Đăng ký Đăng nhập
Trang chủ Tích chấp suy rộng đối với các phép biến đổi tích phân fourier sine fourier cosi...

Tài liệu Tích chấp suy rộng đối với các phép biến đổi tích phân fourier sine fourier cosine và ứng dụng

.PDF
63
3
98

Mô tả:

.. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC --------------------------------- Nguyễn Văn Sang TÍCH CHẬP SUY RỘNG ĐỐI VỚI CÁC PHÉP BIẾN ĐỔI TÍCH PHÂN FOURIER SINE, FOURIER COSINE VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên- 2011 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC --------------------------------- Nguyễn Văn Sang TÍCH CHẬP SUY RỘNG ĐỐI VỚI CÁC PHÉP BIẾN ĐỔI TÍCH PHÂN FOURIER SINE, FOURIER COSINE VÀ ỨNG DỤNG Chuyên ngành: Toán ứng dụng Mã số: 60.46.36 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN MINH KHOA Thái Nguyên- 2011 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn LỜI CẢM ƠN Luận văn được hoàn thành dưới sự quan tâm và hướng dẫn tận tình của TS. Nguyễn Minh Khoa. Nhân dịp này, tôi xin gửi tới thầy lời cảm ơn chân thành và sâu sắc nhất. Tôi xin cảm ơn các thầy, các cô công tác tại khoa Toán - trường Đại học Khoa Học - Đại học Thái Nguyên, khoa Công Nghệ Thông Tin - Đại học Thái Nguyên, Viện toán học Việt Nam về sự nhiệt tình giảng dạy trong quá trình tôi học tập. Tôi cũng xin bày tỏ lòng biết ơn tới các thầy, các cô trong Ban giám hiệu, Tổ Toán - Tin Trường Trung học phổ thông Ba Bể, Sở Giáo dục và Đào tạo tỉnh Bắc Kạn đã tạo điều kiện giúp đỡ tôi trong quá trình học tập, nghiên cứu và hoàn thiện luận văn cao học. Cuối cùng, tôi xin chân thành cảm ơn gia đình, các anh chị em học viên lớp cao học toán K3A và bạn bè đồng nghiệp động viên và khích tôi trong quá trình học tập, nghiên cứu và làm luận văn. Thái Nguyên, ngày .....tháng 08 năm 2011 Tác giả luận văn Nguyễn Văn Sang 1Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 http://www.lrc-tnu.edu.vn Mục lục Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Danh mục ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chương 1. Các phép biến đổi tích phân Fourier, Fourier cosine và Fourier sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1. Phép biến đổi tích phân Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.1. Định nghĩa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2. Các tính chất của biến đổi Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 1.2. Phép biến đổi tích phân Fourier cosine và Fourier sine . . . . . . . . . . 13 1.2.1. Phép biến đổi tích phân Fourier cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2. Phép biến đổi tích phân Fourier sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3. Các tính chất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 15 16 Chương 2. Tích chập suy rộng đối với hai phép biến đổi tích phân . . . . . 19 2.1. Tích chập suy rộng với hàm trọng γ(y) = sin(ay) đối với các phép biến đổi tích phân Fourier cosine và Fourier sine-3. . . . . . . . . . . . . . . . . . . 20 2.1.1. Định nghĩa và các tính chất của tích chập suy rộng . . . . . . . . . . . . . . . . . . . 20 2.2. Tích chập suy rộng với hàm trọng γ(y) = sin(ay)đối với các phép biến đổi tích phân Fourier sine và Fourier cosine-4. . . . . . . . . . . . . . . . . . . 31 2.2.1. Định nghĩa và các tính chất của tích chập suy rộng . . . . . . . . . . . . . . . . . . . 31 Chương 3. Một số ứng dụng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.0. Định lý Wiener-Lévy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1. Giải phương trình tích phân kiểu Toeplizt-Halken . . . . . . . . . . . . . . 41 3.1.1. Xét phương trình tích phân ứng với tích chập (2.1.1) . . . . . . . . . . . . . . . . . 3.1.2. Xét phương trình tích phân ứng với tích chập (2.2.1) . . . . . . . . . . . . . . . . . 2Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 41 42 http://www.lrc-tnu.edu.vn 3.2. Giải hệ phương trình tích phân dạng chập . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1. Xét hệ phương trình tích phân dạng chập ứng với tích chập (2.1.1) . . . . . 3.2.2. Xét hệ phương trình tích phân ứng với tích chập (2.2.1) . . . . . . . . . . . . . . 44 47 3.3. Giải gần đúng phương trình tích phân dạng chập . . . . . . . . . . . . . . . 50 3.3.1. Tích phân kỳ dị, tích phân dạng Cauchy, các công thức Sokhotski . . . . . 3.3.2. Lớp hàm thỏa mãn điều kiện Hölder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3. Bài toán bờ Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.4. Giải gần đúng phương trình tích phân dạng chập . . . . . . . . . . . . . . . . . . . . 50 51 52 53 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 http://www.lrc-tnu.edu.vn LỜI MỞ ĐẦU Phép biến đổi tích phân được nghiên cứu và phát triển từ rất sớm và nó có vai trò quan quan trọng trong giải tích toán học cũng như một số ngành khoa học tự nhiên khác. Phép biến đổi tích phân là công cụ hiệu quả trong việc giải các bài toán điều kiện đầu, điều kiện biên của phương trình vi phân, phương trình tích phân, phương trình đạo hàm riêng và một số lớp các bài toán Vật lý toán. Cùng với sự phát triển của các phép biến đổi tích phân, tích chập của các phép biến đổi tích phân được xuất hiện vào khoảng đầu thế kỷ 20. Các tích chập được nghiên cứu đầu tiên là tích chập của phép biến đổi Fourier [15], [16], tích chập của phép biến đổi Laplace [8], [ 16], tích chập của phép biến đổi Mellin [8] và sau đó là sự ra đời của các tích chập của các phép biến đổi Hilbert [16], phép biến đổi Hankel [17], [18], phép biến đổi Kontorovich-Lebedev [17], phép biến đổi Stieltjes [7] và tích chập của phép biến đổi Fourier cosine [8], [15]. Các tích chập này có nhiều ứng dụng trong tính toán tích phân, tính tổng của một chuỗi, các bài toán Vật lý toán, phương trình vi phân, phương trình đạo hàm riêng, phương trình và hệ phương trình tích phân, lý thuyết xác suất và xử lý ảnh. Phép biến đổi Laplace L được xác định [8] Z+∞ e−yx f (x)dx, y ∈ C. (L f )(y) = (0.1) 0 Tích chập của hai hàm f và g đối với phép biến đổi tích phân Laplace L được xác định theo [7] ( f ∗ g)(x) = Zx L f (x − t)g(t)dt, x > 0. (0.2) 0 và thỏa mãn đẳng thức nhân tử hóa sau L( f ∗ g)(y) = (L f )(y)(Lg)(y), ∀y > 0. L (0.3) Tuy nhiên trước những năm 50 của thế kỷ trước, các tích chập đã được biết là các tích chập không có hàm trọng và nhiều phép biến đổi tích phân chưa xác định được tích chập. Số lượng các tích chập đối với các phép biến đổi tích phân rất hạn chế và gần như không phát triển được. Những bế tắc này được khai thông 4Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 http://www.lrc-tnu.edu.vn khi một lớp tích chập mới mở rộng hơn, tích chập có hàm trọng xuất hiện. Năm 1958 lần đầu tiên tích chập với hàm trọng ra đời. Đó là tích chập với hàm trọng π 1 γ0 (x) = [Γ(p + ix + )]−2 đối với phép biến đổi tích phân Mehler Fox [20] xsh(πx) 2 được tìm ra bởi Vilenkin Y. Ya. Dẫu vậy phải gần 10 năm sau, năm 1967 Kakichev V. A.[17] mới tìm ra phương pháp kiến thiết để định nghĩa tích chập của phép biến đổi tích phân K với hàm trọng γ(x) dựa trên đẳng thức nhân tử hóa γ K( f ∗ g)(x) = γ(x)(K f )(x)(Kg)(x). Với ý tưởng và kỹ thuật của phương pháp này các nhà toán học đã tìm ra được một số tích chập đối với các phép biến đổi tích phân khác. Các tích chập của hàm trọng được tìm ra chẳng hạn như tích chập đối với các phép biến đổi tích phân Hankel [17], [19], Meijer [19], Kontorovich Lebedev [17], Fourier sine [17], Somemerfeld [19]. Nhờ tích chập với hàm trọng ra đời mà bức tranh về tích chập đối với các phép biến đổi tích phân được phong phú hơn. Tuy nhiên với sự bổ sung của lớp tích chập suy rộng, nhiều điều lý thú trong lĩnh vực này mới được phát hiện, mở rộng và phát triển. Khởi xướng việc xây dựng tích chập của hai hàm đối với các phép biến đổi tích phân là Chuchill R. V. Năm 1941, lần đầu tiên tích chập suy rộng của hai hàm đối với hai phép biến đổi tích phân khác nhau được công bố. Đó là tích chập suy rộng của hai hàm f và g đối với các phép biến đổi tích phân Fourier sine và Fourier cosine [15] 1 ( f ∗ g)(x) = √ 1 2π Z+∞ f (y)[g(|x − y|) − g(x + y)]dy, x > 0. (0.4) 0 với đẳng thức nhân tử hóa Fs ( f ∗ g)(y) = (Fs f )(y)(Fc g)(y), ∀y > 0. 1 (0.5) Nhưng tới tận những năm 90 của thế kỷ trước, một vài trường hợp của tích chập suy rộng đối với các phép biến đổi tích phân mới được công bố. Năm 1998, Kakichev V.A và Nguyễn Xuân Thảo đã đưa ra phương pháp thiết kế để xác định tích chập suy rộng đối với ba phép biến đổi tích phân bất kỳ với hàm trọng γ(y) mà đối với chúng luôn có đẳng thức nhân tử hóa γ K1 ( f ∗ g)(y) = γ(y)(K2 f )(y)(K3 f )(y). 5Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 (0.6) http://www.lrc-tnu.edu.vn Tư tưởng và kỹ thuật của phương pháp này mở đường cho một số tích chập suy rộng với hàm trọng của hai phép biến đổi tích phân. Một số tích chập mới tiếp tục được xuất hiện. Chẳng hạn như tích chập suy rộng đối với phép biến đổi tích phân Fourier cosine và Fourier sine được xác định bởi 1 ( f ∗ g)(x) = √ 2 2π Z+∞ f (y)[sign(y − x)g(|y − x|) + g(y + x)]dy, x > 0. (0.7) 0 với đẳng thức nhân tử hóa Fc ( f ∗ g)(y) = (Fs f )(y)(Fs g)(y), ∀y > 0. 2 (0.8) Như ta đã biết, các tích chập đóng vai trò quan trọng trong lý thuyết các phép biến đổi tích phân và đang được các nhà toán học quan tâm nghiên cứu.Việc xây dựng và nghiên cứu các tích chập suy rộng thực sự có ý nghĩa khoa học trong lĩnh vực lý thuyết tích chập, phương trình và hệ phương trình tích phân. Vì vậy chúng tôi đã chọn hướng nghiên cứu luận văn là xây dựng và nghiên cứu một số tích chập suy rộng đối với hai phép biến đổi tích phân Fourier cosine và Fourier sine. Qua đây chúng tôi cũng đã ứng dụng thành công vào việc giải một số lớp phương trình tích phân, hệ phương trình tích phân dạng chập và nghiên cứu giải gần đúng phương trình tích phân dạng chập. Bố cục của luận văn ngoài phần mở đầu và kết luận gồm có ba chương. Chương 1. Chúng tôi nghiên cứu ba phép biên đổi tích phân Fourier, Fourier cosine và Fourier sine. Các tính chất của ba phép biến đổi tích phân nói trên được đề cập trong chương này, kèm theo đó là một số ví dụ minh họa cho các tính chất đó. Chương 2. Xây dựng hai tích chập mới với hàm trọng đối với hai phép biến đổi tích phân đã nói trong Chương 1 là phép biến đổi tích phân Fourier cosine và Fourier sine. Các tích chập mới đã được xây dựng trong chương này là: 2 tích chập suy rộng với hàm trọng γ(y) = sin(ay) đối với hai phép biến đổi tích phân Fourier cosine và Fourier sine. Chương 3. Chúng tôi tập trung vào việc ứng dụng hai tích chập suy rộng đã xây dựng được ở Chương 2 để giải một số lớp phương trình tích phân kiểu ToepliztHankel, hệ phương trình tích phân dạng chập. Ngoài ra chúng tôi còn nghiên cứu việc giải gần đúng phương trình tích phân dạng chập. 6Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 http://www.lrc-tnu.edu.vn Danh mục ký hiệu R C ∀x L(R) : Tập các số thực. : Tập các số phức. : Với mọi x. : Tập hợp tất cả các hàm f xác định trên R sao cho: +∞ R | f (x)|dx < +∞. −∞ L(R+ ) : Tập hợp tất cả các hàm f xác định trên (0, +∞) sao cho: +∞ R | f (x)|dx < +∞. 0 L2 (R) : Tập hợp tất cả các hàm f xác định trên R sao cho: +∞ R f 2 (x)dx < +∞. −∞ L(R+ , ex ) : Tập hợp tất cả các hàm f xác định trên (0, +∞) sao cho: +∞ R ex | f (x)|dx < +∞. 0 C(R) : Tập hợp tất cả các hàm f liên tục trên R sao cho: k f k = sup| f (t)| < +∞. t∈R f0 f 00 f 000 f (n) : Đạo hàm của hàm f. : Đạo hàm cấp 2 của hàm f. : Đạo hàm cấp 3 của hàm f. : Đạo hàm cấp n của hàm f. 7Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 http://www.lrc-tnu.edu.vn Chương 1 Các phép biến đổi tích phân Fourier, Fourier cosine và Fourier sine Thông qua các phép biến đổi tích phân ta có thể xây dựng được đại số với các phép toán nhân chập tương ứng. Trong chương này chúng tôi nghiên cứu ba phép biến đổi tích phân. Đó là phép biến đổi tích phân Fourier, phép biến đổi tích phân Fourier cosine và Fourier sine. Nội dung của chương được trình bày như sau Mục 1.1 Trình bày về phép biến đổi tích phân Fourier và một số tính chất của nó. Mục 1.2 Trình bày về phép biến đổi tích phân Fourier cosine, Fourier sine và một số tính chất của chúng. Tài liệu tham khảo chính trong chương này là [1]. 8Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 http://www.lrc-tnu.edu.vn 1.1. Phép biến đổi tích phân Fourier 1.1.1. Định nghĩa Định nghĩa 1.1.1. Biến đổi Fourier F của hàm thực (hoặc phức) f của biến thực x được ký hiệu là f˜(y) hoặc F( f ) và được định nghĩa bởi 1 f˜(y) = (F f )(y) = √ 2π Z+∞ f (x)e−iyx dx, y ∈ R. (1.1.1) −∞ Biến đổi Fourier ngược của f˜(y) là 1 f (x) = (F −1 f˜)(x) = √ 2π Z+∞ f˜(y)eiyx dy, x ∈ R. (1.1.2) −∞ Quá trình nhận được (F f )(y) từ f (x) đã cho gọi là phép biến đổi Fourier hoặc tắt là biến đổi Fourier. Người ta chứng minh được điều kiện đủ tồn tại biến đổi Fourier sau đây Định lý 1.1.1. Giả sử f (x) liên tục từng khúc trên mọi đoạn hữu hạn và khả tích tuyệt đối trên R. Khi đó sẽ tồn tại biến đổi Fourier (1.1.1) của f (x). Định nghĩa 1.1.2. Tích chập đối với phép biến đổi Fourier F của hai hàm f và g được xác định như sau 1 ( f ∗ g)(x) = √ F 2π 1.1.2. Z+∞ f (x − y)g(y)dy, x ∈ R. (1.1.3) −∞ Các tính chất của biến đổi Fourier Mệnh đề 1.1.1. Giả sử f thuộc L(R), khi đó (F f )(y) thuộc C(R). R 1 +∞ Chứng minh. Ta có f ∈ L(R) : k f k = √ | f (t)|dt. 2π −∞ R 1 +∞ |(F f )(y)| ≤ √ | f (t)|dt = k f k và do đó tồn tại 2π −∞ k(F f )k = sup|(F f )(y)|. y∈R 9Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 http://www.lrc-tnu.edu.vn Nếu h ∈ R đủ nhỏ và T > 0 thì: R −ihy 1 +∞ |e − 1|| f (y)|dy |(F f )(y + h) − (F f )(y)| ≤ √ 2π −∞ 1 ≤√ 2π ZT |e −ihy 2 − 1|| f (y)|dy + √ [ 2π Z−T | f (y)|dy + −∞ −T Z+∞ | f (y)|dy] T Vì |e−ihy − 1| trở nên rất nhỏ nếu h đủ bé và hai tích phân sau trở nên rất nhỏ nếu T đủ lớn. Vì vậy ta có (F f ) ∈ C. Phép biến đổi F rõ ràng là tuyến tính. Từ k(F f ) − (F fn )k = sup|F( f − fn )(τ)| ≤ k f − fn k τ∈R ta nhận được tính liên tục của (F f ).  Ví dụ 1.1.1. Nếu f ∈ L(R) thì (F f ) ∈ C nhưng (F f ) ∈ / L(R). Thật vậy cho  1 nếu |t| ≤ 1 f (x) = 0 nếu |t| > 1 rõ ràng f ∈ L(R), nhưng 1 (F f )(y) = √ 2π Z1 −1 1 2 e−iyt dt = √ . sin y 2π y không thuộc L(R). Mệnh đề 1.1.2. Nếu f ∈ L(R) thì (F f )(y) → 0 khi y → ±∞. Chứng minh. Giả sử  f là hàm đặc trưng của khoảng [a, b] ⊂ R, tức là 1 , t ∈ [a, b] f (t) = χ[a,b] (t) = . Khi đó ta có 0 , t ∈ R \ [a, b] 1 (F f )(y) = √ 2π Zb a 1 e−iby − e−iat e−iyt dt = √ i . y 2π Như vậy ta sẽ có (F f )(y) → 0 khi y → ±∞. 10Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10  http://www.lrc-tnu.edu.vn Mệnh đề 1.1.3. (Tuyến tính). Nếu f (x) và g(x) có biến đổi Fourier thì với các số thực α, β bất kỳ ta có F(α f + β g)(y) = α(F f )(y) + β (Fg)(y), y ∈ R. Chứng minh. Từ định nghĩa ta dễ dàng suy ra điều phải chứng minh. (1.1.4)  Mệnh đề 1.1.4. (Biến đổi của đạo hàm). Giả sử f(x) liên tục trên R và có f 0 (x) là hàm khả tích tuyệt đối trên R. Giả sử f (x) → 0 khi |x| → +∞. Khi đó (F f 0 )(y) = iy(F f )(y), y ∈ R. (1.1.5) Chứng minh. Tích phân từng phần và sử dụng giả thiết f (x) → 0 khi |x| → +∞, ta được 1 (F f 0 )(y) = √ 2π Z+∞ f 0 (x)e−iyx dx −∞ Z+∞ +∞ i 1 h −iyx −iyx =√ f (x)e − (−iy) f (x)e dx −∞ 2π −∞ = 0 + iyF( f )(y).  Chú ý 1.1.1. Giả sử các giả thiết có thể áp dụng liên tiếp Mệnh đề 1.1.2 thỏa. Khi đó áp dụng lần thứ hai ta có (F f 00 )(y) = iy(F f 0 )(y) = (iy)2 (F f )(y) = −y2 (F f )(y). Tương tự, ta có biến đổi đạo hàm cấp cao hơn, chẳng hạn (F f 000 )(y) = iy(F f 00 )(y) = −iy3 (F f )(y), (F f (n) )(y) = in yn (F f )(y). (1.1.6) Để áp dụng công thức (1.1.6), ta xét ví dụ sau 1 2 2 2 Ví dụ 1.1.2. Biết F(e−x ) = √ e−y /4 từ bảng biến đổi Fourier. Tính F(x2 e−x ). 2 Ta có 2 2 2 2 (e−x )00 = (−2xe−x )0 = −2e−x + 4x2 e−x 11Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 http://www.lrc-tnu.edu.vn Do (1.1.4) và (1.1.6) ta được 2 2 2 2 i2 y2 F(e−x ) = F(e−x )00 = −2F(e−x ) + 4F(x2 e−x ). Từ đây ta rút ra được 2 2 2 1 2 − y2 F(x2 e−x ) = [2 − y2 ]F(e−x ) = √ e−y /4 . 4 4 2 Mệnh đề 1.1.5. (Biến đổi của tích chập). Giả sử f (x) và g(x) là các hàm liên tục từng khúc, giới nội và khả tích tuyện đối trên R. Khi đó F( f ∗ g)(y) = (F f )(y)(Fg)(y), y ∈ R. (1.1.7) F Chứng minh. Từ (1.1) và (1.3) ta có 1 F( f ∗ g)(y) = F 2π = 1 2π Z+∞ −ixy e Z+∞ dx −∞ Z+∞ −∞ Z+∞ g(u)du −∞ f (x − u)g(u)du f (x − u)e−ixy dx −∞ Với phép đổi biến x − u = v ta nhận được 1 F( f ∗ g)(y) = F 2π Z+∞ Z+∞ g(u)du −∞ 1 =√ 2π f (v)e−iy(u+v) dv −∞ Z+∞ g(u)e −∞ −iyu 1 du. √ 2π Z+∞ f (v)e−iyv dv = F( f )(y).F(g)(y). −∞ Suy ra điều phải chứng minh.  Nhận xét. Công thức này có nhiều ứng dụng trong khi giải một số phương trình đạo hàm riêng. 12Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 http://www.lrc-tnu.edu.vn 1.2. Phép biến đổi tích phân Fourier cosine và Fourier sine 1.2.1. Phép biến đổi tích phân Fourier cosine Định nghĩa 1.2.1. Biến đổi Fourier cosine của f (x) được ký hiệu là f˜c hoặc Fc ( f ) và được xác định bởi công thức r f˜c (y) = Fc ( f )(y) = Z+∞ 2 π f (x) cos(yx)dx, y ∈ R. (1.2.1) 0 Biến đổi Fourier cosine ngược của f˜c là r f (x) = Fc−1 ( f˜c )(x) = 2 π Z+∞ f˜c (y) cos(yx)dy, x ∈ R. (1.2.2) 0 Quá trình nhận được hàm f˜c từ hàm f đã cho được gọi là phép biến đổi Fourier cosine hay gọi tắt là biến đổi Fourier cosine. Định nghĩa 1.2.2. Tích chập đối với phép biến đổi Fourier cosine của hai hàm f , g ∈ L(R+ ) được xác định như sau 1 ( f ∗ g)(x) = √ Fc 2π Z+∞ f (y)[g(|x − y|) + g(x + y)]dy, x > 0. (1.2.3) 0 Mệnh đề 1.2.1. Cho f , g ∈ L(R+ ) khi đó tích chập (1.2.3) đối với phép biến đổi Fourier cosine thuộc L(R+ ) và thỏa mãn đẳng thức nhân tử hóa sau Fc ( f ∗ g)(y) = (Fc f )(y)(Fc g)(y), ∀y > 0. (1.2.4) Fc Chứng minh. Từ (1.2.3) và giả thiết f , g ∈ L(R+ ), ta có Z+∞ Z+∞Z+∞ 0 0 0 Z+∞ 1 |( f ∗ g)(x)|dx = √ Fc 2π 1 ≤√ 2π | f (y)|.|g(|x − y|) + g(x + y)|dydx Z+∞ h Z+∞ i | f (y)| |g(|x − y|)|dx + |g(x + y)|dx dy. 0 0 0 (1.2.5) 13Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 http://www.lrc-tnu.edu.vn Mặt khác Z+∞ Z+∞ |g(|x − y|)|dx + 0 |g(x + y)|dx Z+∞ 0 Z+∞ −y y Z+∞ Z0 |g(|t|)|dt + = |g(|t|)|dt + = |g(t)|dt |g(|t|)|dt + Z+∞ |g(t)|dt 0 −y y Z+∞ Zy Z+∞ 0 0 |g(|t|)|dt + = |g(|t|)|dt + (1.2.6) |g(t)|dt y Z+∞ |g(t)|dt =2 0 Từ (1.2.5) và (1.2.6) ta đi đến Z+∞ r |( f ∗ g)(x)|dx ≤ Fc 0 2 π Z+∞ Z+∞ 0 0 | f (t)|dt |g(t)|dt < +∞. Vì vậy ( f ∗ g)(x) ∈ L(R+ ). Fc Bây giờ ta đi chứng minh đẳng thứ nhân tử hóa (1.2.4). Thật vậy, từ biểu thức về phải của (1.2.4) ta có 2 (Fc f )(y)(Fc g)(y) = π = = 1 π 1 π Z+∞Z+∞ cos(yu) cos(yv) f (u)g(v)dudv 0 0 Z+∞Z+∞ [cos(u + v)y + cos(v − u)y] f (u)g(v)dudv 0 0 Z+∞Z+∞ (1.2.7) cos[(u + v)y] f (u)g(v)dudv 0 + 1 π 0 Z+∞Z+∞ cos[(v − u)y] f (u)g(v)dudv 0 0 14Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14 http://www.lrc-tnu.edu.vn Với phép đổi biến u = x, u + v = t ta nhận được Z+∞Z+∞ Z+∞Z+∞ cos(ty) f (x)g(t − x)dxdt cos[(u + v)y] f (u)g(v)dudv = 0 0 Z+∞Z+∞ cos(ty) f (x)g(|x − t|)dxdt + = 0 x 0 0 Z+∞Z0 (1.2.8) cos(ty) f (x)g(|x − t|)dxdt. x 0 Tương tự Z+∞Z+∞ cos[(v − u)y] f (u)g(v)dudv = 0 cos(ty) f (x)g(t + x)dxdt 0 −x Z+∞Z0 0 Z+∞Z+∞ = Z+∞Z+∞ cos(ty) f (x)g(x + t)dxdt + 0 cos(ty) f (x)g(|x + t|)dxdt. 0 −x 0 (1.2.9) Hơn nữa ta lại có Z+∞Z0 cos(ty) f (x)g(|x + t|)dxdt = − 0 −x Z+∞Z0 cos(ty) f (x)g(|x − t|)dxdt. (1.2.10) x 0 Từ (1.2.7), (1.2.8), (1.2.9) và (1.2.10) ta rút ra được 1 (Fc f )(y)(Fc g)(y) = π r = Z+∞Z+∞ 0 2 π f (x)[g(|x − t|) + g(x + t)] cos(ty)dxdt 0 +∞ Z h 0 1 √ 2π Z+∞ i f (x)[g(|x − t|) + g(x + t)]dx cos(ty)dt 0 = Fc ( f ∗ g)(y). Fc Định lý được chứng minh. 1.2.2.  Phép biến đổi tích phân Fourier sine Định nghĩa 1.2.3. Biến đổi Fourier sine của f (x) được ký hiệu là f˜s hoặc Fs ( f ) và được xác định bởi công thức r Z+∞ 2 f˜s (y) = Fs ( f )(y) = f (x) sin yxdx, y ∈ R. (1.2.11) π 0 15Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 http://www.lrc-tnu.edu.vn Biến đổi Fourier sine ngược của f˜s là r f (x) = Fs− 1( f˜s )(x) = 2 π Z+∞ f˜s (y) sin yxdy, x ∈ R. (1.2.12) 0 Quá trình nhận được hàm f˜s từ hàm f đã cho được gọi là phép biến đổi Fourier sine hay gọi tắt là biến đổi Fourier sine. Ví dụ 1.2.1. Tìm biến đổi Fourier cosine và Fourier sine của hàm  x nếu 0a Ta có r Za r h a 1 Za i 2 2 x sin yx − Fc ( f ) = x cos yxdx = sin yxdx π π y y 0 0 0 r h i 2 x a 1 a sin yx + 2 cos yx = π y y 0 0 r h 1 1i 2 a = sin ax + 2 cos ay − 2 . π y y y còn r Za r h a 1 Za i 2 2 x Fs ( f ) = x sin yxdx = − cos yx − cos yxdx π π y y 0 0 0 r h i 2 x a 1 a =− cos yx − 2 sin yx π y y 0 0 r h i 2 a a 1 =− cos ax − − 2 sin ay . π y y y 1.2.3. Các tính chất Mệnh đề 1.2.2. (Tính tuyến tính). Nếu f và g có biến đổi Fourier cosine và Fourier sine, thì với α, β ∈ R, Fc (α f + β g) = αFc ( f ) + β Fc (g), Fs (α f + β g) = αFs ( f ) + β Fs (g). 16Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 http://www.lrc-tnu.edu.vn Chứng minh. Từ định nghĩa dễ dàng suy ra điều phải chứng minh.  Mệnh đề 1.2.3. (Biến đổi đạo hàm). Giả sử f (x) liên tục và khả tích tuyệt đối trên R, f 0 (x) liên tục từng khúc trên mọi đoạn hữu hạn và f (x) → 0 khi x → +∞. Khi đó r 2 0 Fc ( f (x)) = yFs ( f (x)) − f (0), π Fs ( f 0 (x)) = −yFc ( f (x)). Chứng minh. Tích phân từng phần ta được r 0 Fc ( f ) = 2 π Z+∞ f 0 (x) cos yxdx 0 Z+∞ +∞ 2 = [ f (x) cos yx + y f (x) sin yxdx] π 0 0 r 2 =− f (0) + yFs ( f ). π r Công thức thứ hai chứng minh tương tự.  Hệ quả 1.2.1. Giả sử các biến đổi Fourier dưới đây đều tồn tại. Khi đó ta có mối quan hệ sau r 2 0 00 2 f (0), Fc ( f ) = −y Fc ( f ) − π r 2 Fs ( f 00 ) = −y2 Fs ( f ) + y f (0). π Chứng minh. Áp dụng cả hai công thức ở Mệnh đề 1.2.2 ta có r r 2 0 2 0 00 0 2 Fc ( f ) = yFs ( f ) − f (0) = −y Fc ( f ) − f (0), π π r 2 Fs ( f 00 ) = −y2 Fc ( f 0 ) = −y[yFs ( f ) − f (0)]. π Từ đây dẫn đến điều phải chứng minh.  Ví dụ 1.2.2. Tính Fc (e−ax ), a > 0. Ta có f 00 (x) = (e−ax )00 = −a.(e−ax )0 = a2 .e−ax = a2 . f (x). 17Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 http://www.lrc-tnu.edu.vn Do tính tuyến tính và áp dụng Hệ quả 1.2.1 ta có r 00 2 2 a Fc ( f ) = Fc ( f ) = −y Fc ( f ) + a r Biến đổi ta được (a2 + y2 )Fc ( f ) = a r 2 a −ax .( 2 ). Suy ra Fc (e ) = π a + y2 2 . π 2 . π Mệnh đề 1.2.4. Cho f ∈ L(R+ ). Khi đó tồn tại các đạo hàm (Fc f )0 , (Fs f )0 và có các đẳng thức sau: (Fc f )0 (y) = Fs [−t f (t)](y), (Fs f )0 (y) = Fc [t f (t)](y). Chứng minh. Từ Định nghĩa 1.2.1 và Định nghĩa 1.2.3 ta dễ dàng suy ra điều phải chứng minh.  18Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 http://www.lrc-tnu.edu.vn
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất