Đăng ký Đăng nhập
Trang chủ Tổng hợp nghiên cứu đặc trưng cấu trúc và hoạt tính quang xúc tác của vật liệu n...

Tài liệu Tổng hợp nghiên cứu đặc trưng cấu trúc và hoạt tính quang xúc tác của vật liệu nanocompozit agins2 agin5s8

.PDF
58
2
109

Mô tả:

.. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN VĂN HẢI TỔNG HỢP, NGHIÊN CỨU ĐẶC TRƯNG CẤU TRÚC VÀ HOẠT TÍNH QUANG XÚC TÁC CỦA VẬT LIỆU NANOCOMPOZIT AgInS2/AgIn5S8 LUẬN VĂN THẠC SĨ HOÁ HỌC THÁI NGUYÊN – 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM NGUYỄN VĂN HẢI TỔNG HỢP, NGHIÊN CỨU ĐẶC TRƯNG CẤU TRÚC VÀ HOẠT TÍNH QUANG XÚC TÁC CỦA VẬT LIỆU NANOCOMPOZIT AgInS2/AgIn5S8 Ngành: Hóa vô cơ Mã ngành: 8.44.01.13 LUẬN VĂN THẠC SĨ HOÁ HỌC Người hướng dẫn khoa học: PGS.TS. Bùi Đức Nguyên THÁI NGUYÊN - 2018 LỜI CAM ĐOAN Tôi xin cam đoan: Đề tài “Tổng hợp, nghiên cứu đặc trưng cấu trúc và hoạt tính quang xúc tác của vật liệu nanocompozit AgInS2/AgIn5S8” là do bản thân tôi thực hiện. Các số liệu, kết quả trong đề tài là trung thực. Nếu sai sự thật tôi xin chịu trách nhiệm. Thái Nguyên, tháng 5 năm 2018 Học viên Nguyễn Văn Hải Xác nhận Xác nhận của Trưởng khoa chuyên môn của giáo viên hướng dẫn PGS.TS. Nguyễn Thị Hiền Lan PGS.TS. Bùi Đức Nguyên i LỜI CẢM ƠN Trước hết, em xin gửi lời cảm ơn sâu sắc đến PGS.TS. Bùi Đức Nguyên người đã tận tình hướng dẫn và truyền đạt kiến thức, kinh nghiệm trong suốt quá trình em thực hiện đề tài luận văn. Em xin chân thành cảm ơn các thầy cô khoa Hóa học, cán bộ phòng thí nghiệm khoa Hóa học, trường ĐHSP Thái Nguyên đã tạo điều kiện thuận lợi cho em trong suốt quá trình em thực hiện đề tài luận văn. Em xin chân thành cảm ơn tập thể cán bộ nghiên cứu Viện đo lường, phòng hiển vi điện tử quét Viện Dịch Tễ Trung ương đã nhiệt tình giúp đỡ em trong thời gian thực hiện các nội dung của đề tài luận văn. Xin chân thành cảm ơn gia đình và bạn bè đã luôn động viên, chia sẻ và giúp đỡ em trong suốt thời gian học tập và nghiên cứu. Thái Nguyên, tháng 5 năm 2018 Học viên Nguyễn Văn Hải ii MỤC LỤC Trang Trang phụ bìa Lời cam đoan ................................................................................................ i Lời cảm ơn ................................................................................................... ii Mục lục ....................................................................................................... iii Danh mục các kí hiệu và chữ viết tắt.......................................................... iv Danh mục bảng biểu .................................................................................... v Danh mục các hình ..................................................................................... vi MỞ ĐẦU ..................................................................................................... 1 Chương 1. TỔNG QUAN .......................................................................... 3 1.1. Giới thiệu về vật liệu quang xúc tác ..................................................... 3 1.1.1. Vật liệu quang xúc tác ................................................................ 3 1.1.2. Cơ chế quang xúc tác trên vật liệu bán dẫn................................ 3 1.1.3. Các ứng dụng của vật liệu quang xúc tác ................................... 5 1.2. Tổng quan tình hình nghiên cứu, ứng dụng vật liệu quang xúc tác ..... 9 1.3. Giới thiệu các chất hữu cơ độc hại trong môi trường nước................ 14 1.4. Một số yếu tố ảnh hưởng đến hiệu suất quang xúc tác phân hủy chất hữu cơ ........................................................................................................ 16 1.4.1. Ảnh hưởng của khối lượng chất xúc tác sử dụng trong phản ứng ...................................................................................................... 16 1.4.2. Ảnh hưởng của nồng độ đầu của chất hữu cơ .......................... 16 1.4.3. Ảnh hưởng của các ion lạ có trong dung dịch.......................... 17 1.4.4. Ảnh hưởng của nhiệt độ ........................................................... 17 1.5. Một số phương pháp nghiên cứu sử dụng trong luận văn .................. 17 1.5.1. Phổ hấp thụ phân tử UV-Vis .................................................... 17 1.5.2. Nhiễu xạ tia X (XRD) .............................................................. 18 1.5.3. Hiển vi điện tử truyền qua (TEM) ............................................ 21 1.5.4. Phổ phản xạ khuếch tán UV-Vis (DRS) .................................. 22 iii 1.5.5. Phổ tán xạ năng lượng tia X ..................................................... 23 Chương 2. THỰC NGHIỆM .................................................................. 24 2.1. Nội dung nghiên cứu .......................................................................... 24 2.2. Hóa chất và thiết bị ............................................................................. 24 2.2.1. Hóa chất .................................................................................... 24 2.2.2. Dụng cụ và thiết bị ................................................................... 24 2.3. Tiến hành chế tạo vật liệu bằng phương pháp kết tủa ........................ 25 2.3.1. Chế tạo vật liệu AgInS2 ............................................................ 25 2.3.2. Chế tạo vật liệu AgIn5S8 ........................................................... 25 2.3.3. Chế tạo vật liệu AgInS2/AgIn5S8 .............................................. 26 2.4. Các kỹ thuật đo khảo sát tính chất của vật liệu .................................. 26 2.4.1. Nhiễu xạ tia X (XRD) .............................................................. 26 2.4.2. Phổ tán xạ năng lượng tia X (EDX) ......................................... 26 2.4.3. Hiển vi điện tử truyền qua (TEM) ............................................ 26 2.4.4. Phổ phản xạ khuếch tán Uv-Vis (DRS) ................................... 27 2.5. Thí nghiệm khảo sát thời gian đạt cân bằng hấp phụ của các vật liệu27 2.6. Khảo sát các yếu tố ảnh hưởng đến hoạt tính quang xúc tác của vật liệu ............................................................................................................. 27 2.6.1. Thí nghiệm khảo sát ảnh hưởng của pH đến hoạt tính quang xúc tác của các vật liệu AgInS2/AgIn5S8................................................... 27 2.6.2. Thí nghiệm khảo sát hoạt tính quang xúc tác của vật liệu AgInS2/AgIn5S8 theo thời gian ........................................................... 28 2.7. Hiệu suất quang xúc tác ...................................................................... 28 Chương 3. KẾT QUẢ VÀ THẢO LUẬN .............................................. 29 3.1. Thành phần, đặc trưng cấu trúc của vật liệu....................................... 29 3.1.1. Kết quả nhiễu xạ tia X (XRD) .................................................. 29 3.1.2. Kết quả chụp phổ tán sắc năng lượng tia X (EDX) ................. 30 3.1.3. Kết quả chụp TEM ................................................................... 33 iv 3.1.4. Kết quả phổ phản xạ khuếch tán UV-Vis (DRS) ..................... 34 3.2. Khảo sát hoạt tính quang xúc tác của các vật liệu .............................. 37 3.2.1. Khảo sát thời gian đạt cân bằng hấp phụ của các vật liệu AgInS2/AgIn5S8 .................................................................................. 37 3.2.2. Hoạt tính quang xúc tác phân hủy MO theo thời gian của vật liệu AgInS2/AgIn5S8 .................................................................................. 38 3.2.3. Ảnh hưởng của pH dung dịch đến hoạt tính quang xúc tác phân hủy MO của AgInS2/AgIn5S8 ............................................................. 40 KẾT LUẬN............................................................................................... 44 TÀI LIỆU THAM KHẢO....................................................................... 45 v DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT STT Từ viết tắt Từ gốc 1 VB Vanlence Band 2 CB Conduction Band 3 TEM Transsmision Electronic Microscopy 4 MO Methyl Orange 5 XRD X-ray Diffraction 6 PEG Polyetylen Glycol iv DANH MỤC BẢNG BIỂU Bảng 1.1. Một số tác nhân oxi hóa và thế điện cực tiêu chuẩn ........................... 6 Bảng 1.2. Các hợp chất hữu cơ thường được sử dụng nghiên cứu trong phản ứng quang xúc tác của AgIn5S8 ........................................................ 14 v DANH MỤC CÁC HÌNH Hình 1.1. Các quá trình diễn ra trong hạt bán dẫn khi bị chiếu xạ với bước sóng thích hợp. .......................................................................... 4 Hình 1.2. Cơ chế quang xúc tác TiO2 tách nước cho sản xuất hiđro .......... 7 Hinh 1.3. Vùng hấp thụ năng lượng của một số bán dẫn loại I-III-VI [11] .......................................................................................... 12 Hình 1.4. Phổ phản xạ khuếch tán của vật liệu (CuAg)xIn2xZn2(1-2x)S2 [3] 13 Hình 1.5. Công thức cấu tạo và hình ảnh minh họa của MO. ................... 15 Hình 1.6. Cường độ tia sáng trong phương pháp UV-Vis ........................ 18 Hình 1.7. Mô tả hiện tượng nhiễu xạ tia X trên các mặt phẳng tinh thể chất rắn .................................................................................... 19 Hình 1.8. Sơ đồ mô tả hoạt động nhiễu xạ kế bột ..................................... 20 Hình 1.9. Kính hiển vi điện tử truyền qua ................................................. 21 Hình 3.1. Giản đồ nhiễu xạ tia X của AgInS2 ........................................... 29 Hình 3.2. Giản đồ nhiễu xạ tia X của AgIn5S8 .......................................... 29 Hình 3.3. Giản đồ nhiễu xạ tia X của AgInS2/AgIn5S8 ............................. 30 Hình 3.4. Ảnh SEM của mẫu AgInS2 ........................................................ 30 Hình 3.5. Phổ EDX của mẫu AgInS2 ........................................................ 31 Hình 3.6. Ảnh SEM của mẫu AgIn5S8....................................................... 31 Hình 3.7. Phổ EDX của mẫu AgIn5S8 ....................................................... 31 Hình 3.8. Ảnh SEM của mẫu AgInS2/AgIn5S8.......................................... 32 Hình 3.9. Phổ EDX của mẫu AgInS2/AgIn5S8 .......................................... 32 Hình 3.10. Ảnh TEM của vật liệu AgInS2................................................. 33 Hình 3.11. Ảnh TEM của vật liệu AgIn5S8 ............................................... 33 Hình 3.12. Ảnh TEM của vật liệu AgInS2/ AgIn5S8 ................................. 34 Hình 3.13. Phổ phản xạ khuếch tán UV-Vis (DRS) của các vật liệu ........ 34 Hình 3.14. Phổ phản xạ khuếch tán (DRS) của AgInS2 theo tài liệu [20] 35 vi Hình 3.15. Phổ phản xạ khuếch tán (DRS) của AgInS2 tổng hợp bằng phương pháp thủy nhiệt (theo tài liệu [18]) ............................ 36 Hình 3.16. Phổ phản xạ khuếch tán DRS của vật liệu nghiên cứu so với TiO2 ......................................................................................... 37 Hình 3.17. Phổ hấp phụ phân tử của dung dịch MO bị hấp phụ bởi vật liệu sau những khoảng thời gian khác nhau ................................... 38 Hình 3.18. Phổ hấp thụ phân tử dung dịch MO sau xử lý ở những khoảng thời gian khác nhau bằng vật liệu AgInS2/AgIn5S8................. 39 Hình 3.19. Biểu đồ biểu diễn hiệu suất quang xúc tác (H%) phân hủy MO của vật liệu AgInS2/AgIn5S8.................................................... 39 Hình 3.20. Quá trình phân hủy của MO trên vật liệu AgInS2/AgIn5S8 ..... 40 Hình 3.21. Ảnh hưởng của pH đến hoạt tính quang xúc tác của AgInS2/AgIn5S8 ....................................................................... 41 Hình 3.22. Biểu đồ biểu diễn hiệu suất quang xúc tác phân hủy MO của AgInS2/AgIn5S8 tại các giá trị pH khác nhau .......................... 41 vii MỞ ĐẦU Hiện nay, sự phát triển mạnh mẽ của nhiều ngành công nghiệp như dệt nhuộm, hóa chất nông nghiệp, thuộc da, công nghiệp giấy, công nghiệp gỗ, cao su, chế phẩm màu... đã và đang làm cho môi trường nước ngày càng bị ô nhiễm bởi các hợp chất hữu cơ được sử dụng trong quá trình sản xuất. Hầu hết các chất hữu cơ gây ô nhiễm này đều tồn tại bền vững trong môi trường nước, có độc tính cao, làm hủy hoại môi trường sống của vi sinh vật xung quanh và có khả năng gây bệnh ưng thư cho con người tiếp xúc với nguồn nước ô nhiễm. Do đó việc xử lí các thành phần gây ô nhiễm này tới hàm lượng cho phép là điều bắt buộc trước khi nguồn nước thải được đưa lại vào tự nhiên. Các phương pháp truyền thống thường được sử dụng trong việc xử lý các hợp chất hữu cơ độc hại trong môi trường nước là phương pháp sinh học, keo tụ, hấp phụ trao đổi ion, lọc màng. Tuy nhiên, nhiều quan điểm cho rằng những phương pháp này thường không hiệu quả, bởi vì tốc độ xử lý khá chậm và không phân hủy hoàn toàn các chất hữu cơ ô nhiễm. Bên cạnh đó, việc triển khai ứng dụng với quy mô lớn thì các phương pháp này đòi hỏi cần có sự đầu tư lớn về cơ sở vật chất. Do vậy, việc nghiên cứu tìm ra một phương pháp hiệu quả, với chi phí thấp để xử lý loại bỏ các chất hữu cơ ô nhiễm từ nước thải mang ý nghĩa khoa học và thực tiễn cao. Phương pháp quang xúc tác là một trong những phương pháp oxi hóa khử được đánh giá có tiềm năng vượt trội so với các phương pháp khác do những ưu việt của nó là đơn giản, chi phí thấp dựa trên việc sử dụng chất bán dẫn quang xúc tác và nguồn sáng để thực hiện sự phân hủy các chất hữu cơ. Đặc biệt nổi trội của phương pháp quang xúc là thân thiện môi trường, có khả năng phân hủy hoàn toàn các chất hữu cơ ô nhiễm thành các chất vô cơ không độc hại như CO2 và H2O. Gần đây, các nhà khoa học đang tập trung nghiên cứu chế tạo và ứng dụng các vật liệu bán dẫn và không độc tính là các sunfua đa thành phần kim loại như CuInSe2, CuGaS2, CuInS2, AgInSe2, AgGaSe2... Loại vật liệu này có Eg tương đối nhỏ nên thể hiện khả năng hấp thụ mạnh ánh sáng khả kiến và nó trở thành 1 vật liệu quang xúc tác được chờ đợi. Trong thực tế, đã có vài công trình nghiên cứu chế tạo các vật liệu như AgIn5S8, AgInS2 cho ứng dụng quang xúc tác. Tác giả D. Chen và cộng sự đã tổng hợp AgIn5S8 bằng phương pháp đồng kết tủa và nghiên cứu hoạt tính quang xúc tác của vật liệu điều chế được. Kết quả cho thấy AgIn5S8 thể hiện hoạt tính quang xúc tác cao cho phản ứng điều chế hiđro từ dung dịch có chứa ion S2- và SO32- dưới điều kiện chiếu sáng ánh sáng khả kiến. Trong một vài nghiên cứu khác, tác giả Z. Luo và cộng sự đã thực hiện tổng hợp AgInS2 và ZnS-AgInS2 bằng phương pháp hóa học và nghiên cứu hoạt tính quang xúc tác của chúng, kết quả nghiên cứu cho thấy cả 2 vật liệu đều thể hiện hoạt tính cao cho phản ứng phân hủy rhodamine B. Tác giả W.J. Zhang và cộng sự đã tổng hợp AgInS2 bằng phương pháp thủy nhiệt và nghiên cứu so sánh hoạt tính quang xúc tác với vật liệu TiO2 pha tạp N, kết quả cho thấy trong vùng ánh sáng khả kiến vật liệu AgInS2 thể hiện hoạt tính vượt trội hơn so với TiO2 pha tạp N. Từ các kết quả trên cho thấy cả 2 vật liệu đều có hoạt tính quang xúc tác cao, tuy nhiên, bên cạnh việc tiếp tục nghiên cứu nâng cao hiệu suất quang xúc tác của các vật liệu thì việc chế tạo ra loại vật liệu mới có hoạt tính quang xúc tác kết hợp được các ưu điểm của cả 2 vật liệu mang ý nghĩa thực tiễn cao. Trên cơ sở đó, chúng tôi đề xuất đề tài “Tổng hợp, nghiên cứu đặc trưng cấu trúc và hoạt tính quang xúc tác của vật liệu nanocompozit AgInS2/AgIn5S8”. 2 Chương 1. TỔNG QUAN 1.1. Giới thiệu về vật liệu quang xúc tác 1.1.1. Vật liệu quang xúc tác Trong những năm gần đây các hợp chất quang xúc tác đã thu hút đáng kể sự quan tâm. Trong những thập kỷ qua khoa học đã có những tiến bộ lớn trong việc thực hiện tổng hợp, kiểm soát các hình thái khác nhau của các dạng vật liệu quang xúc tác, bao gồm các hạt nano, thanh nano, dây nano, ống nano… và đã nghiên cứu được chính xác thành phần, cấu trúc tinh thể, kích thước, hình dạng của các vật liệu nano và có thể điều chỉnh tính chất vật lý và hóa học như mong muốn. Là một trong những chất quang xúc tác quan trọng nhất, AgIn5S8 dự kiến sẽ là một vật liệu có nhiều triển vọng trong lĩnh vực quang điện và quang hóa do năng lượng hoạt hóa trực tiếp Eg nhỏ (1,7 eV) và có hiệu suất hấp thụ cao. Đến nay, đã có nhiều báo cáo về việc điều chế AgIn5S8 cho các thiết bị quang điện tử. Tuy nhiên, quá trình tổng hợp AgIn5S8 chất lượng tốt với kiểm soát hình dạng, kích thước và hoạt tính quang cao chưa đạt được kết quả như mong muốn. Chỉ mới gần đây, bột AgIn5S8 đã thu được thành công trong việc tổng hợp thủy nhiệt lò vi sóng và sử dụng để phân hủy các chất ô nhiễm khi được chiếu sáng trong vùng ánh sáng khả kiến. Phương pháp này có lợi thế là đơn giản, hiệu quả, tiết kiệm thời gian và an toàn. Xét về khả năng quang xúc tác phân hủy Metyl da cam (MO) chẳng thua kém gì so với sử dụng chất xúc tác là xNx – TiO2. Do đó, thông qua các thí nghiệm, cơ chế liên quan đến quá trình quang xúc tác của vật liệu AgIn5S8 đã đuợc đề xuất và thảo luận. 1.1.2. Cơ chế quang xúc tác trên vật liệu bán dẫn Xét về khả năng dẫn điện, các vật liệu rắn thường được chia thành chất dẫn điện, bán dẫn và chất cách điện. Nguyên nhân của sự khác nhau về tính dẫn điện là do chúng khác nhau về cấu trúc vùng năng lượng. Ở kim loại, các mức năng lượng 3 liên tục, các electron hóa trị dễ dàng bị kích thích thành các electron dẫn. Ở chất bán dẫn và chất cách điện, vùng hóa trị (VB) và vùng dẫn (CB) được cách nhau một vùng trống, không có mức năng lượng nào. Vùng năng lượng trống này được gọi là vùng cấm. Năng lượng khác biệt giữa hai vùng VB và CB được gọi là năng lượng vùng cấm (Eg). Khi bị kích thích với năng lượng thích hợp, các electron trên vùng hóa trị có thể nhảy lên vùng dẫn và hình thành một lỗ trống trên vùng hóa trị. Cặp electron dẫn trên vùng dẫn và lỗ trống trên vùng hóa trị là hạt tải điện chính của chất bán dẫn [4]. Trong xúc tác quang, khi chất bán dẫn bị kích thích bởi một photon có năng lượng lớn hơn năng lượng vùng dẫn thì một cặp electron – lỗ trống được hình thành. Thời gian sống của lỗ trống và electron dẫn là rất nhỏ, cỡ nano giây. Sau khi hình thành, cặp electron – lỗ trống có thể trải qua một số quá trình như: tái hợp sinh ra nhiệt; lỗ trống và electron di chuyến đến bề mặt và tương tác với các chất cho và chất nhận electron. Trong các quá trình trên, các quá trình tái hợp làm cho hiệu suất của quá trình xúc tác quang giảm. Quá trình cho nhận electron trên bề mặt chất bán dẫn sẽ hiệu quả hơn nếu các tiểu phân vô cơ hoặc hữu cơ đã được hấp phụ sẵn trên bề mặt. Xác suất và tốc độ của quá trình oxi hóa, khử của các electron và lỗ trống phụ thuộc vào vị trí bờ CB, VB và thế oxi hóa khử của tiểu phân hấp phụ [4]. Hình 1.1. Các quá trình diễn ra trong hạt bán dẫn khi bị chiếu xạ với bước sóng thích hợp. 4 Trong đó: 1. Sự kích thích vùng cấm; 2. Sự tái hợp electron và lỗ trống trong khối; 3. Sự tái hợp electron và lỗ trống trên bề mặt; 4. Sự di chuyển electron trong khối; 5. Electron di chuyển tới bề mặt và tương tác với chất nhận (acceptor); 6. Lỗ trống di chuyển tới bề mặt và tương tác với chất cho; 1.1.3. Các ứng dụng của vật liệu quang xúc tác 1.1.3.1. Xúc tác quang xử lý môi trường. Ứng dụng lớn nhất của vật liệu quang xúc tác đó là xử lý môi trường bị ô nhiễm. Ví dụ như hợp chất TiO2, nhờ vào sự hấp thụ các photon có năng lượng lớn hơn năng lượng vùng cấm của TiO2 mà các electron bị kích thích từ VB lên CB, tạo các cặp electron - lỗ trống. Các phần tử mang điện tích này sẽ di chuyển ra bề mặt để thực hiện phản ứng oxi hóa khử, các lỗ trống có thể tham gia trực tiếp vào phản ứng oxi hóa các chất độc hại, hoặc có thể tham gia vào giai đoạn trung gian tạo thành các gốc tự do hoạt động để tiếp tục oxi hóa các hợp chất hữu cơ bị hấp phụ trên bề mặt chất xúc tác tạo thành sản phẩm cuối cùng là CO2 và nước ít độc hại nhất. Quá trình quang phân hủy này thường bao gồm một hoặc nhiều gốc hoặc các phần tử trung gian như HO●, O2-, H2O2, hoặc O2, cùng đóng vai trò quan trọng trong các phản ứng quang xúc tác. Do đó, TiO2 được sử dụng rất rộng rãi cho quá trình quang phân hủy các chất ô nhiễm khác nhau [8]. Chất quang xúc tác TiO2 còn có thể được sử dụng để diệt khuẩn, như đã tiến hành tiêu diệt vi khuẩn E.coli. 1.1.3.2. Xử lý ion kim loại độc hại ô nhiễm nguồn nước Các chất bán dẫn có hoạt tính quang xúc tác khi bị kích thích bởi ánh sáng thích hợp giải phóng các điện tử hoạt động. Các ion kim loại nặng sẽ bị khử bởi điện tử và kết tủa trên bề mặt vật liệu. Vật liệu bán dẫn quang xúc tác, công nghệ mới hứa hẹn được áp dụng nhiều trong xử lý môi trường. Chất bán dẫn kết hợp 5 với ánh sáng UV đã được dùng để loại các ion kim loại nặng và các hợp chất chứa ion vô cơ. Ion bị khử đến trạng thái ít độc hơn hoặc kim loại từ đó dễ dàng tách được [1,2]. Ví dụ: 2hν + TiO2 → 2e + 2h+ Hg2+(aq) Hg(ads) (Bị hấp phụ lên bề mặt vật liệu) Hg2+(ads) + 2e → Hg(ads) 2H2O 2H+ + 2OH- 2OH- + 2h+ → H2O + 1/2 O2 Rất nhiều ion kim loại nhạy với sự chuyển quang hóa trên bề mặt chất bán dẫn như là Au, Pt, Pd, Ag, Ir, Rh... Đa số chúng đều kết tủa trên bề mặt vật liệu. Ngoài sự khử bằng điện tử, các ion còn bị oxi hóa bởi lỗ trống trên bề mặt tạo oxit. Những chất kết tủa hoặc hấp phụ trên bề mặt được tách ra bằng phương pháp cơ học hoặc hóa học [1,2]. Bảng 1.1. Một số tác nhân oxi hóa và thế điện cực tiêu chuẩn Tác nhân oxi hóa Điện thế oxi hóa (V) HO● 2,80 O3 2,07 H2O2 1,77 HO2 1,70 ClO2 1,50 Cl2 1,36 O2 1,23 1.1.3.3. Điều chế hiđro từ phân hủy nước Quang xúc tác phân hủy nước tạo H2 và O2 thu hút được rất nhiều sự quan tâm của các nhà khoa học. Bởi vì đây là quá trình tái sinh năng lượng và hạn chế được việc phải sử dụng nhiên liệu hóa thạch dẫn đến sự phát thải khí CO2. 6 Hình 1.2. Cơ chế quang xúc tác TiO2 tách nước cho sản xuất hiđro Việc sản xuất H2 bằng chất quang xúc tác TiO2 được thể hiện trong hình 1.2. Về mặt lý thuyết, tất cả các loại chất bán dẫn đáp ứng các yêu cầu nói trên đều có thể được sử dụng như một chất xúc tác quang để sản xuất H2. Tuy nhiên, hầu hết các chất bán dẫn, chẳng hạn như CdS và SiC tạo ra ăn mòn quang điện hóa, không phù hợp để tách H2O. Với hoạt tính xúc tác mạnh, ổn định hóa học cao và thời gian tồn tại lâu của cặp điện tử - lỗ trống, TiO2 đã là một chất xúc tác quang được sử dụng rộng rãi. Hiện nay, hiệu suất chuyển đổi từ năng lượng mặt trời để sản xuất H2 bằng quang xúc tác TiO2 tách nước vẫn còn thấp, chủ yếu là vì các lý do sau: Tái tổ hợp của cặp điện tử - lỗ trống kích thích quang: điện tử trong vùng CB có thể tái tổ hợp với lỗ trống trong vùng VB và giải phóng năng lượng dưới dạng sinh ra nhiệt hay photon. Xảy ra phản ứng ngược: Phân tách nước thành hiđro và oxi là một quá trình có năng lượng ngày càng tăng, do đó phản ứng ngược (tái tổ hợp của hiđro và oxi vào trong nước) dễ dàng xảy ra. Không có khả năng sử dụng ánh sáng nhìn thấy: Độ rộng vùng cấm của TiO2 là khoảng 3,2eV và chỉ có ánh sáng UV có thể được sử dụng cho sản xuất hiđro. 7 Để giải quyết những vấn đề trên và mục tiêu sử dụng ánh sáng mặt trời trong các phản ứng quang xúc tác sản xuất hiđro có tính khả thi, những nỗ lực liên tục được thực hiện để thay đổi trong các cấu trúc của vật liệu TiO2 nhằm mở rộng khả năng quang xúc tác của vật liệu này sang vùng ánh nhìn thấy. Nhiều tác giả đã thử nghiệm bằng cách pha tạp các ion kim loại, ion phi kim,... họ đã chứng minh được điều đó có ảnh hưởng hiệu quả đến việc sản xuất hiđro. 1.1.3.4. Chế tạo các loại sơn quang xúc tác Bên cạnh việc việc sử dụng các vật liệu xử lý ô nhiễm môi trường nước, điều chế hidro từ phản ứng phân hủy nước… thì vật liệu quang xúc tác còn được sử dụng để chế tạo các loại sơn quang xúc tác. Ví dụ như đối với vật liệu TiO2 được sử dụng trong sản xuất sơn tự làm sạch, tên chính xác của loại này là sơn quang xúc tác TiO2. Thực chất sơn là một dạng dung dịch chứa vô số các tinh thể TiO2. Do tinh thể TiO2 có thể lơ lửng trong dung dịch mà không lắng đọng nên còn được gọi là sơn huyền phù TiO2. Khi được phun lên tường, kính, gạch, sơn sẽ tự tạo ra một lớp màng mỏng bám chắc vào bề mặt. Nguyên lý hoạt động của loại sơn trên như sau: Sau khi các vật liệu được đưa vào sử dụng, dưới tác dụng của ánh sáng mặt trời, oxi và nước trong không khí, TiO2 sẽ hoạt động như một chất xúc tác để phân huỷ bụi, rêu, mốc, khí độc hại, hầu hết các chất hữu cơ bám trên bề mặt vật liệu thành H2O và CO2. TiO2 không bị tiêu hao trong thời gian sử dụng do nó là chất xúc tác không tham gia vào quá trình phân huỷ. Cơ chế của hiện tượng này có liên quan đến sự quang - oxi hoá các chất gây ô nhiễm trong nước bởi TiO2. Các chất hữu cơ béo, rêu, mốc,... bám chặt vào sơn có thể bị oxi hoá bằng cặp điện tử - lỗ trống được hình thành khi các hạt nano TiO2 hấp thụ ánh sáng và như vậy chúng được làm sạch khỏi màng sơn. Điều gây ngạc nhiên là chính lớp sơn không bị tấn công bởi các cặp oxi hoá - khử mạnh mẽ này. Người ta phát hiện ra rằng, chúng có tuổi thọ không kém gì sơn không được biến tính bằng các hạt nano TiO2. 8 1.2. Tổng quan tình hình nghiên cứu, ứng dụng vật liệu quang xúc tác Trong 3 thập kỷ qua, các nhà khoa học tập trung nghiên cứu rất nhiều về các chất bán dẫn quang xúc tác là các oxit kim loại chuyển tiếp như TiO2, ZnO, ZrO2, SiO2, V2O5, Nb2O5, SnO2, WO3, Fe2O3, SrTiO3, FeTiO3, LiTaO3 …Trong số các oxit bán dẫn đó thì TiO2 là chất quang xúc tác được nghiên cứu rộng rãi nhất do có ưu điểm là có hoạt tính quang xúc tác tương đối cao, giá thành rẻ, ổn định, bền hóa học, không độc hại nên là một triển vọng cho sự áp dụng quang xúc tác trong lĩnh vực xử lý môi trường. Tuy nhiên, vấn đề hạn chế của vật liệu này là do năng lượng vùng cấm tương đối rộng (Eg =3,2 eV) nên chúng chỉ thể hiện hoạt tính mạnh trong vùng ánh sáng tử ngoại (chỉ chiếm 4% trong nguồn ánh sáng mặt trời). Điều đó gây hạn chế cho việc ứng dụng trong thực tế với mục đích lợi dụng nguồn ánh sáng mặt trời. Để khắc phục hạn chế này, các nhà khoa học đã tập trung nghiên cứu để nâng cao hiệu suất quang xúc tác trong vùng ánh sáng khả kiến bằng cách như pha tạp chúng với các nguyên tố kim loại, phi kim; tạo hợp chất composites với chất bán dẫn khác có năng lượng vùng cấm nhỏ hơn hoặc tăng nhạy bằng các chất hoạt động mạnh trong sáng vùng khả kiến [14,24]. Trong đó, pha tạp TiO2 với nguyên tố khác được quan tâm nghiên cứu nhiều nhất. Hằng năm, có hằng trăm công trình nghiên cứu liên quan đến lĩnh vực này được công bố trên các tạp chí uy tín trên thế giới. Nghiên cứu chế tạo và ứng dụng của vật liệu TiO2 pha tạp với các kim loại như Fe, Co, Ni, Cr, V, Mg, Ag, Mo, W, Cu đã được thực hiện bởi nhiều tác giả [16,21]. Tác giả Jina Choi, et al [9] đã nghiên cứu ảnh hưởng của việc đơn pha tạp của 13 kim loại Ag, Rb, Ni, Co, Cu, V, Ru, Fe, Os, V, La, Pt, Cr đến hoạt tính quang xúc tác của TiO2 phân hủy methylene blue. Các kết quả cho thấy việc pha tạp với hàm lượng thích hợp của kim loại vào mạng tinh thể TiO2 đã làm tăng hoạt tính quang xúc tác của TiO2 trong vùng ánh sáng nhìn thấy. Việc pha tạp các phi kim N, F, C, S trong tinh thể TiO2 cũng được nghiên cứu bởi nhiều tác giả, kết quả cho thấy pha tạp TiO2 có thể làm chuyển 9
- Xem thêm -

Tài liệu liên quan