Đăng ký Đăng nhập
Trang chủ Vấn đề tồn tại nghiệm của phương trình đạo hàm riêng tuyến tính...

Tài liệu Vấn đề tồn tại nghiệm của phương trình đạo hàm riêng tuyến tính

.PDF
38
1
110

Mô tả:

.. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC Nguyễn Hồng Điệp VẤN ĐỀ TỒN TẠI NGHIỆM CỦA PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG TUYẾN TÍNH Chuyên ngành: Toán ứng dụng Mã số: 60.46.01.12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. HÀ TIẾN NGOẠN Thái Nguyên - 2013 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1 LỜI CẢM ƠN Lời đầu tiên của khóa luận này em xin gửi lời cảm ơn sâu sắc tới thầy giáo hướng dẫn PGS-TS Hà Tiến Ngoạn đã giao đề tài và tận tình hướng dẫn em trong quá trình nghiên cứu và hoàn thành khóa luận này. Nhân dịp này em xin gửi lời cảm ơn của mình tới toàn bộ các thầy cô giáo trong khoa Toán- trường Đại học Khoa học-Đại học Thái Nguyên cùng các thầy cô ở Viện Toán học đã giảng dạy và giúp đỡ chúng em trong suốt quá trình học tập tại khoa. Đồng thời, tôi xin cảm ơn các anh chị và các bạn trong lớp K5 đặc biệt là các bạn học ngành toán ứng dụng đã nhiệt tình giúp đỡ tôi trong quá trình học tập tại lớp. Tôi xin cảm ơn các thầy cô, anh chị và các bạn đồng nghiệp công tác tại trường THPT Nguyễn Đức Cảnh - Kiến Thụy - Hải Phòng đã tạo điều kiện giúp đỡ tôi về thời gian và công tác để tôi hoàn thành khóa học. Xin chân trọng cảm ơn! Hải Phòng, tháng 05 năm 2013 Người viết luận văn Nguyễn Hồng Điệp Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1 MỞ ĐẦU Phương trình đạo hàm riêng được nghiên cứu lần đầu tiên vào giữa thế kỉ 18 trong các công trình của những nhà toán học như Euler, D’Alambert, Lagrange và Laplace như là một công cụ quan trọng để mô tả các mô hình của vật lí và cơ học. Những bài toán có nội dung tương tự vẫn còn được nghiên cứu đến tận ngày nay và là một trong những nội dung cơ bản của lí thuyết đạo hàm riêng. Chỉ đến giữa thế kỉ 19 và đặc biệt là trong các công trình của Riemann, phương trình đạo hàm riêng mới trở thành công cụ mạnh dùng trong những lĩnh vực toán học khác. Cả hai hướng nói trên đã tác động trực tiếp đến sự phát triển của lí thuyết phương trình đạo hàm riêng và ngược lại, phương trình đạo hàm riêng đóng vai trò quan trọng trong các lĩnh vực khác của toán học lí thuyết và đặc biệt là trong các bài toán thực tiễn. Một bài toán phương trình vi phân đạo hàm riêng, nếu nó có ý nghĩa thực tiễn thì chắc chắn nó có nghiệm, chỉ có điều là nghiệm đó được hiểu theo nghĩa nào mà thôi. Nhiều phương trình vi phân đạo hàm riêng mà ta nghiên cứu nói chung là có nghiệm. Năm 1957 nhà toán học Hans Lewy [6] đã phát hiện ra ví dụ về một phương trình đạo hàm riêng tuyến tính cấp một mà không có nghiệm(cho dù là nghiệm suy rộng) với một số hàm vế phải trơn cho trước. Do đó từ ví dụ trên đã xuất hiện một hướng nghiên cứu mới về tính giải được của phương trình đạo hàm riêng tuyến tính. Một minh họa hình học và một mở rộng của ví dụ này được đưa ra năm 1960 bởi Lars Hörmander Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2 Luận văn được chia làm 2 chương: Chương 1: Trình bày một số kiến thức cơ bản về công thức tích phân từng phần, toán tử đạo hàm riêng tuyến tính và toán tử liên hợp, trình bày một ví dụ về một phương trình đạo hàm riêng tuyến tính cấp một mà không có nghiệm và một số định lí về không gian Hilbert. Chương 2: Trình bày về tính giải được của phương trình đạo hàm riêng tuyến tính, điều kiện cần và đủ để phương trình đạo hàm riêng tuyến tính có nghiệm yếu và tính giải được của phương trình đạo hàm riêng tuyến tính với hệ số hằng. Nội dung chính của luận văn dựa trên chương 1 của tài liệu [5]. Do thời gian và kiến thức còn hạn chế nên trong quá trình viết luận văn cũng như trong xử lý văn bản chắc chắn không tránh khỏi những sai sót nhất định. Tác giả luận văn rất mong nhận được sự góp ý của các thầy cô và các bạn đồng nghiệp để luận văn được hoàn thiện hơn. Thái Nguyên, tháng 05 năm 2013. Người thực hiện Nguyễn Hồng Điệp Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 3 Một số kí hiệu Trong luận văn này ta dùng những kí hiệu với các ý nghĩa xác định trong bảng dưới đây: N R C +∞ || · || z (·, ·) Rez Imz tập hợp số tự nhiên tập hợp số thực tập hợp số phức dương vô cùng chuẩn trong L2 (Ω) liên hợp của số phức z tích vô hướng trong L2 (Ω) phần thực của số phức z phần ảo của số phức z Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 4 Chương 1 KIẾN THỨC CƠ SỞ 1.1 Toán tử vi phân đạo hàm riêng tuyến tính Toán tử vi phân đạo hàm riêng tuyến tính cấp m có dạng A(x, D) = X aµ (x)Dµ , (1.1) |µ|≤m trong đó µ = (µ1 , µ2 , . . . , µn ) ∈ Nn |µ| = µ1 + µ2 + . . . + µn x = (x1 , x2 , . . . , xn ) ∈ Rn , aµ (x) là các hàm trơn cho trước, nhận giá trị phức và ∂ |µ| D = (−i) ∂xµ1 1 ∂xµ2 2 . . . ∂xµnn µ |µ| (1.2) là toán tử lấy đạo hàm riêng cấp |µ|. Ví dụ 1.1.1. Giả sử với m = 3 và µ = (µ1 , µ2 , µ3 ), Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên µj ∈ N http://www.lrc-tnu.edu.vn 5 với j = 1, 2, 3 thì với u là một hàm ba biến x1 , x2 , x3 . Ta có X ∂ 3u ∂ 3u ∂ 3u D u = + + ∂x31 ∂x21 ∂x2 ∂x21 ∂x3 µ |µ|=3 ∂ 3u ∂ 3u ∂ 3u + + ∂x1 ∂x22 ∂x1 ∂x23 ∂x32 ∂ 3u ∂ 3u ∂ 3u + + + ∂x1 ∂x2 ∂x3 ∂x22 ∂x3 ∂x2 ∂x23 ∂ 3u + ∂x33 + Toán tử A là tuyến tính bởi vì Dµ là tuyến tính và ta có A(α1 u1 + α2 u2 ) = α1 A(u1 ) + α2 A(u2 ) trong đó α1 , α2 ∈ C và u1 , u2 là các hàm số. 1.2 1.2.1 Công thức tích phân từng phần. Toán tử liên hợp Công thức tích phân từng phần Cho Ω là tập hợp mở, liên thông trong En có biên ∂Ω trơn từng mẩu. Bao đóng của Ω là Ω = Ω ∪ ∂Ω. Giả sử Ω bị chặn, tức là Ω ⊂ ΣR với R đủ lớn, ở đây  ΣR = (x1 , x2 , . . . , xn ) ∈ En |x21 + x22 + . . . + x2n < R2 . Nếu f ∈ C 1 (Ω) thì ta có công thức tích phân từng phần sau đây Z Z ∂f dx = f γk dσ, 1 ≤ k ≤ n, (1.3) ∂xk Ω ∂Ω trong đó dx = dx1 dx2 . . . dxn , γk là cosin của góc tạo bởi trục xk với pháp tuyến ngoài của ∂Ω và dσ là phần tử diện tích của mặt cong ∂Ω. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6 Trong trường hợp đặc biệt, nếu u và v là hai hàm khả vi liên tục trên Ω và thỏa mãn uv = 0 trên ∂Ω thì công thức (1.3) được viết lại thành Z Z ∂u ∂v v dx = − u dx, 1 ≤ k ≤ n. (1.4) ∂xk ∂xk Ω Ω Công thức (1.4) được gọi là công thức tích phân từng phần. 1.2.2 Toán tử liên hợp Từ công thức (1.4), đặt w̄ = v và Dk = −i ∂ , D = (D1 , D2 · · · , Dn ) ∂xk (1.5) ta có Z (Dk u)w̄dx = − Ω Z uDk w̄dx Ω (1.6) Z = uDk wdx. Ω Công thức (1.2) được viết lại như sau Dµ = D1µ1 D2µ2 . . . Dnµn ∂ |µ| |µ| · = (−i) ∂xµ1 1 ∂xµ2 2 . . . ∂xµnn (1.7) Cho A(x, D)u = X aµ (x)Dµ u |µ|≤m là toán tử vi phân đạo hàm riêng tuyến tính cấp m. Giả sử ϕ ∈ C0m (Ω) là hàm thuộc C m (Ω) và triệt tiêu ở gần biên ∂Ω. Áp dụng liên tiếp công thức tích phân (1.4) ta có Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7 Z A(u)ϕ̄dx = Z X aµ (x)Dµ (u)ϕ̄dx |µ|≤m Ω = Ω Z X (Dµ u)(aµ (x)ϕ)dx (1.8) Ω |µ|≤m = Z X uDµ (aµ (x)ϕ̄)dx. Ω |µ|≤m Đặt A0 (x, D)ϕ = X   Dµ aµ (x)ϕ (1.9) |µ|≤m thì A0 được gọi là toán tử liên hợp của toán tử A. Khi đó ta có Z Z A(u)ϕ̄dx = uA0 ϕdx, với mọi ϕ ∈ C0m (Ω). Ω (1.10) Ω Đặt bµ (x) = aµ (x) thì công thức (1.9) được viết lại là A0 (x, D)ϕ = X Dµ (bµ (x)ϕ) (1.11) |µ|≤m Dễ thấy A0 cũng là một toán tử vi phân đạo hàm riêng tuyến tính cấp m. Đặc biệt khi A là toán tử với hệ số hằng và nhận giá trị thực thì A0 trùng với A. Mệnh đề 1.2.1. Cho u là một hàm liên tục trên Ω và giả sử Z uϕ̄dx = 0, với mọi ϕ ∈ C0∞ (Ω) (1.12) Ω trong đó ϕ là hàm tiêu hạn ở dải gần biên ∂Ω. Khi đó ta khẳng định u đồng nhất bằng 0 trong Ω. Chứng minh. Giả sử x0 ∈ Ω sao cho u(x0 ) 6= 0 và Re u(x0 ) > 0, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên (1.13) http://www.lrc-tnu.edu.vn 8 trong đó Re u(x0 ) là phần thực của u(x0 ). Vì u là một hàm liên tục nên tồn tại một ε−lân cận của điểm x0 sao cho Re u(x) > 0, với mọi x mà |x − x0 | < ε, trong đó |x|2 = x21 + x22 + . . . + x2n . Ta khẳng định có thể tìm được hàm ϕ ∈ C ∞ (Ω) sao cho ϕ(x) > 0 với |x − x0 | < r, 0 0 với |x − x0 | < r và Re (uϕ(x)) = 0 với |x − x0 | ≥ r. Suy ra   Z uϕdx > 0. Re  Ω Điều này mâu thuẫn với (1.12) nên giả thiết (1.13) là sai. Chứng minh tương tự ta có Re (u(x0 )) không thể nhỏ hơn 0. Vậy Re u = 0. Một cách tương tự, ta cũng chứng minh được Im (u(x)) = 0. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 9 Vậy u ≡ 0 trong Ω. 1.3 Một ví dụ về phương trình không có nghiệm Xét phương trình vi phân đạo hàm riêng ux + iuy + 2(ix − y)ut = f (x, y, t), (1.15) trong đó f = f1 + if2 u = u1 + iu2 ux = u1x + iu2x uy = u1y + iu2y ut = u1t + iu2t . Phương trình này do Hans Lewy đưa ra năm (1957). Ta sẽ đi chứng minh phương trình này không có nghiệm với một số vế phải f (x, y, t). Ta thấy phương trình (1.15) tương đương với hệ phương trình sau  u1x − u2y − 2xu2t − 2yu1t = f1 (1.16) u2x + u1y + 2xu1t − 2yu2t = f2 . Chứng minh. Đặt z = x + iy thì u(x, y, t) là hàm biến z và t. Nó là hàm giải tích khi và chỉ khi thỏa mãn hệ phương trình Cauchy-Riemann sau đây  u1x = u2y u1y = −u2x (1.17) ux + iuy = 0 (1.18) hoặc hay  2uz = ux − iuy 2uz̄ = ux + iuy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên (1.19) http://www.lrc-tnu.edu.vn 10 Phương trình (1.18) trở thành uz̄ = 0. (1.20) Lúc này, phương trình (1.15) trở thành 1 uz̄ + izut = f. 2 (1.21) Xét tập hợp  Ω = (x, y, t) x2 + y 2 < a, |t| < b, a, b > 0 . Ta sẽ chỉ ra rằng với một số hàm f ∈ C ∞ (Ω) thì phương trình (1.15) không có nghiệm trong C 1 (Ω). Thật vậy, lấy Ψ(σ, τ ) là hàm khả vi liên tục của hai biến phức σ và τ , triệt tiêu ở bên ngoài hình chữ nhật  D = (σ, τ ) 0 < σ < a, |τ | < b . Đặt ϕ(x, y, t) = Ψ(ρ, t), ρ = x2 + y 2 . Chú ý rằng ϕ là hàm khả vi liên tục theo x, y, t trong Ω và triệt tiêu ở ngoài Ω. Ta có ϕz (x, y, t) = z̄Ψρ (ρ, t). Giả sử u là nghiệm của phương trình (1.15) thì ta có ZZZ ZZZ 1 f ūdxdydt. (uz̄ + izut )ϕ̄dxdydt = 2 Ω Ω Áp dụng công thức tích phân từng phần (1.4) ta có ZZZ ZZZ 1 f ϕ̄dxdydt. − u(ϕz − iz̄ϕt )dxdydt = 2 Ω Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên (1.22) Ω http://www.lrc-tnu.edu.vn (1.23) 11 Suy ra − 1 zu(Ψρ − iΨt )dxdydt = 2 ZZZ Ω ZZZ f ϕ̄dxdydt. (1.24) Ω Ta xét trong hệ tọa độ cực, đặt tan θ = y . x Do 2dρdθ = dxdy nên phương trình (1.24) trở thành − Zb Z2π Za −b 0 1 zu(Ψρ − iΨt )dρdθdt = 2 Zb Z2π Za f ϕ̄dρdθdt. −b 0 0 (1.25) 0 Đặt Z2π U (ρ, t) = zudθ. (1.26) 0 Giả sử f là hàm không phụ thuộc vào θ. Vì Ψ cũng không phục thuộc vào θ nên ta có − Zb Za  U Ψρ − iΨt dρdt = π −b 0 Zb Za f Ψdρdt. (1.27) −b 0 Áp dụng công thức tích phân từng (1.4) phần vào vế trái ta có Zb Za (Uρ + iUt − πf ) Ψdρdt = 0. (1.28) −b 0 Do Ψ là hàm bất kì khả vi liên tục và bị triệt tiêu ngoài miền {0 < ρ < a, |t| < b} nên từ mệnh đề 1.2.1 suy ra Uρ + iUt = πf, 0 < ρ < a, |t| < b. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn (1.29) 12 Lấy f = g 0 (t), ở đó g là hàm trơn nhận giá trị thực của một biến t và đặt V (ρ, t) = U + πig(t). (1.30) Khi đó Vρ + iVt = 0, 0 < ρ < a, |t| < b và do đó V là hàm giải tích của biến ρ + it trên tập hợp này. Vì u(x, y, t) là hàm liên tục trên {0 < ρ < a, |t| < b} nên U (ρ, t) cũng vậy. Tuy nhiên U (0, t) = 0 do (1.26) nên Re V (0, t) = 0, |t| < b. (1.31) Vì V là hàm giải tích trong {0 < ρ < a, |t| < b} và có phần thực triệt tiêu khi ρ = 0, nên ta có thể thác triển hàm V (ρ, t) một cách giải tích qua đường thẳng ρ = 0. Đặc biệt V (0, t) là hàm giải tích của t trong miền {|t| < b}. Nhưng V (0, t) = πig(t). Do đó ta chỉ ra rằng, phương trình (1.15) có nghiệm khi và chỉ khi f là hàm giải tích theo biến t. Song nếu ta xét ví dụ sau  −t e g(t) = 0 nếu t > 0 nếu t ≤ 0 (1.32) thì f là hàm khả vi liên tục mọi cấp nhưng không giải tích ở lân cận của điểm t = 0. Vì vậy phương trình (1.15) không có nghiệm với hàm f (t) = g 0 (t), trong đó g(t) được xác định bởi (1.32). 1.4 Không gian Hilbert Ta nhắc lại định nghĩa không gian Hilbert trên trường số phức. Kí hiệu là H chứa các phần tử u, v, w, ... Ta định nghĩa 2 phép toán cộng và nhân như sau Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 13 Phép cộng + : H × H −→ H (x, y) 7−→ x + y Phép nhân  : C × H −→ H (α, x) 7−→ αx Phép toán cộng và nhân thỏa mãn một số tiên đề sau u+v =v+u (1.33) (u + v) + w = u + (v + w) (1.34) (α + β)u = αu + βu (1.35) α(u + v) = αu + αv (1.36) α(βu) = (αβ)u (1.37) Tồn tại phần tử trung hòa đối với phép toán cộng kí hiệu là 0 sao cho u+0=0+u=u (1.38) Với mỗi cặp (u, v) ∈ H . Ta định nghĩa tích vô hướng của chúng (kí hiệu (u, v)) như sau (αu + βv, w) = α(u, v) + β(v, w) (1.39) (u, v) = (v, u) (1.40) (u, u) > 0 khi u 6= 0 (1.41) Bây giờ từ các phương trình (α + β)u = αu + βu (1.42) (αu + βv, w) = α(u, w) + β(v, w) (1.43) và Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 14 ta có (0u, 0u) = (1u + (−1)u, 0u) = (u, 0u) − (u, 0u) (1.44) = 0. Chứng tỏ 0u = 0, kết hợp với (1.41) ta có (0, u) = 0. (1.45) Cũng do 0u = 0 và theo công thức (1.39) ta suy ra (0, u) = (0u, u) = 0(u, u) (1.46) = 0. Tương tự ta có u + (−1)u = 0. (1.47) Với u, v là các phần tử bất kì của H , ta có (u + (−1)u, v) = 1(u + (−1)u, v) = (1u + (−1)u, v) (1.48) = (0, v) = 0. Từ công thức (1.39), (1.36), (1.37), (1.35), (1.45) và công thức 0u = 0 lấy v = u + (−1)u. Ta thấy u + (−1)u = 0. (1.49) Cộng hai vế của (1.47) với 1u và kết hợp (1.37), (1.34), (1.35), (1.38) ta có u = 1u. (1.50) Từ phương trình (1.47) ta thấy có thể định nghĩa phép trừ như sau Nếu u + v = w thì u + v + (−1)v = w + (−1)v và do đó u = w + (−1)v . Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 15 Từ (1.34), (1.47), (1.38) ta viết −v thay cho (−1)v và w − v thay cho w + (−1)v Từ (1.37) và công thức 0.u = 0 ta có α0 = 0. (1.51) Nếu đặt 1 ||u|| = (u, u) 2 Ta có ||αu|| = |α|||u|| (1.52) ||u|| > 0 nếu u 6= 0 (1.53) ||u + v|| ≤ ||u|| + ||v|| (1.54) ||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2 (1.55) |(u, v)| ≤ ||u||||v||. (1.56) Ta gọi ||u|| là chuẩn của u. Trong các phát biểu (1.54), (1.55), (1.56) được gọi lần lượt là bất đẳng thức tam giác, quy tắc hình bình hành và bất đẳng thức Schwarz. Ta có ||u + v||2 = (u + v, u + v) = ||u||2 + (u, v) + (v, u) + ||v||2 , ||u − v||2 = (u − v, u − v) 2 2 = ||u|| − (u, v) − (v, u) + ||v|| . Cộng vế với vế của hai đẳng thức (1.57), (1.58) ta được (1.55). Ta chứng minh phát biểu (1.56). Thật vậy Ta xét biểu thức Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn (1.57) (1.58) 16 ||αu + v||2 = (αu + v, αu + v) = |α|2 .||u||2 + 2Re α(u, v) + ||v||2 2 (v, u) |(u, v)|2 2 = α||u|| + · + ||v|| − ||u|| ||u||2 (1.59) Ta thấy rằng trong biểu thức (1.59) có thể giả sử u 6= 0 (bởi nếu u = 0 thì phát biểu (1.56) được suy ra từ công thức 0.u = 0 ). Mặt khác ta thấy rằng biểu thức (1.59) đúng với mọi α ∈ C nên ta có thể chọn α=− Khi đó thay α = − (v, u) . ||u||2 (v, u) vào biểu thức (1.59) ta nhận được ||u||2 ||v||2 − |(u, v)|2 ≥0 ||u||2 suy ra |(u, v)| − ||u||||v|| ≤ 0 hay |(u, v)| ≤ ||u||||v||. Vây bất đẳng thức (1.56) được chứng minh xong. Ta chứng minh bất đẳng thức (1.54) bằng cách suy ra từ ||u + v||2 = ||u||2 + 2Re (u, v) + ||v||2 ≤ ||u||2 + 2||u||.||v|| + ||v||2 = (||u|| + ||v||)2 . Các phát biểu từ (1.33) đến (1.41) là các tiên đề cho không gian Hilbert đầy đủ, có nghĩa là mọi dãy uk là các phần tử của H thỏa mãn ||uj − uk || → 0 khi j, k → ∞, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn (1.60) 17 tồn tại một phần tử u ∈ H sao cho ||u − uk || → 0 khi k → ∞. (1.61) Một dãy thỏa mãn (1.60) gọi là dãy Cauchy, chú ý rằng (1.61) suy ra (1.60) bởi (1.54) Tính đầy đủ là vô cùng quan trọng trong các ứng dụng. Đôi khi ta viết (1.61) là uk → u ∈ H khi k → ∞. (1.62) Tiếp theo ta nêu một số tính chất quan trọng của không gian Hilbert. Một tập con S ⊂ H gọi là một không gian con nếu ∀u, v ∈ S, ∀α, β là các vô hướng thì αu + βv ∈ S S được gọi là không gian con đóng nếu mọi dãy Cauchy của các phần tử trong S hội tụ về một phần tử của S. Hiển nhiên một không gian con đóng của không gian Hilbert là không gian Hilbert. Bổ đề 1.4.1. Cho M là không gian con đóng của H thì với mọi u không thuộc M có một v thuộc M sao cho ||u − v|| = inf ||u − w||. w∈M (1.63) Chứng minh. Tập hợp d = inf ||u − w||, w ∈ M thì có một dãy cực tiểu {wk } ⊆ M sao cho ||u − wk || → d khi k → ∞ Từ công thức (1.55) ta thấy 1 4||u − (wk + wj )||2 + ||wk − wj ||2 = 2(||u − wk ||2 + ||u − wj ||2 ) 2 → 4d2 khi j, k → ∞ (1.64) vì 1 1 (wk + wj ) ∈ H, 4||u − (wk + wj )||2 ≥ 4d2 2 2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 18 và ||wk − wj || → 0 khi j, k → ∞. Từ H là không gian đầy đủ nên có một v ∈ M sao cho ||wk − v|| → 0. Điều này có nghĩa ||u − v|| = lim ||u − wk || = d. Định lý 1.4.1. (Định lí phép chiếu) Cho M là không gian con đóng của H . Khi đó với mọi u thuộc H thì tồn tại v thuộc M thỏa mãn (u−v, M ) = 0. Tức là (u − v, w) = 0 với mọi w thuộcM. Chứng minh. Nếu u ∈ M, ||u − v|| = d. Khoảng cách từ u đến M . Bây giờ nếu w 6= 0 là phần tử bất kì của M , ta có ||u − v||2 ≤ ||u − v − αw||2 = ||u − v||2 − 2Re α(u − v, w) + |α|2 .||w||2 , ∀α ∈ C. Trong tính toán này nếu chúng ta lấy α= thì (u − v, w) ||w||2 |(u − v, w)|2 |(u − v, w)|2 ||u − v|| ≤ ||u − v|| − 2 + ||w||2 ||w||2 2 2 suy ra |(u − v, w)|2 ≤ 0. (1.65) |(u − v, w)|2 ≥ 0. (1.66) Mặt khác ta luôn có Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất