Đăng ký Đăng nhập
Trang chủ Vành đa thức và một số ứng dụng...

Tài liệu Vành đa thức và một số ứng dụng

.PDF
70
1
136

Mô tả:

.. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN ĐỨC THỌ VÀNH ĐA THỨC VÀ MỘT SỐ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành : PHƯƠNG PHÁP TOÁN SƠ CẤP Mã số : 60 .46 .40 NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS ĐÀM VĂN NHỈ THÁI NGUYÊN - 2012 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Mục lục 1 VÀNH ĐA THỨC 1.1 Vành đa thức một biến . . . . . 1.2 Đa thức bất khả quy . . . . . . 1.3 Tính đóng đại số của trường C. . 1.4 Vành đa thức nhiều biến . . . . 1.5 Đa thức đối xứng . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MỘT SỐ ỨNG DỤNG CỦA VÀNH ĐA THỨC 2.1 Một số chặn trên cho nghiệm đa thức . . . . . . . . . . . 2.2 Tính chia hết của một vài đa thức đặc biệt . . . . . . . . 2.3 Ước chung của dãy số từ đa thức . . . . . . . . . . . . . . 2.4 Phương pháp biểu diễn đa thức đối xứng qua các đa thức đối xứng sơ cấp . . . . . . . . . . . . . . . . . . . . . . . 2.5 Ứng dụng lí thuyết đa thức đối xứng vào đại số sơ cấp . . 2.6 Đa thức bậc ba liên quan đến tam giác . . . . . . . . . . . . . . . 5 5 11 18 29 33 39 . 39 . 42 . 46 . 47 . 50 . 60 Kết luận 68 Tài liệu tham khảo 69 2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn MỞ ĐẦU Vành đa thức là một phần rất quan trọng trong nhiều lĩnh vực của Toán học, chẳng hạn: Đại số, Giải tích, Hình học, Toán rời rạc...vv. Trong chương trình toán phổ thông, phần đa thức chủ yếu được đưa vào bộ môn Đại số và Giải tích. Đặc biệt trong các kỳ thi đại học, học sinh giỏi quốc gia và quốc tế đều có những bài toán liên quan đến đa thức. Chính vì vậy mà chuyên đề về vành đa thức rất thiết thực với những ai muốn tìm hiểu sâu về toán sơ cấp. Từ các kết quả đạt được trong vành đa thức chúng ta có thể vận dụng giải một số bài toán về hình học rất phức tạp, giải hệ phương trình và xây dựng một số kết quả về Tổ hợp, Số học. Khi xét đa thức ta thường quan tâm đến nghiệm, tính bất khả quy và việc biểu diễn thành tích các nhân tử bậc nhỏ hơn. Nội dung của luận văn nhằm giải quyết hai vấn đề chính: Vấn đề 1: Chứng minh lại một số kết quả cơ bản của vành đa thức mà các kết quả ấy gắn liền với tên tuổi của những nhà toán học lỗi lạc. Vận dụng các kết quả đạt được để giải quyết một số bài toán đã được đặt ra. Vấn đề 2: Đưa ra một số chặn nghiệm của một đa thức, tiêu chuẩn chia hết của một vài đa thức đặc biệt, ước chung của dãy số từ đa thức, phương pháp biểu diễn đa thức đối xứng qua các đa thức đối xứng cơ bản. Luận văn được chia làm hai chương. Chương I: Vành đa thức. Nội dung chương I trình bày một số khái niệm về vành đa thức, một vài tiêu chuẩn bất khả quy, tính đóng đại số của trường C, đa thức đối xứng. Chương II: Một số ứng dụng của vành đa thức. Nội dung chương II trình bày về chặn nghiệm, tính chất chia hết của một vài đa thức đặc biệt, phương pháp biểu diễn đa thức đối xứng qua đa thức đối xứng sơ cấp. Trong chương này chúng tôi còn trình bày ứng dụng lý thuyết đa thức đối xứng vào đại số sơ cấp và đã xây dựng được đa thức bậc ba với nghiệm là đại lượng liên quan đến tam giác. 3 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Dù đã rất cố gắng, nhưng chắc chắn nội dung được trình bày trong luận văn không tránh khỏi thiếu sót nhất định, em rất mong nhận được sự góp ý của các thầy cô giáo và các bạn. Luận văn này được hoàn thành dưới sự hướng dẫn khoa học của PGS.TS Đàm Văn Nhỉ. Em xin được tỏ lòng cảm ơn chân thành nhất tới thầy về sự giúp đỡ nhiệt tình từ khi xây dựng đề cương, viết và hoàn thành luận văn. Tiếp theo em xin chân thành cảm ơn các thầy cô giáo phản biện đã đọc và góp ý để em hoàn thiện luận văn của mình. Em xin được cảm ơn chân thành nhất tới Trường Đại học Khoa học - Đại học Thái Nguyên, nơi em đã nhận được một học vấn sau đại học căn bản. Xin cảm ơn gia đình, đồng nghiệp đã cảm thông, chia sẻ, ủng hộ và giúp đỡ trong thời gian em học cao học và viết luận văn. Lời cuối em xin chúc sức khỏe các thầy cô giáo và đồng nghiệp. Em xin chân thành cảm ơn! Hà Nội, ngày 20 tháng 7 năm 2012 Người thực hiện Trần Đức Thọ 4 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chương 1 VÀNH ĐA THỨC 1.1 Vành đa thức một biến Khái niệm vành đa thức một biến trên R Giả sử V là một vành giao hoán và A là một vành con của nó. Giả sử v ∈ V . Mọi vành con của V chứa A và v đều chứa các phần tử có dạng a0 + a1 v + a2 v 2 + ... + an v n trong đó ai ∈ A, n ∈ N. Một phần tử như thế gọi là một đa thức của V với các hệ tử ai trong A, i = 1, 2, ..., n. Nếu b0 + b1 v + b2 v 2 + ... + bm v m cũng là một đa thức của v, và m ≥ n thì: (a0 + a1 v + a2 v 2 + ... + an v n ) + (b0 + b1 v + b2 v 2 + ... + bm v m ) = (a0 +b0 )+(a1 +b1 )v+(a2 +b2 )v 2 +...+(an +bm )v m +am+1 v m+1 +...+an v n (a0 + a1 v + a2 v 2 + ... + an v n ).(b0 + b1 v + b2 v 2 + ... + bm v m ) X = (a0 .b0 ) + (a1 b0 + a0 b1 )v + ... + aj bk v i + ... + (an .bm )v n+m . j+k=i Vậy tổng và tích của hai đa thức của R lại là một đa thức của R. Mặt khác 1 dĩ nhiên cũng là đa thức thuộc R. Vậy tập hợp các đa thức của v với hệ tử trong A lập thành một vành con của V. Dĩ nhiên đó là vành con nhỏ nhất của V chứa A và v. Kí hiệu vành con đó qua vành A[v]. Nếu tồn tại một hệ thức đa thức d0 + d1 v + d2 v 2 + ... + dn v n = 0(di ∈ A)m ≥ 1 5 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn với ít nhất một di 6= 0, thì hai đa thức của√v có dạng khác nhau có thể trùng nhau. Thí dụ, nếu V=R, A=Q, v = 2 là nghiệm của 2 − v 2 = 0, thì ta có chẳng hạn: 0 + 2v = 0 + 0v + 0v 2 + v 3 . Nhưng nếu một hệ thức có dạng: d0 + d1 v + d2 v 2 + ... + dn v n = 0(di ∈ A) n m P P chỉ xảy ra khi tất cả các di = 0, thì hai đa thức ai v i và bi v j sẽ chỉ i=0 j=0 bằng nhau khi các hệ tử tương ứng với ai và bj bằng nhau. Thật vậy nếu n ≥ m và n m X X i ai v = bj v j i=0 j=0 thì (a0 −b0 )+(a1 −b1 )v+(a2 −b2 )v 2 +...+(am −bm )v m +am+1 v m+1 +...+an v n . Từ đó ai = bi (i = 0, ..., n) và am+1 = ... = an = 0. Như vậy để xác định cấu trúc của vành đa thức, ta cần có sẵn các vành m P dạng A[x], trong đó mọi hệ thức di X i = 0 đều kéo theo ∀di = 0. Ta i=0 chú ý rằng trong trường hợp này, một đa thức của X có dạng a0 + a1 X + a2 X 2 + ... + an X n xác định một dãy con duy nhất (a0 , a1 , a2 , ...) với tính chất là ai = 0 với i đủ lớn. Các nhận xét trên đưa ta đến cách dựng sau đây của vành A[x] Vành đa thức một biến Giả sử A là vành giao hoán đã cho và B là tập hợp các dãy vô hạn: (a0 , a1 , a2 , ...)với 0 = (a, 0, ..., 0) Với chỉ một số hữu hạn hạng tử ai 6= 0 . Hai phần tử (a0 , a1 , a2 , ...) và (b0 , b1 , b2 , ...) của B được xem là bằng nhau nếu và chỉ nếu ai = bi , ∀i Phép cộng trong B được định nghĩa bởi (a0 , a1 , a2 , ...) + (b0 , b1 , b2 , ...) = (a0 + b0 , a1 + b1 , a2 + b2 , ...). Vế phải là một phần tử của B vì tất cả các số hạng bắt đầu từ một điểm nào đó đều bằng 0. 6 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn (B,+) rõ ràng là một nhóm Aben. Phần tử không là 0=(a, 0, 0, ...) và phần tử đối của (a0 , a1 , a2 , ...) là (−a0 , −a1 , −a2 , ...) Phép nhân trong B được định nghĩa bởi (a0 , a1 , a2 , ...).(b0 , b1 , b2 , ...) = (p0 , p1 , p2 , ...) trong đó pi được cho bởi pi = i X aj bi−j = j=0 X aj b k . j+k=i Nếu ai = 0 với i > n và bj = 0 với j > m thì pk = 0 với k > n + m. Vậy vế phải của tích trên là một phần tử của B. Nếu a = (a0 , a1 , a2 , ...), b = (b0 , b1 , b2 , ...) và c = (c0 , c1 , c2 , ...) thì hạng tử với chỉ số i trong (ab)c là   X X X   aj b k c l = aj bk cl . m+l=i j+k=m j+k+l=i Tương tự hạng tử tương ứng của a(bc) là: ! X X X aj b k cl = aj b k c l . m+j=i k+l=m j+k+l=i Vậy (ab)c=a(bc). Mặt khác rõ ràng ta có ab=ba. Dãy 1=(1,0,0,...) đóng vai trò đơn vị. Vậy (B,.,1) là một vị nhóm giao hoán. Phép nhân phân phối đối với phép cộng, vì ta có X j+k=i (aj + bj )ck = X aj ck + j+k=l X bj ck . j+k=i Vế trái là hạng tử thứ i của (a+b)c, còn vế phải là hạng tử thứ i của ac+bc. Như vậy B là một vành giao hoán. Ánh xạ f xác định bởi: f : A→ B a 7→ (a,0,...) Vậy nếu ta đồng nhất hóa A với f(A) đẳng cấu với nó, thì ta có thể xem A là một vành con của vành B. 7 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Ta kí hiệu (0,1,0,0, ...) là X và gọi nó là một ẩn trên A. Ta có X = (0, 1, 0, 0, ...) X 2 = (0, 0, 12 , 0, ...) X k = (0, 0, ..., 1k+1 , 0, ...). Ngoài ra ta còn bao hàm thức A ⊆ B ta có (0, 0, ..., a, 0, 0, ...) = aX k = X k a Phần tử tổng quát (a0 , a1 , a2 , ...an , 0, 0, ...) của B bây giờ có thể viết theo các kí hiệu mới như sau: a0 + a1 X + a2 X 2 + ... + an X n . Vậy B=A[X ]. Nếu a0 + a1 X + ... + an X n = 0 thì (a0 , a1 , ...an , 0, ...) = 0. Do đó ai = 0∀i. Vành B = A[X] xác định như trên gọi là vành đa thức của ẩn X trên A. Các phần tử của nó gọi là các đa thức của X. Ta thường viết f (X) = a0 + a1 X + a2 X 2 + ... + an X n hoặc f (X) = an X n + an−1 X n−1 + ... + a1 X + a0 . Hệ tử a0 gọi là hằng hạng tử hoặc hạng tử tự do. Nếu an 6= 0 thì an gọi là hệ tử cao nhất và n gọi là bậc của đa thức đó và được kí hiệu là n = degf (X). Ta gán cho đa thức không bậc là −∞. Ta có −∞ + (−∞) = −∞ , −∞ + n = −∞ và −∞ < n, ∀n ∈ N. các đa thức bậc 1 còn gọi là tuyến tính. Từ định nghĩa của phép cộng và phép nhân trong A[X] , ta suy ra rằng deg(f (X) + g(X)) ≤ max(degf (X), degg(X)). deg(f (X)g(X)) ≤ degf (X) + degg(X). Bất đẳng thức thứ hai được thay thế bởi đẳng thức deg(f (X)g(X)) = degf (X) + degg(X). Mỗi khi tích an bm của các hệ tử cao nhất của f(X) và g(X) khác không, vì f (X).g(X) = a0 b0 + (a0 b1 + a1 b0 )X + ... + an bm X n+m . Như vậy, nếu A là một miền nguyên vẹn thì vành A(X) cũng là miền nguyên vẹn. 8 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Định lý 1.1.1. [Tính chất độc xạ của vành A[X]] Giả sử A là một vành giao hoán, A[X] là vành đa thức của ẩn X trên A, f : A → A[X] là phép nhúng A vào ttrong A[X]. Khi đó với mọi vành giao hoán V và mọi đồng cấu ϕ từ vành A tới vành V, tồn tại duy nhất một đồng cấu ϕ từ vành A[X] tới vành V sao cho ϕ(X) = v , trong đó v là một phần tử tùy ý của V và sao cho biểu đồ sau giao hoán. Hình 1.1: Tính chất độc xạ của vành A[X] Chứng minh. Trước hết ta giả thiết rằng một đồng cấu ϕ như thế tồn tại. Ta có ϕ(X k ) = (ϕ(X))k = v k . Mặt khác ϕf (a) = ϕ(a) = ϕ(a). Vậy ϕ(a0 + a1 X + ... + an X n ) = ϕ(a0 ) + ϕ(a1 )v 1 + ... + ϕ(an )v n . Vì ϕ(a0 + a1 X + ... + an X n ) là duy nhất xác định bởi ϕ và v , nên nếu ϕ tồn tại thì nó là duy nhất. Đảo lại, ta hãy xác định ánh xạ ϕ : A[X] → V . Bởi công thức. ϕ(a0 + a1 X + ... + an X n ) = ϕ(a0 ) + ϕ(a1 )v + ... + ϕ(an )v n . Ta có ϕ(X) = v và ϕ(a0 ) = ϕ(a0 ) = ϕf (a0 ), ∀a0 ∈ V . Vậy ϕ = ϕf , tức là biểu đồ đã cho là giao hoán. Mặt khác ta có ϕ[(a0 +a1 X +...+an X n )+(b0 +b1 X +...+bm X m +OX m+1 +...+OX n )] = " n # n m X X X i i =ϕ (ai + bi )X = ϕ(ai + bi )X = (ϕ(ai ) + ϕ(bi ))X i i=0 = m X i=0 ϕ(ai )X i + i=0 m X i=0 ϕ(bi )X i = ϕ i=0 m X ! (ai )X i i=0 +ϕ m X ! (bi )X i i=0 n m n+m X X X X i j ϕ( ai X )( bj X ) = ϕ ( aj bk )X j+k i=0 j=0 i=0 j+k=i 9 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn = n+m X   X  i=0 ϕ(aj )ϕ(bk )v i+j = n X  ! m X (ai )v i  (bj )v j  i=0 j+k=i =ϕ n X ! ai X i j=o   m X ϕ bj X j  i=0 j=o ϕ(1) = ϕ(1) = 1 Vậy ϕ là một đồng cấu vành A[X] tới vành V, và nó thỏa mãn tất cả các yêu cầu đã đề ra. Hệ quả 1.1.2. Giả sử A là một vành con của một vành giao hoán B và ϕ là phép nhúng chính tắc. Khi đó ta có thể phát biểu tính chất trên dưới dạng sau: Giả sử vành giao hoán V chứa vành A làm một vành con. Khi đó với mỗi phần tử v ∈ V tồn tại duy nhất một đồng cấu vành. ϕ : A[x] → V sao cho ϕ(a) = a∀a ∈ A, ϕ(X) = V . Trong trường hợp này ta có ϕ(a0 + a1 X + ... + an X n ) = a0 + a1 v + ... + an v n . Vế phải của đẳng thức trên gọi là giá trị của đa thức f (X) = a0 + a1 X + ... + an X n tại X=v. Nó cũng được kí hiệu là f(v). Định nghĩa 1.1.3. Một phần tử v ∈ V gọi là đại số trên A nếu và chỉ nếu ta có ϕ(f (X)) = f (v) = 0, với một đa thức f(X) nào đó của vành A[X]. Còn nếu: ϕ : A[x] → V là một đơn cấu tức là ϕ(f (X)) = 0 <=> f (X) = 0 <=> f (v) = 0 nếu và chỉ nếu tất cả các hệ tử của f đều bằng 0, thì v gọi là phần tử siêu việt trên A. Trong trường hợp√A=Q V=C thì ta gọi tắt là những số đại số hoặc √ và √ siêu việt. Thí dụ 2, 2 + 3 là những số đại số, e, π là những số siêu 10 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn việt. Để đo độ lệch của vành A[v] ⊆ V so với vành A[x] ta xét hạt nhân Kerϕ = {f (x) ∈ A[X]|ϕf (x) = f (v) = 0} Khi đó theo Định lý đồng cấu vành ta có A[v] ∼ = A[X]\Kerϕ. 1.2 Đa thức bất khả quy Một vài tiêu chuẩn về bất khả quy Giả sử hai đa thức f (x), g(x) ∈ k[x]. Đa thức f (x) được gọi là chia hết cho đa thức g(x) nếu có đa thức h(x) ∈ k[x] để f (x) = g(x)h(x). Bổ đề 1.2.1. Cho đa thức f (x) = a0 xn + a1 xn−1 + · · · + an ∈ Z[x], a0 6= 0. p Nếu số hữu tỷ với (p, q) = 1 là nghiệm của phương trình f (x) = 0 thì q (i) p là một ước của an và q là một ước của a0 . (ii) p − mq là một ước của f (m) cho mọi số nguyên m. p Chứng minh. (i) Giả sử số hữu tỷ với (p, q) = 1 là nghiệm của f (x) = q 0. Khi đó a0 pn + a1 pn−1 q + · · · + an q n = 0. Vì (p, q) = 1 nên p là một ước của an và q là một ước của a0 . (ii) Khai triển f (x) theo các luỹ thừa của x − m ta được f (x) = a0 (x − m)n + b1 (x − m)n−1 + · · · + bn−1 (x − m) + f (m) ∈ Z[x]. Cho x = p và quy đồng q a0 (p − mq)n + b1 (p − mq)n−1 q + · · · + bn−1 (p − mq)q n−1 + f (m)q n = 0. Vì (p, q) = 1 nên p − mq là một ước của f (m) cho mọi số nguyên m. Hệ quả 1.2.2. Nghiệm hữu tỷ của đa thức f (x) = xn +a1 xn−1 +· · ·+an ∈ Z[x] phải là số nguyên. 11 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chứng minh. Suy ra từ Bổ đề trên. Vì C là trường đóng đại số nên đa thức bất khả quy một ẩn trên C chỉ là những đa thức bậc 1. Chính vì lý do này mà ta chỉ xét đa thức bất khả quy trên Q và trên R. Một số tiêu chuẩn sau đây để có thể kiểm tra khi nào một đa thức với các hệ số nguyên là bất khả quy. Định lý 1.2.3. [Tiêu chuẩn Eisenstein] Cho f (x) = an xn + an−1 xn−1 + · · · + a0 , an 6= 0, là đa thức với các hệ số nguyên và p là số nguyên tố sao cho an không chia hết cho p và các ai (i < n) chia hết cho p nhưng a0 không chia hết cho p2 . Khi đó f (x) là đa thức bất khả quy trên Z. Chứng minh. Giả sử f = gh = ( r P i=0 bi xi )( s P cj xj ) với g, h ∈ Z[x] và j=0 r = deg g, s = deg h > 0, r + s = n. Vì b0 c0 = a0 chia hết cho p nên tối thiểu một số b0 hoặc c0 phải chia hết cho p, chẳng hạn b0 chia hết cho p. Vì a0 không chia hết cho p2 nên c0 không chia hết cho p. Nếu tất cả các bi đều chia hết cho p thì an cũng phải chia hết cho p : mâu thuẫn với giả thiết. Vậy phải có một bi không chia hết cho p. Gọi i là chỉ số nhỏ nhất để bi không chia hết cho p. Khi đó 0 < i 6 r. Vì ai = bi c0 + bi−1 c1 + · · · + b0 ci chia hết cho p với tất cả các số hạng bi−1 c1 , . . . , b0 ci đều chia hết cho p nên bi c0 cũng chia hết cho p : mâu thuẫn. Điều này chứng tỏ f là đa thức bất khả quy trên Z. Ví dụ 1.2.4. Với bất kỳ số nguyên dương n đa thức x2 xn f (x) = 1 + x + + ··· + 2! n! là bất khả quy trên Q. x2 + · · · + xn là bất 2! khả quy trên Z. Ta chọn số nguyên tố p với p 6 n < 2p và n chia hết cho p, nhưng n! không chia hết cho p2 . Theo tiêu chuẩn Eisenstein, đa thức n!f là bất khả quy trên Z. Bài giải. Ta phải chứng minh n!f (x) = n! + n!x + Ví dụ 1.2.5. Với bất kỳ số nguyên tố p đa thức f (x) = 1 + x + · · · + xp−1 là bất khả quy trên Z. 12 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn  Bài giải. Theo Tiêu chuẩn Eisenstein, đa thức f (x+1) = xp−1 + p1 xp−2 +  p · · · + p−1 là bất khả quy trên Z. Do đó f là bất khả quy trên Z. Định lý 1.2.6. Cho f (x) = b0 xn + b1 xn−1 + · · · + bn là đa thức với các hệ số nguyên và p là số nguyên tố sao cho b0 không chia hết cho p nhưng bk+1 , . . . , bn chia hết cho p, bn không chia hết cho p2 . Khi đó f (x) có nhân tử bất khả quy bậc > n − k. Chứng minh. Phân tích f (x) thành tích các nhân tử bất khả quy. Giả sử g(x) = c0 xm + c1 xm−1 + · · · + cm ∈ Z[x] là một nhân tử bất khả quy với cm chia hết cho p. Biểu diễn f (x) = g(x)h(x) với h(x) = d0 xh + d1 xh−1 + · · · + dh ∈ Z[x]. Khi đó dh không chia hết cho p. Gọi ci là hệ số đầu tiên của g(x) không chia hết cho p trong khi bm , . . . , bi+1 chia hết cho p. Ta có cm dh = bn chia hết cho p, nhưng không chia hết cho p2 . Vì bh+i = ci dh + bi+1 dh−1 + · · · không chia hết cho p nên h + i 6 k hay n − m + i 6 k. Do đó m > n + i − k > n − k. Ngoài ra ta còn có một vài tiêu chuẩn kiểm tra tính bất khả quy của đa thức với các hệ số nguyên khác nữa qua bất đẳng thức. Định lý 1.2.7. [Tiêu chuẩn Osada] Cho f (x) = xn + a1 xn−1 + · · · + an−1 x ± p là đa thức với các hệ số nguyên và p là số nguyên tố. Nếu p > 1 + |a1 | + · · · + |an−1 | thì f (x) là bất khả quy. Chứng minh. Giả sử f (x) là khả quy. Khi đó f (x) = g(x)h(x), ở đó g, h là những đa thức bậc dương với các hệ số nguyên. Vì p là số nguyên tố nên một trong các số hạng tự do của g hay h phải bằng ±1, chẳng hạn hệ số tự do của g bằng ±1. Vậy giá trị tuyệt đối của tích các nghiệm của g phải bằng 1. Khi đó g(x) = 0 phải có một nghiệm α với |α| 6 1. Vì α cũng là nghiệm của f (x) = 0 nên p = |αn + a1 αn−1 + · · · + an−1 α| 6 1 + |a1 | + · · · + |an−1 |. Điều mâu thuẫn này chứng tỏ f (x) là bất khả quy. Ví dụ 1.2.8. Với số tự nhiên n > 2, đa thức q(x) = xn − 18xn−1 + 3x2 − 2011 luôn luôn là bất khả quy. Bài giải. Vì 2011 là số nguyên tố và 2011 > 1 + 18 + 3 nên q(x) là bất khả quy theo Định lý 1.2.7. 13 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Ví dụ 1.2.9. Đa thức p(x) = x9 + x8 + · · · + x2 + x + 11 luôn luôn là bất khả quy. Bài giải. Vì 11 là số nguyên tố và 11 > 1 + 1 + · · · + 1 = 10 nên p(x) là bất khả quy theo Định lý 1.2.7. Định lý 1.2.10. [Tiêu chuẩn Polya] Cho f (x) là đa thức bậc n với n+1 các hệ số nguyên. Đặt m = [ ]. Giả sử cho n số nguyên khác nhau 2 m! d1 , . . . , dn có |f (di )| < m và các số di đều không là nghiệm của f (x). Khi 2 đó f (x) là bất khả quy. Chứng minh. Giả sử f (x) là khả quy. Khi đó f (x) = g(x)h(x) với g, h là những đa thức bậc dương, các hệ số nguyên. Hiển nhiên deg g(x), deg h(x) < n. Không hạn chế ta có thể giả thiết deg h(x) 6 deg g(x) = s. Ta có m 6 s < n. Ta thấy ngay g(di ) 6= 0 và g(di ) chia hết f (di ). Do đó |g(di )| 6 |f (di )| < Khi đó có i để |g(di )| > m! . 2m s! s! m! . Vì s > m nên > , (chứng minh). Vậy 2s 2s 2m m! s! > |g(d )| > . i 2m 2s Mâu thuẫn này chỉ ra f (x) là bất khả quy. Ví dụ√1.2.11. [VMO 1984] Xác định đa thức bất khả quy f (x) ∈ Z[x] √ 3 nhận 2 + 3 làm một nghiệm. √ √ √ √ Bài giải. Đặt x = 2+ 3 3. Khi đó 3 = (x− 2)3 = x3 +6x−(3x2 −2) 2. 4 3 Như vậy f (x) = (x3 +6x−3)2 −2(3x2 +2)2 = x6 −6x +12x2 −36x+1 √ −6x √ là đa thức bậc 6 với các hệ số nguyên nhận x1 = 2+ 3 3 làm một nghiệm. Với p = 2, dễ dàng kiểm tra f (x + 1) là bất khả quy theo Định lý 1.2.3. 6 Do đó đa thức với các hệ số nguyên x − 6x4 − 6x3 + 12x2 − 36x + 1 là √ √ bất khả quy, bậc 6, nhận x1 = 2 + 3 3 làm một nghiệm. Ví dụ 1.2.12. Tìm tất cả các cặp (n, r) với số tự nhiên n > 1 và số thực r để đa thức p(x) = (x + 1)n − r chia hết cho 2x2 + 2x + 1. 14 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn −1 + i . 2 Vậy p(x) = (x+1)n −r chia hết cho 2x2 +2x+1 khi và chỉ khi (α+1)n = r. 1+i n 1 nπ nπ Do vậy r = ( ) = √ (cos + i sin ). Để r là số thực cần và đủ 2 4 4 2n nπ sin = 0 hay n = 4k với k ∈ N+ . 4 Bài giải. Đa thức 2x2 +2x+1 là bất khả quy với nghiệm phức α = Ví dụ 1.2.13. Xác định đa thức bất khả quy f (x) ∈ Z[x] bậc 4 có nghiệm 5π 9π 13π π 5π π và tính tổng T = tan4 + tan4 + tan , tan , tan , tan 16 16 16 16 16 16 9π 13π π 5π 9π 13π tan4 + tan4 + 4(tan3 + tan3 + tan3 + tan3 ). 16 16 16 16 16 16 2 tan x π Bài giải. Sử dụng công thức tan 2x = , nên từ tan = 1 ta 2x 1 − tan 4 p √ √ √ π π suy ra tan = 2 − 1. Do đó tan = − 2 − 1 + 4 + 2 2. Với 16 p √ 8 √ 4 x = − 2 − 1 + 4 + 2 2 ta có x + 4x3 − 6x2 − 4x + 1 = 0. Đa thức f (x) = x4 + 4x3 − 6x2 − 4x + 1 ∈ Z[x] π là bất khả quy với bậc 4 nhận x1 = tan làm nghiệm. Tương tự, đa thức 16 5π 9π 13π này còn có nghiệm x2 = tan , x3 = tan , x4 = tan . Hiển nhiên 16 16 16  x1 + x2 + x3 + x4 = −4 x1 x2 + x1 x3 + x1 x4 + x2 x3 + x2 x4 + x3 x4 = −6. Do đó x21 + x22 + x23 + x24 = 28. Vì x1 , x2 , x3 , x4 là nghiệm của f (x) = 0 nên x41 + 4x31 − 6x21 − 4x1 + 1 x42 + 4x32 − 6x22 − 4x2 + 1 x43 + 4x33 − 6x23 − 4x3 + 1 x44 + 4x34 − 6x24 − 4x4 + 1 và ta nhận được T = 4 P i=1 x4i +4 4 P i=1 x3i =6 4 P i=1 x2i = = = = 0 0 0 0 +4 4 P xi − 4 = 148. i=1 Ví dụ 1.2.14. Xác định số tự nhiên dương nhỏ nhất n0 để với mọi số nguyên phân biệt a1 , a2 , . . . , an đa thức f (x) = (x − a1 )(x − a2 ) . . . (x − an ) + 1 là bất khả quy khi n > n0 . 15 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Bài giải. Với n = 1 đa thức f1 (x) = x − a + 1 là bất khả quy. Với n = 2 đa thức f2 (x) = (x − a)(x − a − 2) + 1 = (x − a − 1)2 là khả quy. Với n = 4 đa thức f4 (x) = x(x−1)(x−2)(x−3)+1 = [x(x−3)+1]2 là khả quy. Bây giờ xét n > 5. Giả sử f (x) = (x − a1 )(x − a2 ) . . . (x − an ) + 1 là khả quy. Khi đó f (x) = g(x)h(x) với g(x), h(x) ∈ Z[x] và deg g(x), deg h(x) > 1. Vì g(ai )h(ai ) = 1 với mọi i = 1, . . . , n nên g(ai ) = h(ai ) = ±1 với i = 1, . . . , n. Do đó g(x) = h(x). Ta có f (x) = g(x)2 . Vậy n phải là số chẵn và (x − a1 )(x − a2 ) . . . (x − an ) = [g(x) − 1][g(x) + 1] với n > 6. Đánh số lại chỉ số, nếu cần thiết, ta có thể biểu diễn g(x) + 1 = (x − a1 )(x − a3 ) . . . (x − an−1 ) g(x) − 1 = (x − a2 )(x − a4 ) . . . (x − an ). Vậy 2 = (x − a1 )(x − a3 ) . . . (x − an−1 ) − (x − a2 )(x − a4 ) . . . (x − an ). Đánh số lại, nếu cần, có thể coi a1 > a3 > · · · > an−1 . Cho x = a2k được 2 = (a2k − a1 )(a2k − a3 ) . . . (a2k − an−1 ). Vì chỉ có hai các phân tích 2 = 2.1 = (−2)(−1) và n > 6 nên 2 = (a2k − a1 )(a2k − a3 ) . . . (a2k − an−1 ) không thể xảy ra. Điều này chứng tỏ f (x) là bất khả quy. Vậy n0 = 5. Ví dụ 1.2.15. Với các số nguyên phân biệt a1 , a2 , . . . , an , ký hiệu đa thức f (x) = (x−a1 )(x−a2 ) . . . (x−an ). Nếu n > 7 và ax2 +bx+1 ∈ Z[x], a 6= 0, là bất khả quy thì af (x)2 + bf (x) + 1 cũng là bất khả quy. Bài giải. Trước tiên ta chứng minh nhận xét sau: Nếu đa thức g(x) ∈ Z[x] nhận giá trị 1, (hoặc -1), tại nhiều hơn ba giá trị nguyên phân biệt của biến x thì nó không thể nhận giá trị -1, (hoặc 1), khi x nguyên. Thật vậy, giả sử g(x) ∈ Z[x] nhận giá trị 1 tại nhiều hơn ba giá trị nguyên phân biệt của biến x. Khi đó g(x) − 1 có ít nhất 4 nghiệm nguyên khác nhau, chẳng hạn a1 , a2 , a3 , a4 . Biểu diễn g(x) − 1 = (x − a1 )(x − a2 )(x − a3 )(x − a4 )h(x), h(x) ∈ Z[x]. Với a nguyên và a 6= ak , k = 1, 2, 3, 4, thì (a − a1 )(a − a2 )(a − a3 )(a − a4 ) là tích 4 số nguyên phân biệt. Các thừa số này có thể là ±1 và ±p. Nếu có số nguyên a để g(a) = −1 thì −2 = (a − a1 )(a − a2 )(a − a3 )(a − a4 )h(a). −2 = (−1).1.2 cùng lắm chỉ có ba nhân tử phân biệt. Vậy, không có số nguyên a để g(a) = −1. Sử dụng kết quả này vào chứng minh bài toán đặt ra. Giả sử có sự phân tích af (x)2 +bf (x)+1 = g(x)h(x) với g(x), h(x) ∈ Z[x] và deg g(x), deg h(x) > 16 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1. Vì g(ai )h(ai ) = 1 với mọi i = 1, . . . , n nên g(ai ) = ±1 với i = 1, . . . , n. Do n > 7 và nhận xét trên nên hoặc g(ai ) = 1 hoặc g(ai ) = −1 với mọi i = 1, 2, . . . , n. Tương tự đối với h(x). Chẳng hạn g(x) = 1 + αf (x). Khi đó h(x) = 1 + βf (x). Ta có αβ = a. Vì af (x)2 + bf (x) + 1 = [1 + αf (x)][1 + βf (x)] nên ax2 + bx + 1 = [1 + αx][1 + βx] : mâu thuẫn vì ax2 + bx + 1 là bất khả quy. Vậy af (x)2 + bf (x) + 1 là bất khả quy. Ví dụ 1.2.16. Đa thức p(x) = x2010 + 318x1952 + 2011 không thể phân tích được thành tích hai đa thức với bậc > 1 và các hệ số nguyên. Bài giải. Đa thức p(x) = x2010 + 318x1952 + 2011 là bất khả quy theo Tiêu chuẩn Osada, Định lý 1.2.7. Vậy không thể phân tích đa thức p(x) = x2010 + 318x1952 + 2011 ra thành tích hai đa thức với bậc > 1 và các hệ số nguyên. Ví dụ 1.2.17. Với số nguyên dương n và góc α có x2n − 2xn cos α + 1 = α 2π + α (2n − 2)π + α (x2 −2x cos +1) (x2 −2x cos +1) · · · (x2 −2x cos + n n n 1) khi cos α 6= ±1. Bài giải. Xét phương trình xn = cos α ± i sin α. Hai phương trình có 2n 2π + α α + nghiệm x. Vậy x2n −2xn cos α+1 = (x2 −2x cos +1)(x2 −2x cos n n (2n − 2)π + α 1) · · · (x2 − 2x cos + 1). n Ví dụ 1.2.18. Với số nguyên dương n và góc α có  α α 2π + α (2n − 2)π + α  n−1   ± sin = 2 sin sin · · · sin   2 2n 2n 2n  α π + α 3π + α (2n − 1)π + α cos = 2n−1 sin sin · · · sin  2 2n 2n 2n    α 2π + α (2n − 2)π + α α n−1  tan = (−1) 2 tan tan · · · tan . 2 2n 2n 2n  π 2π (n − 1)π  n = 2n−1 sin sin · · · sin n n n Từ đây suy ra π 3π (2n − 1)π  1 = 2n−1 sin sin · · · sin . 2n 2n 2n 17 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn α 2π + α +1)(x2 −2x cos + n n (2n − 2)π + α + 1) nên khi cho x = 1 ta được 1) · · · (x2 − 2x cos n Bài giải. Vì x2n −2xn cos α+1 = (x2 −2x cos α 2π + α (2n − 2)π + α 2 − 2 cos α = (2 − 2 cos )(2 − 2 cos ) · · · (2 − 2 cos ) n n n α α 2π + α (2n − 2)π + α = 4n sin2 sin2 · · · sin2 . Khi đó ta 2 2n 2n 2n  α α 2π + α (2n − 2)π + α    ± sin = 2n−1 sin sin · · · sin   2 2n 2n 2n  α π + α 3π + α (2n − 1)π + α nhận được cos = 2n−1 sin sin · · · sin  2 2n 2n 2n    α 2π + α (2n − 2)π + α α n−1  tan = (−1) 2 tan tan · · · tan . 2  2n 2n 2n α  sin  2π (n − 1)π π  2 =n  2n−1 sin sin · · · sin = lim α α→0 n n n sin Khi cho α → 0 ta có 2n    π 3π (2n − 1)π α  2n−1 sin sin · · · sin = lim cos = 1. α→0 2n 2n 2n 2 hay 4 sin2 1.3 Tính đóng đại số của trường C. Bây giờ ta sẽ chỉ ra rằng, mọi đa thức bậc dương thuộc C[x] đều có nghiệm trong C. Đó chính là nội dung Định lý cơ bản của đại số. Người đầu tiên chứng minh Định lý này là nhà toán học C. Gauss (1777-1855). Định nghĩa 1.3.1. Trường K được gọi là một trường đóng đại số nếu mọi đa thức bậc dương thuôc K[x] đều có nghiệm trong K. Như vậy, trong K[x] mọi đa thức bậc dương đều phân tích được thành tích các nhân tử tuyến tính khi K là một trường đóng đại số. Bổ đề 1.3.2. Mỗi đa thức bậc lẻ thuộc R[x] đều có ít nhất một nghiệm thực thuộc R. Chứng minh. Giả sử f (x) = a0 x2s+1 + a1 x2s + · · · + a2s x + a2s+1 ∈ R[x] với a0 6= 0. Dễ dàng thấy rằng a0 f (x) sẽ tiến ra +∞ khi x → +∞ và a0 f (x) sẽ tiến ra −∞ khi x → −∞. Từ đây suy ra sự tồn tại của các 18 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn số thực α > 0 và β < 0 thỏa mãn a0 f (α) > 0, a0 f (β) < 0. Do vậy a20 f (α)f (β) < 0 hay f (α)f (β) < 0. Vì đa thức f (x) là hàm xác định và liên tục trên R thỏa mãn f (α)f (β) < 0 nên theo Định lý Weierstrass, đa thức f (x) có ít nhất một nghiệm thực thuộc (α, β). Bổ đề 1.3.3. Mỗi đa thức bậc hai thuộc C[x] đều có hai nghiệm thuộc C. Chứng minh:. Trước tiên ta chỉ ra, với mỗi số phức z đều có hai số phức z1 , z2 để z12 = z, z22 = z. Thật vậy, sử z = a+bi 6= 0 và giả sử z1 = x+yi  giả 2 x − y2 = a với a, b, x, y ∈ R để z12 = z hay 2xy = b. Xét trường hợp b 6= 0 nên x 6= 0. Khi đó s  √  ( a + a2 + b2   2 b x = ± 2 6= 0 1,2 x −y =a 2 ⇔ y = 2x hay 2xy = b   4x4 − 4ax2 − b2 = 0 y = b . 2x bi bi và z2 = x2 + thỏa mãn z12 = z22 = z. 2x1 2x2 Theo lập luận ở trên, có hai số phức z1 và z2 để z12 = z22 = b2 − 4ac. Khi −b + z1 −b + z2 đó nghiệm của phương trình và . 2 2 Trường hợp b = 0 được xét dễ dàng. Ta có z1 = x1 + Định lý 1.3.4. [D’Alembert - Gauss, Định lý cơ bản của đại số] Mọi đa thức bậc dương thuộc C[x] đều có ít nhất một nghiệm thuộc C. Chứng minh. Cho đa thức tùy ý f (x) = xn + a1 xn−1 + · · · + an . Ký hiệu đa thức f (x) = xn + a1 xn−1 + · · · + an . Khi đó g(x) = f (x)f (x) ∈ R[x]. Nếu g(α) = 0 thì f (α) = 0 hoặc f (α) = 0. Từ trường hợp f (α) = 0 ta suy ra 0 = f (α) = f (α). Tóm lại, g(x) có nghiệm thì f (x) có nghiệm. Chính vì kết quả này mà ta chỉ cần chứng minh Định lý cho đa thức với hệ số thực. Ta biết rằng cho mỗi đa thức f (x) = xn + a1 xn−1 + · · · + an ∈ R[x] có trường mở rộng K của R để trong K[x] ta có sự phân tích thành tích các nhân tử tuyến tính f (x) = (x − α1 )(x − α2 ) . . . (x − αn ). 19 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Phân tích bậc n = 2d ` với ` là số nguyên dương lẻ. Ta chứng minh có ít nhất một αi ∈ C bằng phương pháp quy nạp theo số nguyên không âm d. Nếu d = 0 thì f (x) là đa thức bậc lẻ. Nó có ít nhất một nghiệm trong C theo Bổ đề 1.3.2. Nếu d > 0, ta giả thiết những đa thức thuộc R[x] có bậc m với sự phân tích m = 2e p, p lẻ và e < d, có ít nhất một nghiệm thuộc C. Với một số thực c ta xét các phần tử βij = αi αj + c(αi + αj ) với tất cả các cặp chỉ số i, j = 1, . . . , n, i < j. Số các cặp (i, j) như vậy n(n − 1) bằng = 2d−1 `(2d ` − 1) = 2d−1 q với số q lẻ. Đa thức bậc 2d−1 q 2 sau đây: Y g(x) = (x − βij ) 16i - Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất