Tài liệu Tổng hợp và nghiên cứu khả năng kháng khuẩn, kháng nấm của ag kích thước nanomet

  • Số trang: 67 |
  • Loại file: PDF |
  • Lượt xem: 254 |
  • Lượt tải: 0
nguyetha

Đã đăng 8489 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NGUYỄN ĐÌNH ĐẠT TỔNG HỢP VÀ NGHIÊN CỨU KHẢ NĂNG KHÁNG KHUẨN, KHÁNG NẤM CỦA Ag KÍCH THƯỚC NANOMET LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NGUYỄN ĐÌNH ĐẠT TỔNG HỢP VÀ NGHIÊN CỨU KHẢ NĂNG KHÁNG KHUẨN, KHÁNG NẤM CỦA Ag KÍCH THƯỚC NANOMET Chuyên ngành: HÓA VÔ CƠ Mã số: 60440113 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. TRỊNH NGỌC CHÂU Hà Nội – Năm 2014 LỜI CÁM ƠN Trước hết tôi xin bày tỏ sự biết ơn sâu sắc đối với PGS-TS. Trịnh Ngọc Châu, Bộ môn Hóa vô cơ, Khoa Hóa học, Trường Đại học Khoa học Tự Nhiên – Đại học Quốc Gia Hà Nội và TS Nguyễn Thi Bích Hường – Giảng viên Học Viện Hậu Cần đã giúp đỡ và tạo điều kiện tốt nhất để tôi hoàn thành luận văn này. Tôi xin chân thành cảm ơn tới quý thầy cô trong khoa Hóa, cũng như ban lãnh đạo trường Đại học KHTN - ĐHQGHN đã tạo mọi điều kiện giúp đỡ cho tôi. Tôi cũng xin chân thành cảm ơn quý thầy cô quản lý phòng thí nghiệm bộ môn Hóa vô cơ, khoa Hóa học trường Đại học KHTN - ĐHQGHN đã giúp đỡ tôi rất nhiều trong quá trình làm luận văn. MỤC LỤC MỞ ĐẦU ................................................................................................................ 1 Chương 1. TỔNG QUAN ..................................................................................... 3 1.1. Khái quát về hạt nano .................................................................................... 3 1.2. Hạt nano kim loại - bạc nano ........................................................................ 5 1.2.1. Giới thiệu về bạc nano .............................................................................. 5 1.2.2. Tính chất của hạt bạc nano ...................................................................... 5 1.2.3. Các phương pháp chế tạo hạt bạc nano .................................................... 8 1.2.3.1. Phương pháp bay hơi vật lý .................................................................. 9 1.2.3.2. Phương pháp ăn mòn laze..................................................................... 9 1.2.3.3. Phương pháp hóa siêu âm .................................................................... 9 1.2.3.4. Phương pháp khử hóa học .................................................................. 10 1.2.4. Các phương pháp vật lý nghiên cứu cấu trúc hạt bạc nano...................... 12 1.2.4.1. Phổ hấp thụ tử ngoại khả kiến (UV-Vis) .......................................... 12 1.2.4.2. Ảnh TEM .......................................................................................... 14 1.2.4.3. Ảnh FE-SEM .................................................................................... 15 1.2.4.4. Phổ hấp thụ nguyên tử ....................................................................... 15 1.2.5. Đặc tính kháng khuẩn của bạc ................................................................ 18 1.2.5.1. Cơ chế kháng khuẩn của bạc nano ..................................................... 18 1.2.5.2. Các yếu tố ảnh hưởng tới khả năng diệt khuẩn của keo bạc nano ...... 20 1.2.6. Ứng dụng của hạt bạc nano .................................................................... 20 1.3. Khái quát về vi khuẩn .................................................................................. 24 1.4. Khái quát về nấm mốc .................................................................................. 24 Chương 2. THỰC NGHIỆM ............................................................................... 26 2.1. Chế tạo dung dịch keo bạc nano .................................................................. 26 2.1.1. Hoá chất ................................................................................................. 26 2.1.2. Vải dùng trong nghiên cứu ...................................................................... 26 2.1.3. Vi khuẩn và hóa chất cho thử nghiệm vải kháng khuẩn............................ 26 2.1.4. Các máy móc thiết bị, dụng cụ ................................................................. 27 2.2. Phương pháp điều chế .................................................................................. 28 2.3. Kỹ thuật thực nghiệm ................................................................................... 30 2.3.1. Phổ tử ngoại – khả kiến (UV-VIS) ........................................................... 30 2.3.2. Chụp ảnh bằng kính hiển vi điện tử truyền qua TEM .............................. 30 2.3.3. Phổ hấp thụ nguyên tử AAS..................................................................... 31 2.3.4. Chụp ảnh bằng kính hiển vi điện tử quét FE – SEM ............................... 32 2.4. Thử hoạt tính sinh học của vải tẩm keo bạc nano ...................................... 33 Chương 3. KẾT QUẢ VÀ THẢO LUẬN ........................................................... 36 3.1. Điều chế dung dịch keo bạc nano ................................................................. 36 3.1.1. Chọn chất bảo vệ ..................................................................................... 36 3.1.2. Khảo sát ảnh hưởng của phương pháp gia nhiệt ...................................... 37 3.1.3. Khảo sát ảnh hưởng của công suất lò vi sóng .......................................... 38 3.1.4. Khảo sát ảnh hưởng của thời gian gia nhiệt ............................................ 39 3.1.5. Khảo sát ảnh hưởng của tỉ lệ chất bảo vệ và bạc nitrat ( AgNO3:PVP ) .. 42 3.1.6. Khảo sát độ bền của dung dịch keo bạc nano theo thời gian ................... 45 3.2. Kết quả chụp SEM các mẫu vải .................................................................. 47 3.3. Kết quả xác định hàm lượng bạc nano bằng phương pháp AAS .............. 49 3.4. Kết quả thử hoạt tính sinh học .................................................................... 49 KẾT LUẬN .......................................................................................................... 55 TÀI LIỆU THAM KHẢO ................................................................................... 56 Tiếng Việt .......................................................................................................... 56 Tiếng Anh .......................................................................................................... 57 Internet .............................................................................................................. 59 DANH MỤC CÁC HÌNH VẼ Hình 1.1: Plasmon bề mặt của kim loại ................................................................. 6 Hình 1.2: Dao động của đám mây electron khi bị chiếu sáng ................................ 7 Hình 1.3: Công thức cấu tạo PVP ......................................................................... 11 Hình 1.4: Cơ chế ổn định hạt bạc nano của PVP ................................................... 12 Hình 1.5: Sơ đồ nguyên lý phương pháp đo UV-VIS. ............................................ 13 Hình 1.6: Sơ đồ nguyên tắc của một máy đo quang phổ hấp thụ nguyên tử............ 16 Hình 1.7: Tác động của ion bạc lên vi khuẩn ....................................................... 19 Hình 1.8: Ion bạc vô hiệu hóa enzym chuyển hóa oxy của vi khuẩn ..................... 19 Hình 1.9: Ion bạc liên kết với các base của DNA ................................................. 19 Hình 1.10: Bình sữa bạc nano và tất bạc nano ..................................................... 22 Hình 1.11: Các sản phẩm gia dụng có khả năng kháng khuẩn ............................ 23 Hình 1.12: Các loại khẩu trang bạc nano ............................................................. 23 Hình 2.1: Vải may lễ phục, quân phục ................................................................... 26 Hình 2.2: Hình ảnh máy khuấy từ và lò vi sóng điều chế dung dịch keo nano Ag ... 28 Hình 2.3: Máy quang phổ UV-VIS ......................................................................... 30 Hình 2.4: Kính hiển vi điện tử truyền qua............................................................. 31 Hình 2.5: Mẫu vải thí nghiệm và vải ngâm trong dung dịch dịch keo bạc nano ..... 31 Hình 2.6: Máy quang phổ hấp thụ nguyên tử theo phương pháp không ngọn lửa.. 32 Hình 2.7: Kính hiển vi điện tử quét ....................................................................... 33 Hình 2.8: Dung dịch keo bạc nano pha chế được và các mẫu vải đã cắt nhỏ ........ 35 Hình 3.1: Dung dịch keo bạc nano điều chế được với chất bảo về PVP và SDS..... 36 Hình 3.2: Trình bày sự hình thành các hạt kim loại Ago qua từng giai đoạn. ........ 37 Hình 3.3: Dung dịch keo bạc nano điều chế trên bếp khuấy từ .............................. 37 Hình 3.4: Dung dịch keo bạc nano điều chế trong lò vi sóng ................................. 37 Hình 3.5: Các dung dịch keo bạc nano điều chế được .......................................... 39 Hình 3.6: Các dung dịch keo bạc nano điều chế trong những thời gian gia nhiệt . 40 Hình 3.7:Phổ UV-vis của các mẫu keo bạc nano khảo sát theo thời gian .............. 41 Hình 3.9: Các dung dịch keo bạc nano điều chế theo tỉ lệ AgNO3:PVP khác nhau43 Hình 3.10: Phổ UV-vis các dung dịch khảo sát theo tỉ lệ AgNO3:PVP .................. 43 Hình 3.11: Kết quả chụp TEM mẫu 1c và giản đồ phân bố kích thước hạt............. 44 Hình 3.12: Kết quả chụp TEM mẫu 3c và giản đồ phân bố kích thước hạt............ 44 Hình 3.13: Hình ảnh dung dịch keo bạc nano theo thời gian ................................. 45 Hình 3.14: Sơ đồ quy trình điều chế keo bạc nano ................................................. 46 Hình 3.15: Ảnh mẫu vải 1 chưa tẩm dung dịch keo bạc nano ................................ 47 Hình 3.16: Ảnh mẫu vải 1 đã tẩm dung dịch keo bạc nano .................................... 47 Hình 3.17: Ảnh mẫu vải 2 chưa tẩm keo bạc nano ................................................. 48 Hình 3.18: Ảnh mẫu vải 2 tẩm dung dịch keo bạc nano ......................................... 48 Hình 3.19: Kết quả thử hoạt tính sinh học của mẫu vải 1 ...................................... 50 Hình 3.20: Kết quả thử hoạt tính sinh học mẫu vải 2 ............................................. 52 DANH MỤC CÁC BẢNG BIỂU BẢNG KÝ HIỆU CÁC CHỮ VIẾT TẮT............................................................. 8 Bảng 1.1: Số nguyên tử và năng lượng bề mặt của hạt nano hình cầu ................... 3 Bảng 1.2: Số nguyên tử và kích thước của hạt bạc nano ......................................... 5 Bảng 2.1: Các hóa chất sử dụng ............................................................................. 26 Bảng 2.2: Các thí nghiệm đã làm với chất bảo về PVP ở công suất lò 100W ......... 29 Bảng 2.3: Các thí nghiệm đã làm với chất bảo về PVP ở công suất lò 230W ......... 29 Bảng 3.1: Các thí nghiệm khảo sát ảnh hưởng của công suất của lò vi sóng .......... 38 Bảng 3.2: Các thí nghiệm khảo sát ảnh hưởng của thời gian gia nghiệt .................. 40 Bảng 3.3: Các thí nghiệm khảo sát ảnh hưởng của tỉ lệ AgNO3:PVP .................... 42 Bảng 3.4: Hàm lượng bám dính của bạc nano trên hai mẫu vải .............................. 49 Bảng 3.5: Kết quả thử hoạt tính sinh học mẫu vải 1 tẩm dung dịch keo bạc nano . 51 Bảng 3.6: Kết quả thử hoạt tính sinh học mẫu vải 2 .............................................. 53 BẢNG KÝ HIỆU CÁC CHỮ VIẾT TẮT TEM Transmission electron microscopy Kính hiển vi điện tử truyền qua FE-SEM Scanning transmission electron Kính hiển vi điện tử quét microscopy PVP Polyvinyl pyrolidone SDS Sodium dodecyl sunfate UV-VIS Ultraviolet–visible spectroscopy Phổ tử ngoại và phổ khả kiến VSV Vi sinh vật KHTN Khoa học tự nhiên ĐHQGHN Đại học Quốc Gia Hà Nội MỞ ĐẦU Ngày nay trên thế giới cũng như trong nước, khoa học và công nghệ nano đang phát triển rất mạnh mẽ và được ứng dụng rộng rãi trong các ngành khoa học khác nhau như điện tử, vật lý, hóa học, sinh học, y học, môi trường...trong đó nổi bật là các ứng dụng của nó trong các việc xử lý nhiễm khuẩn, không gây độc hại cho con người và không gây kích ứng da…trong đó công nghệ bạc nano được các nhà nghiên cứu đặc biệt quan tâm. Bạc nano có rất nhiều tính chất khác hẳn với bạc khối như tính chất quang, từ, điện…nhưng đặc trưng nhất của bạc nano là tính kháng khuẩn. Bạc nano có khả năng giết chết hơn 650 loại vi khuẩn khác nhau chỉ trong vòng một phút. Tất cả các vi khuẩn không bị lờn với kháng sinh bạc và vì thế, các hạt bạc nano không bị mất tác dụng. Ngoài ra, các hạt bạc nano cũng sẽ giúp tạo ra các oxygen hoạt tính từ trong không khí hoặc từ trong nước và từ đó phá hủy các màng tế bào của vi khuẩn. Các hạt bạc nano đã được đưa vào mọi chất dẻo và ứng dụng khá rộng rãi trong đời sống. Bạc nano được đưa vào các polymer như polyetylen (PE), polypropylen (PP), các loại giấy, vải… có khả năng giết chết nhiều loại vi khuẩn như Escherichia coli, Proteus mirabilis, Bacillus pumilus, Bacillus cereus, Aspergillussp… Trên thế giới đã có nhiều công trình nghiên cứu tổng hợp và ứng dụng bạc nano như: tổng hợp keo bạc trong pha nước/dầu (Wanzhong Zhang, Xueliang Qiao, Jianguo Chen) ; chế tạo khẩu trang phẩu thuật chứa bạc nano với hiệu suất kháng khuẩn cao (Sougata Sarkar, Atish Dipankar Jana, Samir Kumar Samanta, Golam Mostafa); cơ chế kháng khuẩn của bạc nano (Y. Li, P. Leung, L. Yao, Q. w. Song, E. Newton); tổng hợp và khảo sát các tính chất lý hoá của hạt bạc nano trong cao su thiên nhiên (N. H. H. Abu Bakar, J. Ismail, M. Abu Bakar); sản xuất bạc nano ứng dụng trong dược phẩm (X. Chen, H. J. Schluesener); chế tạo màng lọc nước kháng khuẩn bằng mút xốp Polyurethane chứa bạc nano (Prashant Jain, T. Pradeep); hiệu quả tính kháng của dung dịch keo bạc nano lên vải sợi (H. J. Lee, S. Y. Yeo, S. H. Jeong); phân hủy nhiệt tạo ra hạt bạc nano (S. Navaladian, B. Viswanathan, R. P. Viswanath, T. K. Varadarajan). 1 Cùng với sự phát triển mạnh mẽ của lĩnh vực nano trên thế giới, trong nước cũng có khá nhiều đề tài nghiên cứu về lĩnh vực này tiêu biểu như: ứng dụng dung dịch keo bạc nano ngâm tẩm trên vật liệu polyurethan để xử lý nguồn nước uống nhiễm khuẩn; chế tạo bạc nano trên nền cao su thiên nhiên bằng phương pháp khử hóa học; chế tạo hạt keo bạc nano trong PVP bởi tia gama (Bùi Duy Du, Đặng Văn Phú, Nguyễn Ngọc Duy, Nguyễn Thị Kim Lan, Võ Thị Kim Lang, Ngô Võ Kế Thành, Nguyễn Thị Phương Phong và Nguyễn Quốc Hiền); chế tạo màng lọc nước kháng khuẩn bằng mút xốp Polyurethane chứa bạc nano (Nguyễn Thị Phương Phong, Võ Kế Thành, Phan Huê Phương). Dung dịch keo bạc nano được điều chế với tiền chất là bạc nitrat, chất bảo vệ là polyvinyl pyroidone (PVP), chất khử là ethyleneglycol có sự hỗ trợ của nhiệt vi sóng. Đây là một phương pháp khá tiện lợi, đơn giản, thời gian phản ứng nhanh. Từ những ưu điểm của bạc nano cũng như tính hữu ích, sự khác biệt của phương pháp khử hóa học so với phương pháp khác đã thúc đẩy cho chúng tôi chọn đề tài: “Tổng hợp và nghiên cứu khả năng kháng khuẩn, kháng nấm của Ag kích thước nanomet ” làm đề tài nghiên cứu khoa học với các mục tiêu sau:  Điều chế dung dịch keobạc với chất khử là ethyleneglycol bằng phương pháp khử hóa học có sự hỗ trợ nhiệt của vi sóng.  Khảo sát kích thước của hạt bạc nano điều chế được theo chất bảo vệ, theo thời gian, theo công suất lò vi sóng, theo tỉ lệ của chất bảo vệ và AgNO3  Khảo sát khả năng bám dính của dung dịch keo bạc nano điều chế được trên một số loại vải dùng trong quân đội  Khảo sát khả năng kháng khuẩn của dung dịch bạc nano đối với một số chủng vi khuẩn, chủng nấm gây bệnh phổ biến bằng phương pháp vòng vô khuẩn. 2 Chương 1. TỔNG QUAN 1.1. Khái quát về hạt nano Công nghệ nano là ngành công nghệ liên quan đến việc nghiên cứu, chế tạo các vật liệu có cấu trúc, hình dạng với kích thước nanômét (nm) (1nm = 10-9 m). Các hạt nano (nanoparticles) có kích thước khoảng vài nm đến 100 nm, vật liệu nano là những vật liệu có kích thước từ vài nm đến vài trăm nm. Ở kích thước nano, vật liệu sẽ có những tính năng đặc biệt do sự thu nhỏ kích thước và tăng diện tích mặt ngoài [6], [12]. Ý tưởng cơ bản về công nghệ nano được đưa ra bởi nhà vật lý học người Mỹ Richard Feynman vào năm 1959, ông cho rằng khoa học đã đi vào chiều sâu của cấu trúc vật chất đến từng phân tử, nguyên tử. Nhưng thuật ngữ “công nghệ nano” mới bắt đầu được sử dụng vào năm 1974 do Nario Taniguchi một nhà nghiên cứu tại trường đại học Tokyo sử dụng để đề cập khả năng chế tạo cấu trúc vi hình của mạch vi điện tử. Khi vật liệu ở vào kích cỡ nanomet thì chúng có đặc điểm nổi bật là các đặc tính liên quan đến hiệu ứng bề mặt và hiệu ứng kích thước. Trước tiên là về hiệu ứng bề mặt. Khi vật liệu có kích thước nhỏ thì tỉ số giữa số nguyên tử trên bề mặt và tổng số nguyên tử của vật liệu gia tăng. Hiệu ứng bề mặt luôn có tác dụng với tất cả các giá trị của kích thước, hạt càng bé thì hiệu ứng càng lớn và ngược lại [6], [12]. Bảng 1.1 cho biết một số giá trị điển hình của hạt nano hình cầu. Bảng 1.1: Số nguyên tử và năng lượng bề mặt của hạt nano hình cầu Đường kính hạt nano (nm) 10 Số Tỉ số nguyên tử Năng lượng nguyên tử trên bề mặt (%) bề mặt Năng lượng bề mặt trên năng lượng tổng 30.000 20 (J/mol) 4,8.104 5 4.000 40 8,6. 104 14,3 2 250 80 2,04. 105 14,3 1 30 90 9,23. 105 82,2 3 (%) 7,6 Thứ hai, về hiệu ứng kích thước. Hiệu ứng kích thước của vật liệu nano đã làm cho vật liệu này có nhiều đặc điểm khác với các vật liệu truyền thống. Mỗi một tính chất của vật liệu đều được quy định bởi một độ dài đặc trưng hay còn gọi là kích thước tới hạn. Các tính chất của vật liệu có độ dài đặc trưng đều ở kích thước nanomet mà ngày nay người ta thường nói là “vật liệu nano”. Ở vật liệu khối, kích thước vật liệu lớn hơn nhiều lần so với độ dài đặc trưng với các tính chất vật lí đã biết. Nhưng khi kích thước của vật liệu có thể so sánh với độ dài đặc trưng đó thì tính chất có liên quan đến độ dài đặc trưng bị thay đổi đột ngột, khác hẳn so với tính chất đã biết trước đó. Không có sự chuyển tiếp một cách liên tục về tính chất khi đi từ vật liệu khối đến vật liệu nano. Khi nói đến vật liệu nano, người ta đã nghiên cứu đến tính chất đi kèm của vật liệu đó. Cùng một vật liệu, cùng một kích thước, khi xem xét tính chất này thì khác so với vật liệu khối nhưng cũng có thể xem xét tính chất khác thì lại không có gì khác biệt. Tuy nhiên, hiệu ứng bề mặt luôn luôn thể hiện dù ở bất cứ kích thước nào. Ví dụ: đối với kim loại, quãng đường tự do trung bình của điện tử có giá trị vài chục nm. Khi dòng điện chạy qua một dây dẫn kim loại, nếu kích thước của dây rất lớn so với quãng đường tự do trung bình của điện tử trong kim loại này thì chúng ta sẽ có định luật Ohm cho dây dẫn. Định luật cho thấy sự tỉ lệ tuyến tính của dòng và thế đặt ở hai đầu sợi dây. Nếu thu nhỏ kích thước của sợi dây cho đến khi nhỏ hơn độ dài quãng đường tự do trung bình của điện tử trong kim loại thì sự tỉ lệ liên tục giữa dòng và thế không còn nữa mà tỉ lệ gián đoạn với một lượng tử độ dẫn là e2/ħ, trong đó e là điện tích của điện tử, ħ là hằng số Planck. Lúc này hiệu ứng lượng tử xuất hiện. Có rất nhiều tính chất bị thay đổi giống như độ dẫn, tức là bị lượng tử hóa do kích thước giảm đi. Hiện tượng này được gọi là hiệu ứng chuyển tiếp cổ điển - lượng tử trong các vật liệu nano do việc giam hãm các vật thể trong một không gian hẹp mang lại (giam hãm lượng tử). 4 1.2. Hạt nano kim loại - bạc nano 1.2.1. Giới thiệu về bạc nano Nano kim loại là khái niệm dùng để chỉ các hạt có kích thước nano được tạo thành từ các kim loại. Hạt bạc nano là các hạt bạc có kích thước từ 1 nm đến 100nm. Cấu hình electron của bạc: 1s2 2s22p63s23p63d104s24p64d105s1 Bán kính nguyên tử Ag: 0,288 nm. Bán kính ion bạc: 0,23 nm. Bảng 1.2: Số nguyên tử và kích thước của hạt bạc nano Kích thước của hạt nano Ag (nm) 1 5 20 Số nguyên tử 31 3900 250000 1.2.2. Tính chất của hạt bạc nano ❖ Đặc tính chung của bạc nano - Hạt bạc nano có khả năng kháng khuẩn tốt hơn so với vật liệu khối do khả năng giải phóng nhiều ion Ag+ hơn nhờ có diện tích bề mặt lớn. - Các hạt bạc nano có hiện tượng cộng hưởng Plasmon bề mặt. Hiện tượng này làm cho các dung dịch có chứa hạt bạc nano có màu các màu sắc khác nhau phụ thuộc vào nồng độ và kích thước hạt nano. - Tính khử khuẩn, chống nấm, khử mùi, có khả năng phát xạ tia hồng ngoại đi xa. - Không có hại cho sức khỏe con người với liều lượng tương đối cao. - Có khả năng phân tán ổn định trong các loại dung môi khác nhau (trong các dung môi phân cực như nước và trong các dung môi không phân cực như benzene, toluene). - Độ bền hóa học cao, không bị biến đổi dưới tác dụng của ánh sáng và các tác nhân oxy hóa khử thông thường. - Ổn định ở nhiệt độ cao [6], [12]. 5 ❖ Tính chất quang Ở kích thước nanomet, các hạt nano kim loại, đặc biệt là các kim loại quý như vàng, bạc, đồng, platin có một hiệu ứng đặc biệt đó là “Cộng hưởng Plasmon bề mặt” (surface plasmon resonance - SPR), làm cho chúng có những màu sắc khác nhau khi ánh sáng truyền qua. Trong kim loại có một loại plasma là plasma khí điện tử được sinh ra do các electron trong kim loại tách ra khỏi liên kết với nguyên tử chuyển thành các electron dẫn chuyển động tự do. Khi có sự kích thích của ánh sáng, những chuyển động tự do này của electron trên bề mặt kim loại sẽ tạo ra sóng truyền dọc theo bề mặt kim loại, gọi là sóng điện từ bề mặt (surface electromagnetic waves) truyền đi theo phương song song với kim loại hay với bề mặt chung của môi trường điện môi như hình 1.1. Hiện tượng này được gọi là “Plasmon bề mặt” của kim loại (surface plasmon - SPs) [33], [6]. Hình 1.1: Plasmon bề mặt của kim loại Sự kích thích của plasmon bề mặt bởi ánh sáng gọi là “cộng hưởng Plasmon bề mặt” (surface plasmon resonance_SPR). Hiện tượng này có được khi tần số của ánh sáng tới cộng hưởng với tần số dao động plasma của các điện tử dẫn trên bề mặt kim loại. Hiện tượng trên được giải thích như sau: Khi có ánh sáng, tức là có điện từ trường tương tác với bề mặt kim loại, dao động của vec tơ điện trường và vectơ từ trường của ánh sáng làm cho điện tử tự do của kim loại dao động, các điện tử ở chỗ này bị nén lại, mật độ điện tử tăng lên; điện tử ở chỗ kia bị dãn ra, mật độ điện tử giảm xuống. Vì vậy, ánh sáng tạo ra sóng mật độ điện tử lan truyền trong plasma điện tử ở kim loại. 6 Thông thường các dao động bị dập tắt nhanh chóng bởi các sai hỏng mạng hay bởi chính các nút mạng tinh thể trong kim loại khi quãng đường tự do trung bình của điện tử nhỏ hơn kích thước. Nhưng khi kích thước của kim loại nhỏ hơn quãng đường tự do trung bình thì hiện tượng dập tắt không còn nữa mà điện tử sẽ dao động cộng hưởng với ánh sáng kích thích. Do vậy, tính chất quang của hạt nano có được do sự dao động chung của các điện tử dẫn đến từ quá trình tương tác với bức xạ sóng điện từ. Khi dao động như vây, các điện tử sẽ phân bố lại trong hạt nano làm cho hạt nano bị phân cực điện tạo thành một lưỡng cực điện [6], [14]. Hình 1.2: Dao động của đám mây electron khi bị chiếu sáng Các hạt bạc nano có hiệu ứng hấp thụ và tán xạ ánh sáng rất mạnh do hiệu ứng cộng hưởng plasmon bề mặt. Màu sắc của dung dịch nano là do hiệu ứng Plasmon bề mặt gây ra. Hình dáng, độ lớn và mật độ của hạt nano sẽ ảnh hưởng đến tính chất quang của dung dịch nano. Các hạt nano vàng, bạc, đồng thể hiện bước sóng cộng hưởng Plasmon bề mặt trong vùng ánh sáng khả kiến, sẽ có một phần ánh sáng đó bị hấp thụ, một phần phản xạ; phần ánh sáng phản xạ này quy định màu sắc của hạt nano kim loại. Ví dụ: Hạt bạc nano kích thước nhỏ sẽ hấp thụ ánh sáng trong vùng phổ màu từ tím đến màu lục (400nm-500nm) trong khi đó nó lại phản xạ ánh sáng vàng (600nm) nên dung dịch có màu vàng. Khi kích thước hạt bạc nano tăng lên thì bước sóng cộng hưởng Plasmon bề mặt lớn hơn, nếu kích thước hạt tiếp tục tăng tới gần mức giới hạn của vật liệu khối thì hiện tượng cộng hưởng plamon bề mặt sẽ di chuyển về vùng phổ gần hồng ngoại, hầu như tất cả ánh sáng khả 7 kiến bị phản xạ làm cho các hạt nano ở kích thước này có màu gần như trong suốt. ❖Tính chất từ Ở trạng thái khối, bạc có tính nghịch từ do sự bù trừ cặp điện tử. Khi thu nhỏ kích thước đến kích thước nano thì sự bù trừ trên sẽ không toàn diện nữa và hạt bạc nano có từ tính khá mạnh. ❖Tính chất điện Bạc là một trong những kim loại dẫn điện tốt nhất. Khi kích thước của hạt giảm dần về kích cỡ nanomet, hiệu ứng lượng tử do giam hãm làm rời rạc hóa cấu trúc vùng năng lượng. Hệ quả của quá trình lượng tử hóa này đối với hạt bạc nano là xuất hiện một hiệu ứng gọi là hiệu ứng chắn Coulomb (Coulomb Blockade) làm cho đường I-U bị nhảy bậc, với giá trị mỗi bậc sai khác nhau một lượng e/2C đối với U và e/RC đối với I, trong đó e là điện tích của điện tử, C và R là điện dung và điện trở kháng nối hạt nano với điện cực. ❖Tính chất nhiệt Nhiệt độ nóng chảy của bạc nguyên chất ở dạng khối là khá lớn. Khi kích thước bạc giảm xuống cỡ nanometer thì nhiệt độ nóng chảy của bạc giảm xuống thấp hơn (xấp xỉ vài trăm độ C). 1.2.3. Các phương pháp chế tạo hạt bạc nano Có 2 phương pháp để điều chế hạt nano kim loại bạc: phương pháp từ dưới lên và phương pháp từ trên xuống. Phương pháp từ dưới lên “bottom-up” là phương pháp tạo hạt nano từ các nguyên tử hoặc ion kết hợp lại với nhau. Phương pháp từ trên xuống “top-down” là phương pháp tạo các hạt nano từ vật liệu khối ban đầu. Đối với hạt bạc nano, người ta thường điều chế bằng phương pháp từ dưới lên. Nguyên tắc là khử ion Ag+ thành Ag. Các ion này sau đó liên kết với nhau tạo thành hạt nano và các hạt nano này sẽ được bọc bởi các chất ổn định như PVP, PVE, chitosan.v.v. Các phương pháp từ trên xuống ít được sử dụng vì bạc nano chế tạo bằng phương pháp này thường có kích thước hạt lớn và không đồng đều. Hiện nay các vật liệu kim loại nano như vàng (Au), Sắt (Fe), đồng (Cu), bạc (Ag) dưới dạng bột hay dung dịch keo được chế tạo chủ yếu bằng các phương pháp sau: 8 1.2.3.1. Phương pháp bay hơi vật lý Bay hơi vật lý là phương pháp từ trên xuống, đó là một công cụ góp phần cho sự phát triển của công nghệ nano. Bay hơi vật lý bao gồm kỹ thuật ngưng tụ khí trơ, đồng ngưng tụ và ngưng tụ dòng hơi phun trên bia bắn. + Kỹ thuật ngưng tụ khí trơ: cho hóa hơi sợi dây bạc tinh khiết ở nhiệt độ cao trong điều kiện chân không, sau đó dòng hơi bạc nguyên tử quá bão hòa được ngưng tụ và phát triển thành hạt bạc khi tiếp xúc với khí heli và được làm lạnh bởi nitơ lỏng. + Kỹ thuật đồng ngưng tụ: tương tự như ngưng tụ khí trơ nhưng quá trình hình thành và phát triển hạt xảy ra trên lớp bằng dung môi thích hợp. Kỹ thuật ngưng tụ khí trơ và đồng ngưng tụ được thực hiện ở nhiệt độ cao (>2.0000C), sản phẩm tạo ra có độ tinh khiết cao, kích thước hạt bạc nano trung bình 75nm (phương pháp ngưng tụ khí trơ), 12nm (phương pháp đồng ngưng tụ) [9]. 1.2.3.2. Phương pháp ăn mòn laze Đây là phương pháp từ trên xuống. Vật liệu ban đầu là một tấm bạc được đặt trong một dung dịch có chứa chất hoạt hóa bề mặt. Một chùm laser dạng xung có buớc sóng 532 nm, độ rộng xung là 10 ns, tần số 10Hz, năng lượng mỗi xung là 90mJ, đường kính vùng kim loại bị tác dụng từ 1nm - 3nm. Dưới tác dụng của chùm laser xung, các hạt nano có kích thước khoảng 10 nm được hình thành và được bao phủ bởi chất hoạt hóa bề mặt CnH2n+1SO4Na (với n = 8, 10, 12, 14) nồng độ từ 0,001 đến 0,1 M [16]. 1.2.3.3. Phương pháp hóa siêu âm Phương pháp hóa siêu âm là các phản ứng hóa học được hỗ trợ bởi sóng siêu âm cũng được dùng để tạo hạt nano. Hóa siêu âm là một chuyên ngành của hóa học, trong đó các phản ứng hóa học xảy ra dưới tác dụng của sóng siêu âm như một dạng xúc tác. Sóng siêu âm là sóng dọc, là quá trình truyền sự co lại và giãn nở của chất lỏng. Tần số thường sử dụng trong các máy siêu âm là 20 kHz cao hơn ngưỡng nhận biết của tai người (từ vài Hz đến 16 kHz). Khi sóng siêu âm đi qua một chất lỏng, sự giãn nở do siêu âm gây ra áp suất âm trong chất lỏng kéo các phân tử chất 9 lỏng ra xa nhau. Nếu cường độ siêu âm đủ mạnh thì sự giãn nở này sẽ tạo ra những lỗ hổng trong chất lỏng. Sự phát triển của các lỗ hổng phụ thuộc vào cường độ siêu âm. Khi cường độ siêu âm cao, các lỗ hổng nhỏ có thể phát triển rất nhanh. Sự giãn nở của các lỗ hổng đủ nhanh trong nửa đầu chu kì của một chu kì sóng siêu âm, nên đến nửa sau chu kì thì nó không có đủ thời gian để co lại nữa. Dưới các điều kiện này, kích thước của một lỗ hổng sẽ dao động theo các chu kì giãn nở và co lại. Trong khi dao động như thế lượng khí hoặc hơi khuyếch tán vào hoặc ra khỏi lỗ hổng phụ thuộc vào diện tích bề mặt. Diện tích bề mặt sẽ lớn hơn trong quá trình giãn nở và nhỏ hơn trong quá trình co lại. Do đó, sự phát triển của lỗ hổng trong quá trình giãn nở sẽ lớn hơn trong quá trình co lại. Sau nhiều chu kì siêu âm, lỗ hổng sẽ phát triển. Lỗ hổng có thể phát triển đến một kích thước tới hạn mà tại kích thước đó lỗ hổng có thể hấp thụ hiệu quả năng lượng của sóng siêu âm. Kích thước này gọi là kích thước cộng hưởng, nó phụ thuộc vào tần số của sóng âm. Ví dụ, với tần số 20 kHz, kích thước này khoảng 170 mm. Lúc này, lỗ hổng có thể phát triển rất nhanh trong một chu kì duy nhất của sóng siêu âm. Một khi lỗ hổng đã phát triển quá mức, ngay cả trong trường hợp cường độ siêu âm thấp hay cao, nó sẽ không thể hấp thụ năng lượng siêu âm một cách có hiệu quả được nữa. Và khi không có năng lượng tiếp ứng, lỗ hổng không thể tồn tại lâu được. Chất lỏng ở xung quanh sẽ đổ vào và lỗ hổng bị suy sụp. Sự suy sụp của lỗ hổng tạo ra một môi trường đặc biệt cho các phản ứng hoá học - các điểm nóng (hot spot). Hóa siêu âm được ứng dụng để chế tạo rất nhiều loại vật liệu nano như vật liệu nano xốp, nano dạng lỏng, hạt nano, ống nano. 1.2.3.4. Phương pháp khử hóa học Khử hóa học là một phương pháp được sử dụng phổ biến để chế tạo bạc nano theo phương thức từ dưới lên. Trước hết là về cơ chế của quá trình khử hóa học: Phương pháp khử hóa học là dùng các tác nhân hóa học để khử ion bạc thành bạc kim loại. Thông thường, phản ứng được thực hiện trong dung dịch lỏng nên còn gọi là phản ứng hóa ướt. Ag+ + e- → Ag0 Thông thường, nguồn cung cấp ion Ag+ là các muối của bạc như AgNO3. Các tác nhân khử thường dùng là: natri bohydrua, focmandehyt, xitrat, ethyleneglycol, NaBH4, ethanol,…. Gần đây có một số công trình nghiên cứu chế 10 tạo keo bạc nano và bột bạc nano từ bạc nitrat nhưng sản phẩm trung gian là oxit bạc (Ag2O) rồi từ Ag2O tiếp tục khử về Ag0 nhằm thu được keo bạc có nồng độ cao. Để các hạt bạc nano phân tán tốt trong dung môi mà không bị kết tụ thành đám, người ta bao phủ hạt bạc nano bằng một lớp polyme, điều này giúp cho các hạt được bảo vệ tốt hơn tránh hiện tượng kết tủa, hơn nữa phương pháp này có thể làm cho bề mặt hạt nano có tính chất cần thiết. Về các tác nhân khử hóa học: Tác nhân khử Sodium citrate “C6H5O7Na3’' Trong quá trình khử, bề mặt của hạt bạc nano hấp thụ các ion Ag+ tạo ra lớp ion dương trên bề mặt. Tiếp đó các ion âm citrate có nghiệm vụ bám xung quanh các hạt nano bằng lực hút tĩnh điện ngăn không cho chúng kết hợp lại với nhau. Nhờ vậy mà bề mặt của hạt bạc nano có một lớp keo citrate giúp chúng lơ lửng và phân tán đều trong dung dịch. Citrate trong quá trình vừa đóng vai trò làm tác nhân khử ion Ag+ để tạo thành hạt bạc nano, vừa đóng vai trò làm chất ổn định cho hạt bạc nano. Tác nhân khử NaBH4 khác với phương pháp sử dụng Sodium citrate, ở phương pháp này sau khi kết thúc phản ứng khử, người ta sử dụng các polyme như PVP, PVA, PEG, Chitosan…, làm tác nhân ổn định. Các polyme này bao bọc hạt bạc nano, ngăn chúng kết tụ với nhau, vì vậy mà hạt nano được bảo vệ tốt và tránh kết tủa. Tác nhân khử polyol: Dùng chất khử là các ancol đa chức để khử Ag+ thành Ag kim loại. Quá trình khử được thực hiện trong môi trường là chính các ancol có hòa tan các chất hoạt động bề mặt, các polyme này bao bọc hạt nano Ag tạo thành và ngăn không cho chúng kết tụ với nhau. Hạt nano điều chế được có kích thước nhỏ và bền vững. Cơ chế ổn định hạt bạc của PVP được mô tả như sau: Hình 1.3: Công thức cấu tạo PVP 11 PVP được tổng hợp từ phản ứng trùng hợp các vinyl pyrolidon, là các polyme ưa nước và hòa tan trong nước, không độc, được sử dụng phổ biến trong lĩnh vực y tế Kết quả nghiên cứu chỉ ra rằng, các hạt bạc hấp thụ mạnh lên bề mặt của PVP, chuỗi polyvinyl pyrolidon tạo ra hiệu ứng không gian, ngăn cản sự kết hợp giữa các hạt. Cơ chế ổn định hạt bạc của PVP gồm các giai đoạn: + Đầu tiên, PVP chuyển một cặp electron từ nguyên tử oxi và nitơ trên mạch sang các orbital s và p các ion bạc tạo nên kiên kết phối trí với ion bạc. + PVP thúc đẩy sự hình thành nhân của kim loại bạc do phức ion Ag+ - PVP dễ bị khử hơn so với ion Ag+ tự do trong dung dịch vì ion Ag+ nhận điện tử từ PVP. + Chuỗi PVP ngăn cản sự kết tụ của các hạt bạc do hiệu ứng không gian. Hình 1.4: Cơ chế ổn định hạt bạc nano của PVP 1.2.4. Các phương pháp vật lý nghiên cứu cấu trúc hạt bạc nano 1.2.4.1. Phổ hấp thụ tử ngoại khả kiến (UV-Vis) Phổ tử ngoại và khả kiến, viết tắt là UV - Vis (Ultraviolet – Visible), là phương pháp phân tích được sử dụng rộng rãi từ lâu. Phổ tử ngoại và khả kiến của các hợp chất hữu cơ gắn liền với bước chuyển electron giữa các mức năng lượng electron trong phân tử khi các electron chuyển từ các orbitan liên kết hoặc không liên kết lên các orbitan phản liên kết có mức năng lượng cao hơn, đòi hỏi phải hấp thu năng lượng từ ngoài vào. Máy đo phổ UV – Vis dùng để xác định độ tinh khiết của một hợp chất, nhận biết cấu trúc các chất, phân tích hỗn hợp xác định khối lượng phân tử, dự 12
- Xem thêm -