Đăng ký Đăng nhập
Trang chủ ứng dụng kỹ thuật pinch để tối ưu mạng lưới nhiệt cho phân xưởng ammonia trong n...

Tài liệu ứng dụng kỹ thuật pinch để tối ưu mạng lưới nhiệt cho phân xưởng ammonia trong nhà máy đạm phú mỹ (pvfcco)

.PDF
90
7
121

Mô tả:

ĐẠI HỌC QUỐC GIA TP. HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA -------------------- HUỲNH VĂN HÒA ỨNG DỤNG KỸ THUẬT PINCH ĐỂ TỐI ƯU MẠNG LƯỚI NHIỆT CHO PHÂN XƯỞNG AMMONIA TRONG NHÀ MÁY ĐẠM PHÚ MỸ (PVFCCo) Chuyên ngành: KỸ THUẬT NHIỆT Mã số: 60520115 LUẬN VĂN THẠC SĨ TP. HỒ CHÍ MINH, tháng 09 năm 2020 CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI TRƯỜNG ĐẠI HỌC BÁCH KHOA –ĐHQG -HCM Cán bộ hướng dẫn khoa học : TS. TẠ ĐĂNG KHOA Chữ ký ............................ .......................... Cán bộ chấm nhận xét 1 : Chữ ký ...................................................... Cán bộ chấm nhận xét 2 : Chữ ký ...................................................... Luận văn thạc sĩ được bảo vệ tại Trường Đại học Bách Khoa, ĐHQG Tp. HCM ngày 08 tháng 09 năm 2020 Thành phần Hội đồng đánh giá luận văn thạc sĩ gồm: 1. CT: GS.TS. Lê Chí Hiệp 2. TK: TS. Tạ Đăng Khoa 3. UV: PGS.TS Lê Anh Đức 4. PB1: TS. Hà Anh Tùng 5. PB2: TS. Lê Minh Nhựt Xác nhận của Chủ tịch Hội đồng đánh giá LV và Trưởng Khoa quản lý chuyên ngành sau khi luận văn đã được sửa chữa (nếu có). CHỦ TỊCH HỘI ĐỒNG TRƯỞNG KHOA ĐẠI HỌC QUỐC GIATP.HCM CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM ĐỘC LẬP - TỰ DO - HẠNH PHÚC TRƯỜNG ĐẠI HỌC BÁCH KHOA —————————— —————————— NHIỆM VỤ LUẬN VĂN THẠC SĨ Họ tên học viên: Ngày, tháng , năm, sinh: Chuyên ngành: HUỲNH VĂN HÒA MSSV: 1670684 Nơi sinh: Bình Định 21-12-1989 Kỹ Thuật Nhiệt Mã số: 60520115 I. TÊN ĐỀ TÀI : ỨNG DỤNG KỸ THUẬT PINCH ĐỂ TỐI ƯU MẠNG LƯỚI NHIỆTCHO PHÂN XƯỞNG AMMONIA TRONG NHÀ MÁY ĐẠM PHÚ MỸ (PVFCCo) II. NHIỆM VỤ VÀ NỘI DUNG:  Tìm hiểu mạng nhiệt của nhà máy Đạm Phú Mỹ  Đánh giá mạng nhiệt củanhà máy Đạm Phú Mỹ bằng kỹ thuật Pinch  Đề xuất các giải pháp kỹ thuật  Tính kinh tế cho từng giải pháp kỹ thuật III. NGÀY GIAO NHIỆM VỤ: 19 - 08 - 2019 IV. NGÀY HOÀN THÀNH NHIỆM VỤ: 08 - 08 - 2020 V. CÁN BỘ HƯỚNG DẪN: TS. TẠ ĐĂNG KHOA Tp. HCM, ngày tháng năm 2020 CÁN BỘ HƯỚNG DẪN CHỦ NHIỆM BỘ MÔN ĐÀO TẠO (Họ tên và chữ ký) (Họ tên và chữ ký) TRƯỞNG KHOA (Họ tên và chữ ký) LỜI CẢM ƠN Trải qua một thời gian dài nỗ lực học tập và nghiên cứu, để đi đến được kết quả như ngày hôm nay em đã được rất nhiều sự giúp đỡ của gia đình, thầy cô và các bạn. Qua đây em xin được gửi lời cảm ơn chân thành với lòng biết ơn sâu sắc tới thầy giáo TS. Tạ Đăng Khoa, người đã hết lòng giúp đỡ em hoàn thành luận văn này. Em xin chân thành gửi lời cảm ơn đến các Thầy, Cô trong bộ môn Công Nghệ Nhiệt và Phòng Đào tạo Sau đại học Trường Đại học Bách Khoa HCM đã tận tình truyền đạt kiến thức và tạo mọi điều kiện thuận lợi cho em trong quá trình học tập nghiên cứu để hoàn thành luận văn. Cuối cùng, em xin gửi lời cám ơn đến gia đình và những người bạn đã luôn động viên, ủng hộ và giúp đỡ em trong suốt quá trình học tập và hoàn thành luận văn này. Mặc dù đã có nhiều cố gắng để hoàn thành luận văn bằng tất cả sự nhiệt tình và khả năng của mình, tuy nhiên luận văn không thể tránh khỏi những thiếu sót và hạn chế. Kính mong nhận được sự chia sẻ và đóng góp ý kiến của các Thầy , Cô và các bạn đồng nghiệp. Trân trọng cảm ơn. Huỳnh Văn Hòa TÓM TẮT Luận văn nghiên cứu và ứng dụng kỹ thuật Pinchđể tối ưu mạng lưới nhiệt cho phân xưởng ammonia trong nhà máy Đạm Phú Mỹ. Từ đó đưa ra các giải pháp kỹ thuật với mục tiêu giảm chi phí năng lượng của nhà máy. Kết quả đạt được sau khi sữa lỗi mạng nhiệt và bổ sung thêm một số thiết bị trao đổi nhiệt đã giảm 46,3% năng lượng tiêu thụ cho toàn nhà máy. ABSTRACT This thesis studies about Pinch analysis techniques application to optimize heat exchanger network of ammonia plan in PVFCCo. Then set out the technical solutions with the goal of the reducing the cost of the plant's energy. The results obtained after addition of the heat enchanger fell 46,3 % of the energy consumption of the entire plant LỜI CAM ĐOAN Tôi xin cam đoan luận văn “ Nghiên cứu ứng dụng kỹ thuật Pinch để tối ưu mạng lưới nhiệt cho phân xưởng ammonia trong nhà máy đạm Phú Mỹ (PVFCCo)” là công trình của Tôi thực hiện dưới sự hướng dẫn của TS. Tạ Đăng Khoa. Các số liệu và kết quả nghiên cứu trong luận văn này là trung thực và khôngtrùng lặp hay sao chép từ các đề tài khác. Tôi cũng cam đoan rằng mọi thông tin trích dẫn trong luận văn đã được chỉ rõ nguồn gốc. Tp Hồ Chí Minh, tháng 09 năm 2020 Người cam đoan Huỳnh Văn Hòa MỤC LỤC CHƯƠNG 1: MỞ ĐẦU ............................................................................................... 1 1.1. Tính cấp thiết của đề tài .................................................................................... 1 1.2. Mục đích của đề tài ........................................................................................... 2 1.3. Đối tượng và phạm vi nghiên cứu .................................................................... 2 1.4. Ý nghĩa khoa học và nội dung nghiên cứu ......................................................... 3 CHƯƠNG 2: TỔNG QUAN NHÀ MÁY .................................................................... 4 2.1. Giới thiệu nhà máy ............................................................................................ 4 2.2. Công nghệ sản xuất Ammoniac ......................................................................... 5 2.3. Công nghệ sản xuất Urea................................................................................. 10 2.4. Xưởng phụ trợ................................................................................................. 17 CHƯƠNG 3: TÌNH HÌNH NGHIÊN CỨU VÀ ỨNG DỤNG KỸ THUẬT PINCH .. 20 3.1. Tình hình nghiên cứu ở Việt Nam ................................................................... 20 3.2. Tình hình nghiên cứu trên thế giới................................................................... 21 CHƯƠNG 4: CƠ SỞ LÝ THUYẾT KỸ THUẬT PINCH.......................................... 25 4.1. Giới thiệu về kỹ thuật Pinch ............................................................................ 26 4.2. Các khái niệm cơ bản của kỹ thuật Pinch ........................................................ 28 4.2.1. Thu hồi nhiệt và trao đổi nhiệt .................................................................. 28 4.2.2. Giản đồ nhiệt độ – Enthalpy ..................................................................... 29 4.2.3. Đường cong nhiệt (Composite Curves)..................................................... 31 4.2.4. Dòng nhiệt tổng (Grand Composite Curve) .............................................. 37 4.2.5. Ý nghĩa của điểm Pinch ............................................................................ 38 4.2.6. Thiết kế mạng lưới trao đổi nhiệt.............................................................. 40 CHƯƠNG 5: KIỂM TRA MẠNG NHIỆT CỦA NHÀ MÁY ..................................... 42 5.1. Giới thiệu về phần mềm phụ trợ kỹ thuật phân tích Pinch............................... 42 5.1.1. Phần mềm Hysys .......................................................................................... 42 5.1.2. Phần mềm Hint......................................................................................... 43 5.2. Giới thiệu mạng nhiệt của nhà máy đạm Phú Mỹ ............................................ 43 5.3. Thu thập dữ liệu phục vụ cho kỹ thuật phân tích Pinch................................... 46 5.4. Lựa chọn ∆Tmin ............................................................................................. 49 5.5. Xây dựng sơ đồ đường cong nhiệt tổng và sơ đồ Cascade của các dòng nhiệt :49 5.6. Kiểm tra mạng nhiệt của nhà máy ................................................................... 50 5.7. Phân tích và lựa chọn phương án ..................................................................... 57 5.8. Đề xuất các giải pháp kỹ thuật......................................................................... 57 CHƯƠNG 6: SỬA LỖI MẠNG NHIỆT VÀ TÍNH TOÁN KINH TẾ ....................... 59 6.1. Sửa lỗi mạng nhiệt của nhà máy ...................................................................... 59 6.1.1. Sửa lỗi mạng nhiệt dưới điểm Pinch ......................................................... 59 6.1.2. Sửa lỗi mạng nhiệt trên điểm Pinch ......................................................... 62 6.2. Xác định chi phí đầu tư các thiết bị trao đổi nhiệt ........................................... 67 6.2.1. Diện tích các thiết bị trao đổi nhiệt ........................................................... 67 6.2.2. Chi phí cơ bản của các thiết bị trao đổi nhiệt ............................................ 67 6.2.3. Chi phí đầu tư các thiết bị trao đổi nhiệt ................................................... 68 6.3. Tính toán các chỉ tiêu kinh tế cho từng giai đoạn đầu tư .................................. 69 6.3.1. Đầu tư giai đoạn 1 .................................................................................... 69 6.3.2. Đầu tư giai đoạn 2 .................................................................................... 70 6.3.3. Đầu tư giai đoạn 3 .................................................................................... 71 6.4. Mô phỏng kết quả tính toán................................................................................. 71 CHƯƠNG 7:KẾT LUẬN VÀ HƯỚNG NGHIÊN CỨU TIẾP THEO ....................... 74 7.1. Kết luận về kết quả đạt được và chưa đạt được................................................ 74 7.1.1. Kết quả đạt được ...................................................................................... 74 7.1.2. Kết quả chưa đạt được .............................................................................. 74 7.2. Hướng nghiên cứu tiếp theo ............................................................................ 74 TÀI LIỆU THAM KHẢO.......................................................................................... 75 DANH MỤC HÌNH Hình 1.1: Mối quan hệ giữa mức độ tiêu thụ năng lượng và khí thải CO2(Nguồn: U.S. Energy Information Administration, International Energy Outlook 2016) Hình 2.1: Hình ảnh tổng quan nhà máy Đạm Phú Mỹ Hình 2.2: Sơ đồ khối công nghệ nhà máy Đạm Phú Mỹ Hình 2.3: Sơ đồ tổng thể về dây chuyền công nghệ của phân xưởng Ammoniac Hình 2.4: Sơ đồ công nghệ xưởng Urea Hình 2.5: Sơ đồ khối công nghệ xưởng Urea Hình 2.6: Hệ thống sản xuất nước khử khoáng Hình 2.7: Hệ thống làm lạnh nước tuần hoàn Hình 2.8: Bồn trích trữ Ammoniac Hình 2.9: Hệ thống xử lý nước thải Hình 4.1: Một sơ đồ quy trình công nghệ hoá học đơn giản Hình 4.2: Sơ đồ công nghệ đơn giản Hình 4.3: Giản đồ nhiệt độ – Enthalpy Hình 4.4: Giản đồ nhiệt độ – Enthalpy với chênh lệch nhiệt độ là 20oC Hình 4.5: Phương pháp tổ hợp đường cong nhiệt Hình 4.6: Tổ hợp đường cong nhiệt nóng và lạnh tương ứng với ∆ = 10℃ Hình 4.7: Sơ đồ biểu diễn các dòng tương ứng với giá trị nhiệt độ giả Hình 4.8: Đánh giá khả năng tận dụng nhiệt từ khoảng nhiệt độ thứ đến khoảng nhiệt độ thứ + 1 Hình 4.9: Cường độ dòng nhiệt dịch chuyển hướng từ nhiệt độ cao nhất đến thấp nhất Hình 4.10: Tổ hợp đường cong nhiệt biểu diễn theo giá trị nhiệt độ giả Hình 4.11: Đường cong nhiệt tổng biểu diễn theo giá trị nhiệt độ giả Hình 4.12: Điểm Pinch chia tổ hợp đường cong nhiệt thành hai vùng trên Pinch và dưới Pinch Hình 4.13: Nhu cầu nguồn nhiệt tăng thêm khi truyền nhiệt ngang qua điểm Pinch Hình 4.14: Biểu diễn sơ đồ lưới Hình 5.1: Biểu tượng phần mềm Hysys (Aspen Energy Analyzer) Hình 5.2: Biểu tượng phần mềm Hint Hình 5.3: Sơ đồ công nghệ phân xưởng urea của nhà máy đạm Phú Mỹ Hình 5.4:Sơ đồ công nghệ phân xưởng Ammoniac của nhà máy đạm Phú Mỹ Hình 5.5: Đường cong tổ hợp nóng và lạnh của nhà máy Hình 5.6: Sơ đồ Cascade của các dòng nhiệt nhà máy Hình 5.7: Sơ đồ mạng lưới nhiệt của nhà máy Hình 5.8: Lỗi làm mát cho dòng nóng trên điểm Pinch Hình 5.9: Lỗi gia nhiệt cho dòng lạnh dưới điểm Pinch Hình 5.10: Lỗi gia nhiệt cho dòng lạnh băng qua điểm Pinch Hình 5.11: Lỗi làm mát cho dòng nóng băng qua điểm Pinch Hình 5.12: Lỗi truyền nhiệt băng qua điểm Pinch Hình 6.1: Thông số nhiệt động của thiết bị (E1) Hình 6.2: Thông số nhiệt động của thiết bị (E2) Hình 6.3: Thông số nhiệt động của thiết bị (E3) Hình 6.4: Thông số nhiệt động của thiết bị (E4) Hình 6.5: Thông số nhiệt động của thiết bị (E5) Hình 6.6: Thông số nhiệt động của thiết bị (E6) Hình 6.7: Thông số nhiệt động của thiết bị (E7) Hình 6.8: Thông số nhiệt động của thiết bị (E8) Hình 6.9: Thông số nhiệt động của thiết bị (E9) Hình 6.10: Thông số nhiệt động của thiết bị (E10) Hình 6.11: Sơ đồ mạng lưới nhiệt sửa lỗi phần dưới Pinch Hình 6.12: Sơ đồ mạng lưới nhiệt sửa lỗi phần trên Pinch Hình 6.13: Sơ đồ mô phỏng qui trình công nghệ phân xưởng ammoniac Hình 6.14: Sơ đồ mô phỏng qui trình công nghệ phân xưởng ammoniac khi bổ sung thêm 2 thiết bị trao đổi nhiệt DANH MỤC KÝ HIỆU CB Chi phí cơ bản. Ccap Chi phí đầu tư. Cp (kJ/kg.oC) Nhiệt dung riêng đẳng áp. CP (kW/oC) Nhiệt dung lưu lượng khối lượng. Hệ số lắp đặt đường ống Hệ số xét đến vật liệu Hệ số lắp đặt thiết bị Hệ số lắp đặt thiết bị điện Hệ số lắp đặt thiết bị điều khiển Hệ số lắp đặt công trình dân dụng Hệ số lắp đặt cấu trúc và tòa nhà Hệ số lắp đặt cách nhiệt và sơn i (%) Lãi suất ngân hàng. ∅ Lãi suất ròng a Lạm phát m (kg/s) Lưu lượng khối lượng QC (kW) Công suất làm lạnh. QCmin (kW) Công suất làm lạnh tối thiểu. QH (kW) Công suất gia nhiệt. QHmin (kW) Công suất gia nhiệt tối thiểu. Qrec (kW) Công suất thu hồi nhiệt. o TPinch ( C) Nhiệt độ điểm Pinch. o Nhiệt độ đầu vào của dòng nhiệt. o TT ( C) Nhiệt độ đầu ra của dòng nhiệt. ∆H (kW) Độ chênh lệch entanpy của dòng nhiệt. ∆Tmin (oC) Độ chênh lệch nhiệt độ tối thiểu TS ( C) A (m2)Diện tích thiết bị trao đổi nhiệt DANH MỤC BẢNG Bảng 4.1: Một số thông số vật lý quan trọng của hai dòng công nghệ Bảng 4.2: Thông số vật lý của trường hợp có 2 dòng nóng và 2 dòng lạnh Bảng 4.3: Giá trị nhiệt độ giả của các dòng Bảng 5.1: Dữ liệu nhiệt động các dòng nhiệt nhà máy Bảng 5.2: Những dòng bổ sung nhiệt lạnh trên Pinch Bảng 5.3: Những dòng bổ sung nhiệt nóng dướiPinch Bảng 5.4: Sử dụng dòng phụ trợ băng qua điểm Pinch Bảng 5.5: Những dòng sử dụng thiết bị trao đổi nhiệt băng qua điểm Pinch Bảng 6.1: Trang bị thêm các thiết bị trao đổi nhiệt Bảng 6.2: Chi phí đầu tư các thiết bị trao đổi nhiệt bổ sung CHƯƠNG 1: MỞ ĐẦU 1.1. Tính cấp thiết của đề tài Thế giới càng phát triển thì nhu cầu năng lượng càng tăng cao,chủ yếu dựa vào nguồn nhiên liệu hóa thạch này, tuy nhiên nguồn nhiên liệu này ngày càng cạn kiệt, làm cho giá thành ngày càng tăng. Ngoài ra, việc sử dụng nguồn nhiên liệu này gây ra hiệu ứng nhà kính, hậu quả dẫn đến nhiệt độ trái đất ngày càng nóng lên, nước biển dâng cao, hạn hán, lũ lụt… Tất cả những mối nguy hại đó tác động trực tiếp đến môi trường sống của chính con người. Hình 1.1: Mối quan hệ giữa mức độ tiêu thụ năng lượng và khí thải CO2(Nguồn: U.S. Energy Information Administration, International Energy Outlook 2016) Để giảm thiểu tác động môi trường, các nhà khoa học đã và đang tìm ra những nguồn năng lượng thay thế khác như: năng lượng gió, năng lượng mặt trời, năng lượng thủy triều, năng lượng địa nhiệt... Thế nhưng có một giải pháp tuy không tạo ra năng lượng nhưng cũng không kém phần hiệu quả, đó là nghiên cứu giải pháp tiết kiệm năng lượng, nâng cao hiệu suất sử dụngcác nguồn năng lượng hiện có trong các nhà máy công nghiệp. Ngành chế biến dầu khí là một trong những ngành kinh tế mũi nhọn của nước ta.Dầu khí không chỉ mang lại nguồn ngoại tệ lớn cho quốc gia mà còn là nguồn năng lượng quan trọng nhất hiện nay cho sự phát triển kinh tế. Tính đến năm 2010, Tập đoàn Dầu khí Quốc gia Việt Nam (PVN) đã cung cấp gần 35 tỷ m3 khí khô cho sản xuất, 40% sản lượng điện của toàn quốc, 35 – 40% nhu cầu Urea và cung cấp 70% nhu cầu khí hóa lỏng cho phát triển công nghiệp và tiêu dùng dân sinh (theo báo công 1 thương). Song song với đó, mức độ tiêu thụ năng lượng của ngành dầu khí cũng chiếm tỷ trọng rất cao trong tổng công suất tiêu thụ năng lượng trong các ngành công nghiệp.Mặc khác, mức độ tiêu hao năng lượng trên bình quân 1 đơn vị sản phẩm của Việt Nam cao gấp 5 – 6 lần so với các nước trong khu vực và trên thế giới. Do đó, tiết kiệm năng lượng là ưu tiên hàng đầu trong chiến lược phát triển năng lượng quốc gia. Tiết kiệm năng lượng trong ngành dầu khí đã được đặt ra và thực hiện hiệu quả trong những năm vừa qua.Điển hình là nhà máy Đạm Phú Mỹ đã được áp dụng những biện pháp tối ưu hóa việc sử dụng năng lượng ngay cả trong thiết kế và vận hành. Các phân xưởng công nghệ trong nhà máy do những tập đoàn khác nhau thiết kế, mặc dù đã tối ưu nhưng đó chỉ là tối ưu cục bộ. Kết quả của việc tối ưu cục bộ là tồn tại những phần năng lượng không được thu hồi, dẫn đến nhu cầu năng lượng của nhà máy tăng lên. Mặc khác, trong tình hình giá cả nhiên liệu ngày một leo thang, kéo theo giá thành sản phẩm tăng cao. Từ đó cho thấy, việc đánh giá hiệu quả sử dụng năng lượng của mạng lưới nhiệt trong nhà máy Đạm Phú Mỹđược đặt ra như một nhu cầu tất yếu. Để đánh giá mạng nhiệt của nhà máy Đạm Phú Mỹ, “Kỹ thuật phân tích Pinch” là một phương pháp phân tích rất hiệu quả và dễ dàng sử dụng.Nó cho phép xác định nguyên nhân sử dụng năng lượng không hiệu quả cũng như đưa ra các giải pháp tiết kiệm năng lượng trong mạng nhiệt của nhà máy. 1.2. Mục đích của đề tài Áp dụng kỹ thuật phân tích Pinch để đánh giá toàn diện nhu cầu năng lượng và mạng lưới nhiệt nhằm xác định những lỗi trong thiết kế.Từ đó, đưa ra những giải pháp cải thiện mạng nhiệt của nhà máy nhằm giảm thiểu nhu cầu sử dụng năng lượng, góp phần giảm giá thành sản phẩm và hưởng ứng chương trình quốc gia về tiết kiệm năng lượng của chính phủ, đề tài này mong muốn được ứng dụng vào thực tế tại nhà máy. 1.3. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu: Đối tượng nghiên cứu của đề tài này là mạng lưới nhiệt của nhà máy Đạm Phú Mỹ, cụ thể là cụm phân xưởng Ammoniac và cụm phân xưởng Urea. 2 1.4. Ý nghĩa khoa học và nội dung nghiên cứu Ý nghĩa khoa học của đề tài:Chứng minh hiệu quả việc sử dụng kỹ thuật phân tích Pinch trong vi mô lớn. Qua đó góp phần tăng hiệu quả sử dụng năng lượng, giảm lượng khí thải CO2 và tiết kiệm tài nguyên. Nội dung nghiên cứu của đề tài : + Trích xuất dữ liệu từ bản vẽ thiết kế của nhà máy + Xây dựng mạng lưới nhiệt thực tế + Kiểm tra mạng lưới nhiệt + Đề xuất các giải pháp + Tính toán kinh tế cho từng giải pháp 3 CHƯƠNG 2: TỔNG QUAN NHÀ MÁY 2.1. Giới thiệu nhà máy Hình 2.1: Hình ảnh tổng quan nhà máy Đạm Phú Mỹ Nhà máy Đạm Phú Mỹ, tọa lạc tại khu công nghiệp Phú Mỹ 1, huyện Tân Thành, tỉnh Bà Rịa – Vũng Tàu, là đơn vị thành viên của Tổng công ty Phân bón và Hóa chất Dầu khí (PVFCCo). Nhà máy được khởi công xây dựng vào tháng 3 năm 2001 và được hoàn thành vào tháng 9 năm 2004 với công suất thiết kế là 740000 tấn Urea/năm. Nhà máy có vị trí địa lý chiến lược, nằm trong vùng kinh tế trọng điểm phía Nam, nằm gần nguồn cung cấp nguyên liệu khí thiên nhiên từ bồn trũng Nam Côn Sơn hoặc bể Cửu Long ngoài khơi tỉnh Bà Rịa – Vũng Tàu. Hơn nữa, nhà máy vừa gần cụm cảng sông lớn nhất Việt Nam, vừa gần trục hệ thống đường bộ nên vô cùng thuận tiện cho việc vận chuyển nguyên liệu đến nhà máy cũng như phân phối sản phẩm đi khắp các thị trường tiêu thụ trên cả nước. Nhà máy sử dụng công nghệ tổng hợp Ammoniac của hãng Haldor Topsoe (Đan Mạch), công nghệ tổng hợp Urea của hãng Snamprogetti (Ý) và công nghệ thu hồi CO2 từ khí thải của hãng Mitsubishi (NhậtBản). Đây là các công nghệ hàng đầu trên thế giới với dây chuyền khép kín, với đầu vào là khí thiên nhiên (từ mỏ Bạch Hổ và Nam Côn Sơn được cung cấp bởi nhà máy chế biến khí Dinh Cố), không khí và sản phẩm là Ammoniac và đạm Urea. Chu trình công nghệ khép kín cùng với việc tự tạo điện năng và hơi nước giúp nhà máy hoàn toàn chủ động trong sản xuất kể cả khi lưới điện quốc gia có sự cố hoặc không đủ điện cung cấp. Hình 2.2. Sơ đồ khối công nghệ nhà máy Đạm Phú Mỹ Hiện nay, đạm Urea của Phú Mỹ cung cấp khoảng 40% nhu cầu thị trường trong nước, đóng vai trò quan trọng trong việc tự chủ nguồn phân bón đối với một đất nước nông nghiệp như Việt Nam. Nhà máy được xây dựng vừa giải quyết được vấn đề thiếu nguồn cung đạm trong nước, vừa sử dụng hiệu quả nguồn khí đồng hành (vốn phải đốt bỏ ở giàn khoan) và khí thiên nhiên ngày càng được phát hiện nhiều hơn. 2.2. Công nghệ sản xuất Ammoniac Mục đích của phân xưởng Ammoniac là cung cấp NH3 và H2 cho phân xưởng Urea và sản xuất NH3 thương mại đưa vào bể chứa. Hình 2.3:Sơ đồ tổng thể về dây chuyền công nghệ của phân xưởng Ammoniac Thuyết minh: Dòng khí thiên nhiên NG, đầu tiên được xử lý lưu huỳnh ở cụm khử lưu huỳnh nhằm tránh gây ngộ độc xúc tác. Dòng khí công nghệ đi ra từ cụm Hydro hoá được đưa lần lượt vào 2 thiết bị reforming sơ cấp và thứ cấp, với mục đích là chuyển hoá các Hydrocarbon trong dòng khí thành khí CO2 và H2 với sự có mặt của hơi nước. Vì vẫn còn một lượng CO chưa chuyển hoá tạo thành CO2, do vậy, dòng khí tiếp tục đưa đến cụm chuyển hoá CO thành CO2, và được đưa đến cụm hấp thụ CO2bằng dung dịch MDEA (Methyl Diethanol Amine), CO2 được tách ra và đưa đi sản xuất Urea. Dòng khí đi ra từ cụm tách CO2 vẫn còn chứa một lượng CO và CO2, do đó, được đưa vào công đoạn Methane hoá, thực chất, là các phản ứng ngược với các phản ứng của công đoạn reforming. Khí công nghệ được đưa đến cụm tổng hợp NH3, với độ chuyển hoá đạt khoảng 25%. NH3 được tách ra khỏi hỗn hợp khí sau phản ứng bằng quá trình làm lạnh tầng bậc, tách dần NH3 ra khỏi hỗn hợp. Ngoài ra, trong sơ đồ công nghệ của phân xưởng Ammoniac còn có 2 cụm: Thu hồi H2 và thu hồi NH3, và các cụm thu hồi nhiệt thừa để sản xuất hơi nước (steam), và gia nhiệt nguyên liệu  Công đoạn khử lưu huỳnh Khí thiên nhiên nguyên liệu của xưởng chứa một lượng nhỏ lưu huỳnh tồn tại ở dạng hợp chất. Trong quá trình phản ứng, nếu hàm lượng lưu huỳnh vượt cao hơn nồng độ cho phép sẽ gây các tác hại như ngộ độc xúc tác, ăn mòn, là chất độc hại. Vì vậy việc xử lý dòng khí thiên nhiên là rất cần thiết để đảm bảo cho các quá trình tổng hợp ở giai đoạn sau. Các hợp chất lưu huỳnh dưới dạng hữu cơ được chuyển hoá thành H2S bằng xúc tác hydro hoá. Sau đó H2S được hấp phụ bằng oxit kẽm. Trong quá trình phản ứng, các olefin cũng bị hydro hóa thành hydrocacbon no, và nitơ dạng hữu cơ chuyển hoá thành NH3 và hydrocacbon no. - Hấp thụ H2S Khí tự nhiên sau khi hydro hóa lưu huỳnh được đưa vào các bình hấp thụ bằng kẽm oxit. Nhiệt độ vận hành bình thường là khoảng 400oC. Kẽm oxit phản ứng với hydro sulphide và cacbonyl sulphide trong những phản ứng thuận nghịch sau đây: ZnO + H2S  ZnS + H2O (2.1) ZnO + COS  ZnS + CO2 (2.2)  Công đoạn Refeforming - Reforming sơ cấp Reforming sơ cấp có vai trò tạo ra H2 từ dòng khí thiên nhiên và hơi nước cho quy trình tổng hợp Ammoniac và các quy trình khác như quy trình khử lưu huỳnh hay quá trình khử xúc tác. Quá trình reforming hơi nước có thể được diễn tả bởi các phản ứng sau đây: CnHm+ H2O Cn-1Hm-2 + CO + 2H2 – Q CH4 + 2H2O CO + 3H2 – Q CO + H2O CO2 + H2O + Q (2.3) (2.4) (2.5) Nhiệt cho phản ứng trong thiết bị reforming sơ cấp được cung cấp dưới dạng gián tiếp từ lò đốt. Hỗn hợp hơi nước và khí thiên nhiên, được gia nhiệt lên khoảng 535oC đi vào đỉnh của các ống thẳng đứng thông qua ống góp phân phối phía trên. Hỗn hợp khí đi ra khỏi ống ở nhiệt độ khoảng 783 oC và đi vào ống gom phía dưới. Phần nhiệt thải sẽ được tận dụng để gia nhiệt cho dòng nguyên liệu đi vào phản ứng cũng như sản suất hơi siêu cao áp. - Reforming thứ cấp Dòng công nghệ ra khỏi refoming sơ cấp sẽ đi vào thiết bị reformer thứ cấp được nạp sẵn xúc tác. Trong khoảng không gian trống phía trên của reformer thứ cấp 7 người ta lắp béc đốt 10-J-2001, tại đó không khí trộn một phần vào khí công nghệ. Quá trình đốt khí công nghệ với không khí làm cho nhiệt độ khí tăng lên đến 11001200oC trong phần trên của reformer thứ cấp. Do phản ứng reforming với Metan hấp thụ nhiệt, nhiệt độ giảm khi khí đi xuống dưới qua lớp xúc tác và ra ở nhiệt độ khoảng 958 oC. Lượng nhiệt mang theo của dòng sản phẩm reforming thứ cấp được dùng để sản suất hơi quá nhịêt trong bộ quá nhiệt V-2001.  Công đoạnchuyển hóa CO Cacbon monoxit trong khí công nghệ sau công đoạn reforming sẽ được chuyển hoá thành cacbon dioxit và hydro theo phản ứng chuyển hoá CO trong 10-R-2004 và 10-R-2005: CO + H2O CO2 + H2 + Q (2.6) Quá trình chuyển hóa CO xảy ra hai giai đoạn là chuyển hoá CO nhiệt độ cao và chuyển hoá CO nhiệt độ thấp.  Công đoạntách CO 2 Khí CO2 được tách ra khỏi dòng công nghệ nhờ quá trình hấp thụ bằng dung dịch amin. Dung môi được dùng cho quá trình hấp thụ CO2 là MDEA. Hệ thống công nghệ chính bao gồm một tháp hấp thụ CO2 hai cấp, một tháphấp thụCO2 và hai bình tách flash. Trong tháp hấp thụ, CO2 được tách ra khỏi dòng khí bằng hấp thụ ngược dòng trong hai cấp. Trong phần dưới của tháp hấp thụ, dung dịch tái sinh được dùng để hấp thụ phần lớn CO2. Trong phần trên của tháp này, dung dịch tái sinh được dùng để tách CO2 còn lại. Trong tháp giải hấp thụ, CO2 được khử bằng nhiệt, nhiệt cho yêu cầu này được tạo ra trong nồi đun tháp hấp thụ nhờ vào khí nóng công nghệ.  Công đoạn Metan hóa Metan hoá là quá trình mà các loại cacbon oxit dư sẽ được chuyển hoá thành Metan. Vì trong quá trình tổng hợp AmmoniacMetan chỉ như một khí trơ, còn các hợp chất chứa oxy như là cacbon oxit (CO và CO2) lại cực kỳ độc hại đối với xúc tác. Quá trình Metan hoá xảy ra các phản ứng như những phản ứng ngược của phản ứng reforming: CO + 3H2  CH4 + H2O + Q (2.7) CO2 + 4H2  CH4 + 2H2O + Q (2.8) 8
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất