Đăng ký Đăng nhập
Trang chủ ước lượng metric kobayashi trên các miền trong cn...

Tài liệu ước lượng metric kobayashi trên các miền trong cn

.PDF
40
15
57

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ——————–o0o——————– VIÊN ÁNH NGỌC ƯỚC LƯỢNG METRIC KOBAYASHI TRÊN CÁC MIỀN TRONG Cn LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên, 4/2019 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ——————–o0o——————– VIÊN ÁNH NGỌC ƯỚC LƯỢNG METRIC KOBAYASHI TRÊN CÁC MIỀN TRONG Cn LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành: Toán Giải tích Mã số: 8460102 NGƯỜI HƯỚNG DẪN KHOA HỌC TS. TRẦN HUỆ MINH Thái Nguyên, 4/2019 LỜI CAM ĐOAN Em xin cam đoan đây là công trình nghiên cứu của riêng em dưới sự hưỡng dẫn của TS. Trần Huệ Minh. Em không sao chép từ bất kì công trình nào khác. Các tài liệu trong luận văn là trung thực, em kế thừa và phát huy các thành quả khoa học của các nhà khoa học với sự biết ơn chân thành. Thái Nguyên, tháng 4 năm 2019 Người viết luận văn Viên Ánh Ngọc Xác nhận của Khoa chuyên môn Xác nhận của Người hướng dẫn khoa học ii LỜI CẢM ƠN Trước khi trình bày nội dung chính của khóa luận, em xin bày tỏ lòng biết ơn sâu sắc tới Tiến sĩ Trần Huệ Minh, người đã tận tình hướng dẫn và truyền đạt những kinh nghiệm học tập, nghiên cứu để em có thể hoàn thành luận văn này. Em cũng xin bày tỏ lòng biết ơn chân thành tới Phòng Đào tạo - Bộ phận Sau Đại học, Ban chủ nhiệm Khoa Toán, các thầy cô giáo Trường Đại học Sư phạm - Đại học Thái Nguyên và Viện Toán học đã giảng dạy và tạo điều kiện thuận lợi cho em trong quá trình học tập và nghiên cứu khoa học. Do thời gian thực hiện luận văn không nhiều, kiến thức còn hạn chế nên bài luận văn không tránh khỏi những khiếm khuyết vì vậy rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo và các bạn học viên để luận văn này được hoàn chỉnh hơn. Xin chân thành cảm ơn! Thái Nguyên, tháng 4 năm 2019 Người viết luận văn Viên Ánh Ngọc iii Mục lục Lời cam đoan Lời cảm ơn i ii Mục lục iii Mở đầu 1 1 Uớc lượng metric Kobayashi trên các miền trong Cn . 1.1. Ước lượng metric Kobayashi trên miền Ω = C\ {0, 1} . . . . . . 1.2. Uớc lượng metric Kobayashi trên một miền trong C2 . . . . . . 1.3. Ước lượng metric Kobayashi trên một miền bị chặn trơn trong Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ước lượng metric Kobayashi trên miền lồi loại hữu hạn trong Cn 2.1. Hàm điều hòa, hàm đa điều hòa dưới . . . . . . . . . . . . . . 2.2. Metric đa điều hòa dưới . . . . . . . . . . . . . . . . . . . . . 2.3. Ước lượng metric Kobayashi trên miền lồi trong Cn . . . . . . 2.4. Ước lượng metric Kobayashi trên một miền giả lồi loại hữu hạn trong C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kết luận Tài liệu tham khảo 3 3 7 10 17 17 18 22 29 34 35 1 Mở đầu 1. Lý do chọn đề tài Metric Kobayashi trên một miền Ω trong Cn tại điểm p ∈ Ω theo hướng ξ ∈ Tp Ω được định nghĩa bởi: F (p, ξ) = inf {α > 0 | ∃Φ ∈ Hol(D, Ω) : Φ(0) = p, Φ0 (0) = ξ/α} , trong đó Hol(D, Ω) là ký hiệu họ các ánh xạ chỉnh hình từ đĩa đơn vị D trong C vào Ω. Metric Kobayashi là metric lớn nhất trong các metric bất biến song chỉnh hình G mà thỏa mãn các tính chất: i) GD : D × C → R+ ∪ {0} trùng với metric Poincare trên đĩa đơn vị trong C ii) G có tính chất giảm qua các ánh xạ chỉnh hình, tức là nếu Φ : Ω → Ω̃ là ánh xạ chỉnh hình và p ∈ Ω, ξ ∈ Tp Ω thì GΩ (p, ξ) ≥ GΩ̃ (Φ(p), Φ∗ (p)ξ). Trong những năm gần đây, việc tìm hiểu ước lượng của metric Kobayashi đã được nhiều nhà toán học như I. Graham, D.Catlin, S.G.Krantz, Lina Lee, S.Fu, Peter Pflug,. . . quan tâm nghiên cứu, các tác giả đã đưa ra nhiều kết quả về ước lượng cho metric Kobayashi trên các miền trong Cn và sử dụng các ước lượng này để nghiên cứu bài toán ánh xạ. Với lý do này, em đã lựa chọn đề tài nghiên cứu " Ước lượng metric Kob trên các miền trong Cn " làm luận văn tốt nghiệp. Đề tài có ý nghĩa thời sự, đã và đang được các nhà toán học quan tâm, nghiên cứu. 2. Mục đích nghiên cứu Mục đích của luận văn là nghiên cứu, tìm hiểu và trình bày lại một số kết quả về ước lượng của metric Kobayashi trên các miền bị chặn trơn, miền lồi và miền giả lồi loại hữu hạn trong Cn . 2 3. Nhiệm vụ nghiên cứu Hệ thống lại các kết quả và trình bày tổng quan về ước lượng của metric Kobayashi trên các miền trong Cn . 4. Phương pháp nghiên cứu Sử dụng kết hợp các phương pháp phân tích và tổng hợp lý thuyết, phương pháp phân loại và hệ thống hóa lý thuyết. 5. Bố cục của luận văn Luận văn được viết chủ yếu dựa trên các tài liệu [3], [4], [5], [6, [7] gồm 36 trang trong đó có phần mở đầu, 2 chương nội dung, phần kết luận và tài liệu tham khảo. Cụ thể là: - Chương 1: Trình bày các kết quả về ước lượng metric Kobayashi trên các miền trong Cn , phần đầu của chương trình bày về ước lượng metric Kobayashi trên một miền trong C\{ 0, 1}, phần tiếp theo là ước lượng metric Kobayashi trên một miền trong C2 , phần cuối của chương trình bày các kết quả trên một miền bị chặn trơn trong Cn . - Chương 2: Trình bày các khái niệm về hàm đa điều hòa, hàm đa điều hòa dưới, và một số kết quả của metric đa điều hòa dưới (metric Sybony) và sử dụng metric này để ước lượng metric Kobayashi trên các miền lồi và giả lồi loại hữu hạn trong Cn . - Cuối cùng là phần kết luận trình bày tóm tắt các kết quả đạt được và danh mục tài liệu tham khảo. Luận văn được hoàn thành dưới sự hướng dẫn khoa học của TS Trần Huệ Minh, do thời gian nghiên cứu không có nhiều và kiến thức của em còn hạn chế nên bản luận văn của em không tránh khỏi khiếm khuyết, em rất mong nhận được những góp ý của Thầy Cô và bạn đọc để bản luận văn được hoàn chỉnh hơn. Em xin chân thành cảm ơn ! 3 Chương 1 Uớc lượng metric Kobayashi trên các miền trong Cn. 1.1. Ước lượng metric Kobayashi trên miền Ω = C\ {0, 1} . Giả sử Ω là một miền trong Cn , P ∈ Ω và ξ ∈ Cn , ta kí hiệu Hol(P, ξ) là họ các ánh xạ chỉnh hình Φ từ đĩa đơn vị ∆ ⊂ C vào Ω sao cho Φ(0) = P và Φ0 (0) = ξ. Khi đó độ dài Kobayashi của ξ tại điểm P được định nghĩa bởi ξ FKΩ (P, ξ) ≡ inf {α : α > 0, ∃Φ ∈ Hol(P, ξ) , Φ0 (0) = }. α Trong phần này, ta trình bày ước lượng metric Kobayashi tại các điểm biên trên miền ∆\{0} và C\ {0, 1} , ở đây ∆ là kí hiệu của đĩa đơn vị trong C, ∆ = {z ∈ C ||z| < 1} . Bổ đề 1.1.1. [5] Giả sử Ω là một miền liên thông trong C có không gian phủ là nửa phẳng H. Lấy q ∈ H và m : H → ∆ là ánh xạ song chỉnh hình sao cho m(q) = 0. Lấy P ∈ Ω, ξ ∈ Cn và π : H → Ω mà π(q) = P. Khi đó |m0 (q)| Ω kξk . FK (P, ξ) = 0 |π (q)| Chứng minh Lấy f là một hàm phù hợp với metric Kobayashi tại điểm P và f 0 (0) là bội của ξ. Vì đĩa đơn vị là liên thông nên tồn tại ánh xạ nâng duy nhất f˜ : ∆ → H sao cho f˜(0) = q làm giao hoán biểu đồ sau 4 Lấy π −1 là nghịch đảo địa phương trong một lân cận của p. Vì m◦ f˜(0) = 0 và f˜ = π −1 ◦ f, từ bổ đề Schwarz ta có  0 0 −1 0 (P ) · f (0) ≤ 1, m (q) · π suy ra |m0 (q)| 1 ≥ 0 . |f 0 (0)| |π (q)| Ước lượng này đạt được với bất kì hàm f và ánh xạ π ◦ m−1 cùng là hàm phù hợp với metric Kobayashi nên ta có điều phải chứng minh.  Sử dụng bổ đề trên, ta ước lượng được metric Kobayashi tại các điểm biên trên miền ∆\{0} và C\ {0, 1} . Ta có mệnh đề sau Mệnh đề 1.1.2. [5] Lấy p là một điểm thuộc ∆\{0} sao cho dist (p,0) = δ và lấy ξ = 1. Với bất kì δ > 0, ta có ∆\{0} FK (p, ξ) = 1 . 2δlog 1δ Chứng minh Xét ánh xạ từ ∆\{ 0} vào ∆\{ 0} xác định bởi z 7→ zeiθ . Ta chỉ cần chứng minh mệnh đề trên trong trường hợp p = 0. Lấy Hlef t là nửa phẳng {Re(z) < 0} ⊂ C. Ánh xạ phủ được xác định bởi π : Hlef t → ∆\{0}, z 7→ ez . Lấy q = logδ, khi đó m : Hlef t → ∆ được xác định bởi 1 z − log δ m(z) := , với m0 (q) = . z + log δ 2 log δ Từ bổ đề 1.1.1, ta có 1 1 ∆\{0} FK (δ, 1) = = .  2δ|logδ| 2δlog(1/δ) Để ước lượng metric Kobayashi cho miền Ω = C\{ 0, 1} ta phải xét hàm modular elliptic như ánh xạ phủ từ nửa phẳng tới Ω và ước lượng đạo hàm của nó. Hàm modular elliptic được xác định bởi   ∞ P 1 − sin2 π 1n− 1 τ cos2 (π (n− 12 )τ ) ( ( 2) ) N (τ ) n=−∞   λ(τ ) = =: . ∞ P D(τ ) 1 1 cos2 (πnτ ) − sin2 (π (n− 1 )τ ) 2 n=−∞ Ta xét bổ đề sau 5 Bổ đề 1.1.3 [5] Khi Im(τ ) → ∞, đạo hàm của N (τ ) là bị chặn đều bởi một hằng số: d D(τ ) < C (1.1) dτ với C > 0 và các đạo hàm của N (τ ) thỏa mãn d N (τ ) . eiπτ = e−π Im(τ ) . dτ (1.2) Chứng minh Với z = x + iy, ta có :  1 i(x+iy) e − ei(x+iy) 2i 1 ix −y = (e e − e−ix ey ). 2i 1 Do vậy, với |y| > ln 2, ta có 2 1 |y| e < |sinz| < e|y| . 4 Tương tự, ta có 1 |y| e < |cosz| < e|y| . 4 sin(z) = (1.3) (1.4) Sử dụng (1.3) và (1.4), các đạo hàm của các phần tử cosin của D(τ ) ngoại trừ phần tử ứng với n = 0, được ước lượng bởi d 2πn sin(πnτ ) 1 |n| = . , (1.5) dτ cos2 (πnτ ) cos3 (πnτ ) e2π|n| Im(τ ) khi Im(τ ) → ∞. Tương tự, ta có    d 1 1 1 2π n − cos π n − τ n − 1 2 2  =  2 , . 1 1 2 3 dτ sin π(n − 2 )τ e2π|n− 12 |Im (τ ) sin π n − 2 τ (1.6) và    d 1 1 1 n − 2π n − sin π n − τ 1 2 2  =  2 , . 1 1 1 2 3 2π n− Im dτ cos π(n − 2 )τ e | 2 | (τ ) cos π n − 2 τ (1.7) 6 với mọi n ∈ Z và Im(τ ) → ∞. Do vậy, đạo hàm của D(τ ), ta có X d X d 1 1 d D(τ ) ≤ +   . dτ dτ cos2 (πnτ ) dτ sin2 π n − 12 τ Từ (1.5) và (1.6) ta thấy nó bị chặn trên đều Tương tự, đạo hàm của N (τ ) được ước lượng bởi X d X d 1 1 d N (τ ) .     + dτ dτ sin2 π n − 12 τ dτ cos2 π n − 12 τ 1 .  eπ Im(τ ) Ta có kết quả sau về ước lượng metric Kobayashi trên miền Ω = C\{ 0, 1}. Mệnh đề 1.1.4. [5] Lấy Ω = C\ {0, 1} , đặt dist(p, 0) = δ, ξ = 1. Khi đó với δ > 0 đủ nhỏ, ta có 1 FKΩ (p, ξ) ≈ . δ log 1δ . Chứng minh Đặt Ω = C\{ 0, 1}, kí hiệu Hupper là nửa mặt phẳng trên {Im (z) > 0} ⊂ C. Lấy p là một điểm gần gốc và λ : C → C\{ 0, 1} là hàm modular elliptic như ánh xạ phủ của Ω. Khi đó ảnh ngược của p là điểm q = r + iM, trong đó M > 0, M → ∞ khi p → 0. Nếu cho r ∈ [0, 2] thì λ(q) sẽ dần đến gốc theo mọi hướng. Ta ước lượng metric Kobayashi tại điểm p bởi Bổ đề 1.1.1 . Phép biến đổi Mobius Hupper → λ biến q = r + iM thành điểm gốc bởi m(z) = z − (r + iM ) z−q = . z − q̄ z − (r − iM ) Theo Bổ đề 1.1.1, ta có FKΩ (p, ξ) |m0 (q)| 1 = 0 = . 0 |λ (q)| 2M |λ (r + iM )| Mặt khác λ0 (τ ) = N 0 (τ ) D0 (τ ). − λ(τ ) D(τ ) D(τ ) Từ D(τ ) → π 2 , λ(τ )e−iπτ → 16, ta có |λ0 (τ )| ≈ |N 0 (τ ) − λ (τ ) D0 (τ )| . eiπτ (1.8) 7 khi Im(τ ) → ∞. Kết hợp với (1.8), ta có FKΩ (p, ξ) & Vì λ(τ )e −iπτ 1 . 2M e−πM → 16 nên δ = dist(p,0) ≈ e −πM (1.9)   1 , tức là M ≈ log . δ Từ (1.9) ta có FKΩ (p, ξ) & 1 δ log 1 δ . Mặt khác ∆\{ 0} là tập con của C\{0, 1} Từ tính chất giảm của metric Kobayashi, ta có ∆\{ 0} FKΩ (p, ξ) ≤ FK 1.2. (p, ξ) = 1 2δ log 1 δ .  Uớc lượng metric Kobayashi trên một miền trong C2 . Giả sử Ω là một miền trong Cn , với P ∈ Ω, đặt δ(P ) = δΩ (P ) là khoảng cách từ điểm P đến ∂Ω. Ta sẽ chứng minh rằng khi điểm P gần biên và véc tơ ξ = νP là véc tơ pháp tuyến ngoài của ∂Ω tại điểm P thì FKΩ (P, ξ) ≈ 1 , δ(P ) trong đó kí hiệu A ≈ B tức là thương A/B bị chặn trên và bị chặn dưới bởi một hằng số. Nếu r2 > r1 > 0, đặt  A (0, r1 , r2 ) = A = z ∈ C2 : r1 < |z − 0| < r2 . Lấy δ > 0 đủ nhỏ. Nếu Pδ = (−r1 − δ, 0) và νδ = νPδ = (1, 0), thì bất kì ước lượng dưới cho FKA đều cho ta ước lượng dưới cho các miền bị chặn trơn tùy ý. Có điều này là bởi vì nếu Ω là một miền như vậy, điểm P ∈ Ω gần biên và P 0 ∈ ∂Ω là điểm biên gần nhất với điểm P thì tồn tại r1 , r2 > 0 sao cho A = A (P 0 + r1 νp0 , r1 , r2 ) ⊇ Ω, ở đây P 0 + r1 νP 0 là tâm của hình khuyên. Ta có kết quả sau: Định lý 1.2.1. [6] Với bất kì A = A (Q, r1 , r2 ) và P ∈ A là điểm gần biên trong của A thì FKA (P, ν) ≈ δA (P )−3/4 . 8 Tổng quát hơn, với bất kì 3/4 ≤ λ ≤ 1, tồn tại một miền bị chặn Ωλ ⊆ C2 với biên khả vi, liên tục sao cho với các điểm P ∈ Ωλ dần đến biên ∂Ωλ , ta có FKΩλ (P, ν) ≈ δ(P )−λ . Chứng minh ∗) Tính bị chặn trên: 1 và đặt 2 − 2λ n o 2 m 2 Uλ = (z1 , z2 ) ∈ C : 1 < ρ(z) ≡ |z1 | + |z2 | < 4 . Cố định một số λ mà 3/4 ≤ λ ≤ 1. Đặt m = Rõ rằng Uλ có biên khả vi, liên tục. Lấy δ > 0 đủ nhỏ và P = Pδ = (−1 − δ, 0) và ξ = (1, 0). Để chứng minh được ước lượng trên cho FKUλ (P, ξ) ta cần chỉ ra một hàm Φ = Φλ ∈ Hol(P, ξ) sao cho |Φ0 (0)| ≥ C.δ(P )λ . Ta định nghĩa hàm Φ như vậy bởi công thức   Φ(ζ) = −1 − δ + δ λ /10 ζ, ζ 2 .  Rõ rằng Φ(0) = P và Φ0 (0) = δ λ /10, 0 . Nếu ta có thể chỉ ra được Φ(∆) ⊆ Uλ , thì Φ ∈ Hol (P, ξ) và ta sẽ chứng minh được FKUλ ≤ C · δ −λ . Dễ thấy |ϕ(z)| < 4. Ta sẽ chứng minh |ϕ(ζ)| > 1 nếu và chỉ nếu 2δ + δ 2 + 1 2λ 2 1 δ |ζ| − (1 + δ) δ λ ζ + |ζ|2m > 0. 100 5 Ta xét 2 trường hợp: +) Nếu |ζ| < 5δ 1−λ , thì 1 (1 + δ) δ λ ζ < (1 + δ) δ λ δ 1−λ < 2δ. 5 Suy ra Φ(ζ) ∈ Uλ với mọi giá trị của ζ thỏa mãn điều kiện trên. +) Nếu |ζ| > 5δ 1−λ thì λ   1−λ 1 2m (1 + δ) δ λ ζ ≤ 1 ζ (1 + δ) |ζ| ≤ |ζ| . 5 5 5 9 Suy ra Φ(ζ) ∈ Uλ với mọi giá trị của ζ thỏa mãn điều kiện trên. Vì vậy ta chứng minh được FKUλ ≤ C · δ −λ . ∗) Tính bị chặn dưới: Để chứng minh điều này, ta phải xét mọi ánh xạ Φ ∈ Hol(Pδ , ξ) và chứng minh đạo hàm của chúng có giá trị tuyệt đối bị chặn trên bởi C · δ −λ . Nếu δ > 0 đủ nhỏ, đặt Rδ = {ω ∈ C : 1 − δ < |ω| < 4} . Do tính chất cơ bản của ánh xạ bảo giác, nếu Q ∈ Rδ , ξ ∈ C là véc tơ đơn vị tùy ý thì FKRδ (Q, ξ) ≈ dist(Q, ∂Rδ )−1 , ở đây các hằng số dùng để so sánh chỉ phụ thuộc vào δ. Lấy Φ ∈ Hol(Pδ , ξ) trên miền Uλ . Ta có ngay |Φ2 (ζ)| ≤ C|ζ|2 và ta có thể chọn C = 2. δ 1−λ Nếu |ζ| ≤ √ , thì 2 1 2δ 2−2λ = δm. |Φ2 (ζ)| ≤ 2 Do đó, với mỗi ζ, |Φ1 (ζ)| > q 1 − |Φ2 (ζ)|m > √ 1 − δ > 1 − δ. Vì vậy hàm δ 1−λ ζ g(ζ) ≡ Φ1 √ 2 ánh xạ đĩa ∆ vào Rδ với g (0) = −1 − δ. Bằng các ước lượng đều ở trên cho metric Kobayashi trên các miền Rδ , ta có thể kết luận rằng δ 1−λ 0 √ |Φ 1 (0)| = |g 0 (0)| ≤ C · δ. 2 Do đó |Φ0 1 (0)| ≤ C · δ λ . Vì Φ là một phần tử tùy ý của Hol(Pδ , ξ), nên ta có được ước lượng FKUλ (P, ξ) ≥ C 0 · δ −λ . 10 1.3. Ước lượng metric Kobayashi trên một miền bị chặn trơn trong Cn . Giả sử Ω ⊂⊂ Cn là một miền bị chặn trong Cn với biên trơn gần z0 ∈ ∂Ω. Lấy U là một lân cận của z0 và r(z) là một hàm xác định địa phương của Ω trên U , tức là Ω ∩ U = { z ∈ U |r(z) < 0} ,   ∂r(z) ∂r(z) ∂r(z) ∞ và r(z) ∈ C (U ), ∇r(z)|∂Ω∩U ≡ ∂z1 , ∂z2 , . . . , ∂zn 6= 0. Với z = (z1 , z2 , . . . , zn ) ∈ Cn , đặt z 0 = (z1 , z2 , . . . , zn−1 ) . Kí hiệu d(z) = dist (z, ∂Ω) và gọi π(z) là phép chiếu trên biên của z gần z0 sao cho d(z) = |z − π(z)| . Lấy Nπ(z) là pháp tuyến hướng vào trong tại π(z). Đặt ) ( n X ∂r (z0 )Xi = 0 . Hz0 ≡ X ∈ Cn | h∂r(z0 ), Xi ≡ ∂z i i=1 Ta nói z0 ∈ ∂Ω là điểm giả lồi Lêvi nếu n X ∂ 2 r(z0 ) Xi Xj ≥ 0, ∀X ∈ Hz0 . ∂z ∂ z̄ i j i,j=1 Trong phần này, ta trình bày một số kết quả về ước lượng metric Kobayashi theo phương pháp tuyến gần điểm biên giả lồi Lêvi của một miền bị chặn trơn trong Cn . Ta sẽ chứng minh các kết quả sau: Định lý 1.3.1. [4] Giả sử Ω ⊂⊂ Cn là miền bị chặn với biên trơn gần z0 ∈ ∂Ω. Giả sử tồn tại α > 3/4, C > 0, X ∈ Cn \Hz0 , và {zk }∞ k=1 với zk → z0 (zk thuộc nón Λ với đỉnh tại z0 và trục Nz0 ) sao cho FΩ (zk , X) ≥ C |h∂r(z0 ), Xi| , ∀k ∈ N. dα (zk ) (1.10) Khi đó z0 là một điểm giả lồi Lêvi. Để chứng minh định lý này ta nhắc lại bổ đề sau : Bổ đề 1.3.2. [4] Giả sử Ω0 là một miền con của của một miền bị chặn Ω với ∂Ω0 ∩ ∂Ω ⊃ U ∩ ∂Ω đối với một lân cận U nào đó của z0 ∈ ∂Ω. Khi đó tồn tại một lân cận V ⊂⊂ U của z0 và một hằng số C > 0 sao cho FΩ0 (z, X) ≤ CFΩ (z, X), (1.11) 11 cho z ∈ Ω0 ∩ V và X ∈ Cn . Ở đây ta sử dụng C để kí hiệu các hằng số và chúng có thể khác nhau trong các lần xuất hiện khác nhau. Chứng minh định lý: Qua một phép tịnh tiến và phép biến đổi Unita, ta có thể giả thiết rằng z0 là điểm gốc và ∂Ω là xác định địa phương bởi r(z) = Re zn + n X aij zi z̄j + o(|z|3 ), (1.12) i,j=1 với z gần z0 . Giả sử ∂Ω là không giả lồi Lêvi tại z0 . Khi đó ma trận  2  ∂ r(z0 ) ∂zi ∂z̄j 16i,j6n−1 có ít nhất một giá trị riêng âm. Do đó, sau một phép biến đổi Unita và một phép biến đổi hệ toạ độ, ta có thể giả sử rằng 2 r(z) = Re zn − |z1 | + n X aij zi z̄j + o(|z|3 ), i,j=2 với z ∈ U , trong đó U là một lân cận của z0 . Bằng cách co rút U , ta có n X 2 |z1 |2 +C |zi | , r(z) ≤ Rezn − 2 i=2 với z ∈ U. (1.13) Lấy Λ = {−Rezn > k|z|} (0 < k < 1) là một nón. Theo định lý hàm ẩn, ta có −Rezn lim = 1. (1.14) z→0 d(z) z∈Λ∩Ω Do tính chất thuần nhất của metric Kobayashi, chúng ta có thể giả thiết rằng X = (X1 , X2 , . . . , Xn−1 , 1) . Với z = (z 0 , zn ) = (z1 , z2 , . . . , zn ) ∈ Λ ∩ Ω ∩ U, đặt δ = −Rezn . Ta định nghĩa Φδ (ζ) = (Φ1δ (ζ), Φ2δ (ζ), . . . , Φnδ (ζ)) bởi 3 δ4 2 X1 ζ + 3 zk + δ24 Xk ζ, 3 zn + δ24 ζ. Φ1δ = z1 + 2ζ 2 ; Φkδ = với 2 ≤ k ≤ n − 1 Φnδ = 12 3 δ4 Khi đó Φδ (0) = z, Φ δ (0) = X. 2 Ta sẽ chứng minh tồn tại γ ∈ (0, 1) sao cho với mọi δ > 0 đủ nhỏ, ta có 0 Φδ (∆γ ) ⊂ Ω ∩ U. Thật vậy, bằng cách chọn γ ∈ (0, 1) đủ bé, ta có Φδ (∆γ ) ⊂ U . Theo (1.13) n 3 X δ4 |Φ1δ (ζ)|2 r (Φδ (ζ)) ≤ −δ + Re ζ − +C · |Φiδ (ζ)|2 . 2 2 i=1 Vì δ > k · |z|, chúng ta thấy rằng khi γ đủ nhỏ, thì 3 |Φ1δ (ζ)|2 3δ δ 4 Re ζ − . r (Φδ (ζ)) ≤ − + 4 2 2 (1.15) 1 Với |ζ| < δ 4 , từ (1.15), 3 3δ δ 4 1 |Φ1δ (ζ)|2 r (Φδ (ζ)) ≤ − + δ 4 − 4 2 2 δ |Φ1δ (ζ)|2 < 0. =− − 4 2 1 Với |ζ| ≥ δ 4 , ta có 2 3 4 δ 2 4 |Φ1δ (ζ)| ≥ 2|ζ| − z1 + X1 ζ 2 3 ≥ 2|ζ|4 − Cδ 2 . Từ (1.15) suy ra khi γ đủ nhỏ, thì 3 3 3δ δ 4 Cδ 2 r (Φδ (ζ)) ≤ − + Re ζ − |ζ|4 + 4 2 2 3 4 ≤ − 3δ4 + Cδ2 2 + |ζ|2 − |ζ|4 < 0. Từ đó suy ra tồn tại γ ∈ (0, 1) sao cho với mọi δ > 0 đủ bé, ta có Φδ (∆γ ) ⊂ Ω ∩ U. Từ định nghĩa của metric Kobayashi và theo chứng minh trên ta có, FΩ∩U (z, X) ≤ C 3 δ4 . Kết hợp với (1.14) và tính chất giảm độ dài của metric Kobayashi, ta có FΩ (z, X) ≤ C 3 d 4 (z) . 13 Điều này mâu thuẫn với (1.10). Do vậy ∂Ω là giả lồi Lêvi tại z0 .  n n Định lý 1.3.3. [4] Giả sử Ω ⊂⊂ C là miền bị chặn trong C với biên trơn gần z0 ∈ ∂Ω. Lấy Λ là nón có đỉnh tại z0 và trục Nz0 . Giả sử z0 là điểm gốc và hàm xác định địa phương của Ω gần z0 có dạng  m r(z) = Re zn + o |z 0 | + |zn | . |z| . Khi đó tồn tại một lân cận V của z0 và một hằng số C > 0 sao cho FΩ (z, X) ≥ C |Xn | 1 d1− m (z) , (1.16) với z ∈ Λ ∩ Ω ∩ V và mọi X ∈ Cn . Hơn nữa, tồn tại C1 > 0 sao cho FΩ (z, X) ≥ C1 |Xn | 1 d1− 2m (z) , (1.17) với z ∈ Λ ∩ Ω ∩ V và X ∈ Cn mà |X| ≤ K |Xn | (C1 có thể phụ thuộc vào hằng số K). Chứng minh Từ giả thiết, tồn tại một lân cận U của z0 sao cho Ω ∩ U ⊂ {z ∈ U | Re zn − C(|z 0 |m + |zn | · |z|) < 0} . (1.18) Đặt Λ = {− Re zn > k|z|} , k ∈ (0, 1). Với z ∈ Λ ∩ Ω ∩ U và X ∈ Cn (do tính thuần nhất của metric  Kobayashi, ta có thể giả sử rằng |X| ≤ 1),  lấy Φ(ζ) = Φ̃(ζ), Φn (ζ) = (Φ1 (ζ), Φ2 (ζ), . . . , Φn (ζ)) : ∆ → Ω ∩ U là một đĩa giải tích thỏa mãn Φ(0) = z, Φ0 (0) = λX, (1.19) trong đó λ > 0 là một hằng số để ước lượng. Theo công thức tích phân Cauchy, ta có |Φi (ζ) − zi | ≤ C |ζ| , 1 ≤ i ≤ n, (1.20) |Φi (ζ) − zi − λXi ζ| ≤ C|ζ|2 , 1 ≤ i ≤ n, (1.21) và 14 1 với |ζ| < . Từ (1.18), ta có 2 m   Re Φn (ζ) < C Φ̃(ζ) + |Φn (ζ)| · |Φ(ζ)| . (1.22) Kí hiệu δ = − Re zn . Từ (1.20), (1.21) và do k|z| < δ, ta có |Φ(ζ)| ≤ C (|z| + |ζ|)  ≤C 1 1 1 δ + cδ m k  (1.23) 1 1 ≤ c 2 δ m , với |ζ| < cδ m , và  2 |Φ(ζ)| ≤ C |z| + (λ |X|) |ζ| + |ζ|    1 1 1 ≤C δ + (λ |X|) cδ 2m + c2 δ m (1.24) k  1  1 1 1 ≤ c 2 δ m + (λ |X|) δ 2m , với |ζ| < cδ 2m khi c, δ đủ nhỏ. Từ (1.23), (1.24) và (1.22) ta có Re Φn (δ) < 1 δ 1 + |Φn (ζ)| , |ζ| < cδ m , 2 2 (1.25) và 1 δ + (λ |X|)m δ 2 1 Re Φn (ζ) < + |Φn (ζ)| , 2 2 khi c, δ đủ nhỏ. Kí hiệu ( Diδ = ω ∈ C | Reω < m 1 với |ζ| < cδ m (1.26) ) 1 2 δ + εi (λ |X|) δ 1 + |ω| , với i = 1, 2, 2 2 trong đó ε1 = 0, ε2= 1.   1  1 m Đặt g1 (ζ) ≡ Φn cδ ζ và g2 (ζ) ≡ Φn cδ 2m ζ . Từ (1.19), (1.25) và (1.26), ta có 1 1 gi (∆) ⊂ Diδ , gi (0) = zn , (i = 1, 2), g10 (0) = λXn cδ m , g 0 2 (0) = λXn cδ 2m . 15 Rõ ràng o n m 21 Diδ ⊂ D̃iδ ≡ C\ ω ∈ C | Im ω = 0, Re ω ≥ δ + εi (λ |X|) δ . Suy ra gi (∆) ⊂ D̃iδ . Vì FD̃iδ (zn , 1) ≥ C 1 δ + εi (λ |X|)m δ 2 , trong đó C > 0 là hằng số độc lập với δ, nên   1 |g 0 i (0)| ≤ C δ + εi (λ |X|)m δ 2 . Do vậy, 1 λ |Xn | δ m ≤ Cδ, (1.27) và λ |Xn | δ 1 2m  m ≤ C δ + (λ |X|) δ 1 2  . (1.28) 1 Từ (1.27), λ |Xn | ≤ Cδ 1− m . Suy ra (1.16) là đúng. Hơn nữa, khi |X| < K |Xn |, thì từ (1.28) ta có 1 λ |Xn | ≤ Cδ 1− 2m , trong đó C > 0 có thể phụ thuộc vào K. Do vậy ( 1.17 ) được chứng minh.  Từ hai định lý trên ta có các hệ quả sau : Hệ quả 1.3.4. [4] Giả sử Ω ⊂⊂ Cn là miền bị chặn với biên trơn gần z0 ∈ ∂Ω. Gọi Λ là một nón với đỉnh tại z0 và trục Nz0 . Khi đó z0 là một điểm giả lồi Lêvi nếu và chỉ nếu tồn tại một lân cận V của z0 , α > 3/4 và C > 0 sao cho FΩ (z, ∇r(z0 )) ≥ C |∇r(z0 )| , ∀z ∈ Λ ∩ Ω ∩ V. dα (z) (1.29) Chứng minh Điều kiện đủ có ngay từ Định lý 1.3.1. Ta chứng minh điều kiện cần. Giả sử z0 là một điểm giả lồi Lêvi, sau một phép biến đổi toạ độ, ta có thể giả thiết rằng z0 là gốc và ∂Ω là xác định địa phương bởi   n P r(z) = Re zn + aij zi z̄j + o |z|3 gần z0 . i,j=1
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất