số có thể chia thành các loại sau: 1.5.1. Sai số hệ thống: Sai số hệ thống là sai lệch luôn luôn tồn tại giữa giá trị đo được trung bình và giá trị thực của đại lượng cần đo mà không phụ thuộc vào số lần đo liên tiếp. Sai số hệ thống có thể không đổi hoặc biến đổi chậm theo thời gian. Sai số hệ thống có nguyên nhân do sự hiểu biết thiên lệch hoặc không đầy đủ về hệ đo hoặc cũng có thể do điều kiện sử dụng không tốt. Có thể chia sai số hệ thống theo các nguyên nhân sau: 1.5.1.1. Sai số do giá trị của đại lượng chuẩn không đúng: Ví dụ: lệch điểm gốc 0 trên thang đo… Sai số này có thể loại bỏ được bằng cách kiểm tra kỹ các thiết bị trước khi sử dụng. 1.5.1.2. Sai số do đặc tính của cảm biến: Ví dụ: sai số độ nhạy hoặc sai số của đường cong chuẩn, sai khác giữa các sản phẩm cảm biến khác nhau ngay cả trong cùng loạt sản xuất, sự già hoá của các cảm biến… 17 Để giảm thiểu sai số này yêu cầu người sử dụng phải thường xuyên tiến hành chuẩn lại cảm biến. 1.5.1.3. Sai số do điều kiện và chế độ sử dụng: Ví dụ: cảm biến nhiệt độ có tốc độ hồi đáp khác nhau khi đặt trong chất lỏng chảy liên tục và chất lỏng đứng yên; bản thân điện trở của cảm biến làm ảnh hưởng đến giá trị điện trở của hệ thống được đo… 1.5.1.4. Sai số do xử lý kết quả đo: Ví dụ: kết quả đo lệch khỏi tuyến tính trong khi sử dụng cảm biến giả thiết là tuyến tính (giả thiết sai về sự biến đổi của đại lượng đo); độ dẫn nhiệt của vỏ cảm biến và dây dẫn khiến nhiệt độ đo được của cảm biến và nhiệt độ cần đo khác nhau… 1.5.2. Sai số ngẫu nhiên: Sai số ngẫu nhiên là sai số có độ lớn, dấu và tần suất xuất hiện là không tuân theo bất kỳ một quy luật biết trước nào. Có thể chia sai số ngẫu nhiên theo các nguyên nhân sau: 1.5.2.1. Sai số do tính không xác định của đặc trưng thiết bị: Với mỗi thiết bị đo lường thường thì giữa các nấc đo có một độ phân biệt nhất định về độ lớn của đại lượng đầu vào. Nói cách khác, nếu tín hiệu vào không đủ một độ lớn tối thiểu nào đó thì sẽ không gây ra sự biến đổi ở đầu ra của cảm biến. Như vậy, đó cũng là một yếu tố gây nên sai số gọi là sai số linh động và giá trị lớn nhất của mức sai số này chính bằng giá trị phân giải tối thiểu của cảm biến. Một yếu tố khác là sai số do đọc sai dữ liệu, nguyên nhân là do chất lượng của bộ chỉ thị (VD: độ mảnh của kim chỉ thị…) hoặc do thói quen của người thực hiện. Sai số trễ là sai số xuất hiện khi trong mạch đo có chứa thành phần có độ trễ (trễ từ, trễ cơ…) 1.5.2.2. Sai số do tín hiệu nhiễu ngẫu nhiên: Là do các nhiễu nền gây nên kích thích nhiệt đến các hạt dẫn trong các điện trở dẫn đến làm thăng giáng điện áp đầu ra, cũng có thể là sự tác động của cảm ứng ký sinh do bức xạ điện từ gây nên sai số… Nói chung các thăng giáng này không thể phân biệt với biến thiên của đại lượng đo. 1.5.2.3. Sai số do các đại lượng ảnh hưởng: Trong quá trình chuẩn cảm biến đã có sự tác động của các đại lượng ảnh hưởng từ môi trường vào cảm biến nên bản thân kết quả chuẩn cảm biến đó đã bao hàm những sai số do các đại lượng ảnh hưởng đem lại. 18
- Xem thêm -

Tài liệu liên quan