Đăng ký Đăng nhập
Trang chủ Sự suy giảm trong l2 của nghiệm yếu cho phương trình navier stokes...

Tài liệu Sự suy giảm trong l2 của nghiệm yếu cho phương trình navier stokes

.PDF
54
16
63

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ——————–o0o——————– HOÀNG THÀNH SỰ SUY GIẢM TRONG L2 CỦA NGHIỆM YẾU CHO PHƯƠNG TRÌNH NAVIER-STOKES LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2020 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM ——————–o0o——————– HOÀNG THÀNH SỰ SUY GIẢM TRONG L2 CỦA NGHIỆM YẾU CHO PHƯƠNG TRÌNH NAVIER-STOKES Chuyên ngành: Giải Tích Mã số: 8 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học TS. Đào Quang Khải THÁI NGUYÊN - 2020 Lời cam đoan Tôi xin cam đoan đây là công trình nghiên cứu khoa học độc lập của riêng bản thân tôi dưới sự hướng dẫn khoa học của TS. Đào Quang Khải. Các nội dung nghiên cứu, kết quả trong luận văn này là trung thực và chưa từng công bố dưới bất kỳ hình thức nào trước đây. Ngoài ra, trong luận văn tôi có sử dụng một số kết quả của các tác giả khác đều có trích dẫn và chú thích nguồn gốc. Nếu phát hiện bất kỳ sự gian lận nào tôi xin chịu trách nhiệm về nội dung luận văn của mình. Thái Nguyên, ngày 15 tháng 09 năm 2020 Tác giả Hoàng Thành Xác nhận của khoa chuyên môn Xác nhận của người hướng dẫn TS. Đào Quang Khải i Lời cảm ơn Trong quá trình học tập và nghiên cứu để hoàn thành luận văn tôi đã nhận được sự giúp đỡ nhiệt tình của người hướng dẫn, TS. Đào Quang Khải. Tôi cũng muốn gửi lời cảm ơn bộ môn Giải tích, Khoa Toán, đã tạo mọi điều kiện thuận lợi, hướng dẫn, phản biện để tôi có thể hoàn thành tốt luận văn này. Do thời gian có hạn, bản thân tác giả còn hạn chế nên luận văn có thể có những thiếu sót. Tác giả mong muốn nhận được ý kiến phản hồi, đóng góp và xây dựng của các thầy cô, và các bạn. Tôi xin chân thành cảm ơn! Thái Nguyên, ngày 15 tháng 09 năm 2020 Tác giả Hoàng Thành ii Mục lục Lời cam đoan i Lời cảm ơn ii Mục lục iv Lời mở đầu 1 1 Kiến thức chuẩn bị 4 1.1 Không gian các hàm cơ bản và hàm suy rộng . . . . . . . . . . . . . 4 1.1.1 Một số ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 không gian hàm cơ bản D(Ω) và không gian hàm suy rộng D0 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Không gian hàm cơ bản E(Ω) và không gian hàm suy rộng có giá compact E 0 (Ω) . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 5 8 Không gian các hàm giảm nhanh S(Rn ) và không gian các hàm tăng chậm S 0 (Rn ) . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Tích chập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1 Tích chập giữa các hàm trong Lp (Rn ), 1 ≤ p ≤ ∞ . . . . . . . 13 1.2.2 Tích chập giữa hàm suy rộng và hàm cơ bản . . . . . . . . . 14 1.3 Phép biến đổi Fourier trong S(Rn ) và S 0 (Rn ) . . . . . . . . . . . . . 14 1.4 Không gian Sobolev . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.1 Không gian Sobolev cấp nguyên không âm . . . . . . . . . . 17 1.4.2 Không gian Sobolev cấp thực . . . . . . . . . . . . . . . . . . 18 1.4.3 Không gian Sobolev thuần nhất . . . . . . . . . . . . . . . . . 19 iii 1.5 Một số khái niệm cơ bản về phương trình Navier-Stokes . . . . . . . 20 1.5.1 Phương trình Navier-Stokes . . . . . . . . . . . . . . . . . . . 20 1.5.2 Nghiệm yếu đều của phương trình Navier-Stokes . . . . . . . 22 1.5.3 Nghiệm mềm . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Sự suy giảm trong L2 theo thời gian của nghiệm yếu cho phương trình Navier-Stokes 27 2.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Những lập luận hình thức . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Sự suy giảm của Nghiệm Leray-Hopf . . . . . . . . . . . . . . . . . . 36 Kết luận 46 Tài liệu tham khảo 48 iv Lời mở đầu 1. Lý do chọn đề tài Việc nghiên cứu phương trình Navier-Stokes là rất quan trọng vì nó là phương trình cơ bản nhất của cơ học chất lỏng dùng để mô tả chuyển động của chất lỏng và chất khí. Chúng có thể sử dụng để nghiên cứu thời tiết, thiết kế hình dáng động học của máy bay, ô tô, nghiên cứu chuyển động của máu, phân tích ô nhiễm, dự báo thời tiết, dòng chảy của đại dương và nhiều vấn đề trong khoa học khác. Phương trình Navier-Stokes cũng nhận được sự quan tâm rất lớn về mặt toán học thuần tuý, chúng có vai trò đặc biệt quan trọng trong sự phát triển của lý thuyết phương trình đạo hàm riêng hiện đại. Mặc dù lý thuyết phương trình đạo hàm riêng đã trải qua sự phát triển to lớn trong thế kỷ 20 nhưng một số vấn đề cơ bản của phương trình Navier-Stokes vẫn chưa được giải quyết, đó là sự tồn tại và duy nhất của nghiệm cũng như dáng điệu của nghiệm. Cụ thể là cho giá trị ở thời điểm ban đầu trơn thì phương trình Navier-Stokes có tiếp tục trơn và duy nhất theo tất cả thời gian về sau không, câu hỏi này được nêu ra vào năm 1934 bởi J. Leray và vẫn chưa có câu trả lời khẳng định cũng như phủ định. Tính duy nhất của nghiệm yếu bài toán vấn còn là một câu hỏi mở. 2. Nội dung đề tài Mục đích của đề tài là nghiên cứu dáng điệu của nghiệm của bài toán Cauchy cho phương trình Navier-Stokes không nén được trong không gian ba 1 chiều     ut = ∆u − u · ∇u − ∇p + f ∇·u=0    u(x, 0) = u (x) 0 trong đó f được giả thiết là tiến tới 0 khi t → ∞. Luận văn này sẽ trình bày một vài kết quả nghiên cứu về sự suy giảm của nghiệm yếu Leray-Hopf trong L2 theo thời gian khi thời gian tiến ra vô cùng, dựa trên bài báo của Maria Elena Schonbek [2]. 2 Luận văn gồm lời mở đầu, hai chương, kết luận và tài liệu tham khảo. Cụ thể là: Chương 1: Kiến thức chuẩn bị Chương 2: Sự suy giảm trong L2 của nghiệm yếu cho phương trình Navier-Stokes 3 Chương 1 Kiến thức chuẩn bị Các mục 1.1, 1.2 và 1.3 chương này chúng tôi tham khảo tài liệu [1], còn các mục 1.4 và 1.5 chúng tôi tham khảo các tài liệu [3] và [5]. 1.1 Không gian các hàm cơ bản và hàm suy rộng 1.1.1 Một số ký hiệu Cho Ω là một tập mở trong Rn ta định nghĩa như sau: C k (Ω) = {u : Ω → C|u khả vi liên tục đến cấp k}, C0k (Ω) = {u ∈ C k (Ω)| supp u là tập compact}, k ∞ ∞ k C ∞ (Ω) = ∩∞ k=1 C (Ω), C0 (Ω) = ∩k=1 C0 (Ω), trong đó supp u = {x ∈ Ω|u(x) 6= 0}. Ký hiệu: Lp (Ω) = {u : Ω → C|u đo được, R Ω |u(x)|p dx < ∞} với 1 ≤ p < ∞ và L∞ (Ω) = {u : Ω → C|ess sup |u(x)| < ∞} x∈Ω trong đó ess sup |u(x)| = inf{K > 0 |{x ∈ Ω||u(x)| > K}| = 0}. Ký hiệu Lploc (Ω) = {u : Ω → C u ∈ Lp (K) với mọi tập compact K ⊆ Ω} trong đó 1 ≤ p < ∞. 4 Ký hiệu Dα = Dα1 Dα2 . . . Dαn , trong đó α = (α1 , α2 , . . . , αn ) ∈ Nn và α Dj j = ∂ αj α , j = 1, 2, . . . , n. ∂xj j Cho x = (x1 , x2 , . . . , xn ) ∈ Rn thì ký hiệu |x| = 1.1.2 p x21 + x22 + . . . + x2n . không gian hàm cơ bản D(Ω) và không gian hàm suy rộng D0 (Ω) Định nghĩa 1.1. Không gian D(Ω) là không gian C0∞ (Ω) cùng với sự hội tụ trong ∞ D(Ω) được định nghĩa như sau: một dãy {ϕi }∞ i=1 trong C0 (Ω) được gọi là hội tụ đến ϕ ∈ C0∞ (Ω) khi và chỉ khi có một tập compact K ⊆ Ω thỏa mãn supp ϕi ⊆ K, i ∈ N và lim sup |Dα ϕi − Dα ϕ| = 0, ∀α ∈ Nn . Khi đó ta viết ϕ = D− lim ϕi . i→∞ x∈Ω i→∞ Một số tính chất. 1. Khái niệm hội tụ này xác định một tôpô tương thích với cấu trúc tuyến tính trên D(Ω) nghĩa là nếu D− lim ϕi = ϕ, D− lim ψi = ψ, lim αi = α i→∞ i→∞ i→∞ trong đó {αi }∞ i=1 ⊆ R, α ∈ R thì D− lim (ϕi + ψi ) = ϕ + ψ, D− lim αi ϕi = αϕ. i→∞ i→∞ Đạo hàm Dα là một ánh xạ tuyến tính liên tục trên D(Ω) nghĩa là: Dα ϕ ∈ D(Ω), ∀ϕ ∈ D(Ω), Dα (rϕ + νψ) = rDα (ϕ) + νDα (ψ), ∀r, ν ∈ C và ϕ, ψ ∈ D(Ω), D− lim Dα ϕi = 0 nếu D− lim ϕi = 0. i→∞ i→∞ ∞ 2. Dãy {ϕi }∞ i=1 ⊆ C0 (Ω) được gọi là một dãy Cauchy trong D(Ω) nếu có một tập compact K ⊂ Ω thỏa mãn supp ϕi ⊂ K, ∀i ∈ N và lim sup |Dα ϕi (x) − Dα ϕj (x)| = 0, ∀α ∈ Nn . i,j→∞ 3. Không gian D(Ω) là không gian đủ tức là mọi dãy Cauchy trong D(Ω) đều hội tụ. 4. Một phiếm hàm f : D(Ω) → C gọi là tuyến tính liên tục trên D(Ω) nếu: 5 (i) f tuyến tính nghĩa là f (αϕ + βψ) = αf (ϕ) + βf (ψ), ∀α, β ∈ C và ϕ, ψ ∈ D(Ω), (ii) f liên tục trên D(Ω) nghĩa là lim f (ϕi ) = f (ϕ), ∀ {ϕi }∞ i=1 ⊆ D(Ω) và D− lim ϕi = i→∞ i→∞ ϕ Định nghĩa 1.2. Không gian các hàm suy rộng D0 (Ω) là tập hợp tất cả các phiếm hàm tuyến tính liên tục trên D(Ω). Hàm suy rộng f ∈ D0 (Ω) tác động lên ϕ ∈ D ta ký hiệu là hf, ϕi . D0 (Ω) là một không gian vector với phép cộng và nhân như sau: (i) Cho f, g ∈ D0 (Ω) thì f + g được định nghĩa như sau: hf + g, ϕi = hf, ϕi + hg, ϕi , ∀ϕ ∈ D(Ω), (ii) Cho α ∈ C và f ∈ D0 (Ω) thì αf được định nghĩa như sau: hαf, ϕi = α hf, ϕi , ∀ϕ ∈ D(Ω), với định nghĩa như trên có thể kiểm tra f + g ∈ D0 (Ω) và αf ∈ D0 (Ω). Ví dụ 1.3. Với mỗi hàm f ∈ L1loc (Ω) được coi như một hàm suy rộng như sau: Z hf, ϕi = f (x)ϕ(x)dx, ∀ϕ ∈ D(Ω). Ω Ví dụ 1.4. Hàm Dirac hδ, ϕi = ϕ(0), ∀ϕ ∈ D(Ω). Định nghĩa 1.5. Cho f ∈ D0 (Ω), α ∈ Nn . Đạo hàm suy rộng cấp α của hàm suy rộng f trong Ω là một phiếm hàm trên Ω được xác định như sau Dα f : ϕ → (−1)α hf, Dα ϕi , ϕ ∈ D(Ω) trong đó |α| = α1 + α2 + . . . + αn với α = (α1 , α2 , . . . , αn ) ∈ Nn . Với mỗi α ∈ Nn thì Dα f ∈ D0 (Ω) và Dα là một ánh xạ tuyến tính trên D0 (Ω) nghĩa là 6 (i) Dα f ∈ D0 (Ω), ∀f ∈ D0 (Ω), (ii) Dα (λf + γg) = λDα f + γDα g, ∀λ, γ ∈ C; f, g ∈ D0 (Ω). Ví dụ 1.6. Hàm Heaviside θ(t) =    1 nếu t > 0   0 nếu t ≤ 0 có đạo hàm suy rộng Dθ = δ. Ví dụ 1.7. Hàm E(x) = (2π)−1 ln kxk nếu x ∈ R2 /{O} với n ≥ 3 thì E(x) = − 1 kxk2−n , x ∈ Rn /{O}, (n − 2)Cn trong đó O = (0, 0, . . . , 0), Cn là diện tích mặt cầu đơn vị trong Rn và kxk = p x21 + x22 + . . . + x2n với x = (x1 , x2 , . . . , xn ) ∈ Rn . Khi đó ∆E = δ trong D0 (Rn ), ∆ = D12 + D22 + . . . + Dn2 . 0 0 ∞ Định nghĩa 1.8. Cho {fi }∞ i=1 ⊆ D (Ω), f ∈ D (Ω). Ta nói dãy {fi }i=1 hội tụ đến f trong D0 (Ω) nếu lim hfi , ϕi = hf, gi , ∀ϕ ∈ D(Ω), i→∞ Một số tính chất. 1. Tôpô xác định bởi định nghĩa hội tụ trên là tương thích với cấu trúc tuyến tính trong D0 (Ω) nghĩa là 0 lim f = f và D 0 lim g = g thì (i) Nếu D− i i − i→∞ i→∞ 0 D− lim (fi + gi ) = f + g. i→∞ 0 lim f = f và lim α = α trong đó {α } ⊂ R thì D 0 lim α f = αf. (ii) D− i i i i i − i→∞ i→∞ i→∞ 2. Đạo hàm suy rộng Dα là một ánh xạ tuyến tính liên tục trên D0 (Ω) nghĩa là 7 (i) Dα (λf + βg) = λDα f + βDα g, ∀λ, β ∈ C; f, g ∈ D0 (Ω). 0 lim f = f thì D 0 lim D α f = D α f (ii) Nếu D− i i − i→∞ i→∞ 0 0 3. Dãy {fi }∞ i=1 ⊆ D (Ω) gọi là dãy Cauchy trong D (Ω) nếu với mọi ϕ ∈ D(Ω) dãy {hfi , ϕi}∞ i=1 là một dãy Cauchy trong C. 4. D0 (Ω) là một không gian đủ nghĩa là mọi dãy Cauchy trong D0 (Ω) đều hội tụ. 1.1.3 Không gian hàm cơ bản E(Ω) và không gian hàm suy rộng có giá compact E 0 (Ω) Định nghĩa 1.9. Không gian E(Ω) bao gồm các hàm ϕ ∈ C ∞ (Ω), dãy {ϕi }∞ i=1 ⊂ C ∞ (Ω) được gọi là hội tụ đến ϕ ∈ C ∞ (Ω) trong E(Ω) nếu lim sup |Dα ϕk (x) − Dα ϕ(x)| = 0, ∀α ∈ Nn , K b Ω. i→∞ x∈K Khi đó ta ký hiệu là E− lim ϕi = ϕ. i→∞ Một số tính chất. 1. Định nghĩa hội tụ trên trong E(Ω) xác định một cấu trúc tôpô tương thích với cấu trúc tuyến tính của nó nghĩa là (i) Nếu E− lim ϕi = ϕ và E− lim ψi = ψ thì i→∞ i→∞ E− lim (ϕi + ψi ) = ϕ + ψ. i→∞ (ii) Nếu E− lim ϕi = ϕ và {ri }∞ i=1 ⊆ C, lim ri = r thì i→∞ i→∞ E− lim ri ϕi = rϕ. i→∞ 2. Tập C0∞ (Ω) là trù mật trong E(Ω) và ta có phép nhúng D(Ω) ,→ E(Ω). 3. Dãy {ϕi }∞ i=1 ⊂ E(Ω) gọi dãy Cauchy trong E(Ω) nếu lim sup |Dα ϕi (x) − Dα ϕj (x)| = 0, ∀α ∈ Nn , K b Ω. i,j→∞ x∈K 8 E(Ω) là một không gian đủ tức là mọi dãy Cauchy trong E(Ω) đều hội tụ. Một hàm suy rộng f 6= 0 tại x ∈ Ω nghĩa là mọi lân cận mở V của x đều tồn tại một hàm ϕ ∈ C0∞ (V ) sao cho hf, ϕi = 6 0. Từ đó ta có thể định nghĩa giá của một hàm suy rộng như sau. Định nghĩa 1.10. Cho f ∈ D0 (Ω). Giá của hàm suy rộng f được định nghĩa như sau supp f = {x ∈ Ω|f 6= 0 tại x}. Tập hợp các hàm suy rộng có giá compact được ký hiệu là E 0 (Ω). Ví dụ 1.11. supp δ = {0}, supp θ = [0, ∞). Định lý sau thiết lập một song ánh giữa các hàm suy rộng có giá compact E 0 (Ω) và không gian các phiếm hàm tuyến tính liên tục trên E(Ω). Định lý 1.12. Cho hàm suy rộng có giá compact f ∈ D0 (Ω). Khi đó ta có thể thác triển duy nhất thành một phiếm hàm tuyến tính liên tục trên E(Ω). Ngược lại mỗi phiếm hàm tuyến tính trên E(Ω) đều có hạn chế lên E(Ω) và một hàm suy rộng có giá compact. 0 0 ∞ Định nghĩa 1.13. Cho dãy {fi }∞ i=1 ⊆ E (Ω) và f ∈ E (Ω). Dãy {fi }i=1 được gọi hội tụ tới f trong E 0 (Ω) nếu có một tập compact K ⊂ Ω thỏa mãn supp fi ⊂ K, ∀i ∈ N 0 lim f = f khi đó ta viết E 0 lim f = f. và D− i i − i→∞ i→∞ Một số tính chất. 1. Khái niệm hội tụ trong E 0 (Ω) được định nghĩa trên tương thích với cấu trúc tuyến tính nghĩa là (i) Nếu E−0 lim fi = f và E−0 lim gi = g thì i→∞ i→∞ 0 E− lim (fi + gi ) = f + g. i→∞ 9 (ii) Nếu E−0 lim fi = f và {λi }∞ i=1 ⊆ C, lim λi = λ thì i→∞ i→∞ 0 E− lim λi fi = λf. i→∞ 0 0 2. Dãy {fi }∞ i=1 ⊆ E (Ω) gọi là dãy Cauchy trong E (Ω) nếu có một tập compact 0 K ⊂ Ω thỏa mãn supp fj ⊂ K, ∀i ∈ N và {fi }∞ i=1 là dãy Cauchy trong D (Ω). 3. Không gian E 0 (Ω) là một không gian đủ nghĩa là mọi dãy Cauchy trong E 0 (Ω) đều hội tụ. 0 lim f = f. Do đó phép nhúng E 0 (Ω) ,→ D 0 (Ω) là liên 4. Nếu E−0 lim fi = f thì D− i i→∞ i→∞ tục. 1.1.4 Không gian các hàm giảm nhanh S(Rn ) và không gian các hàm tăng chậm S 0 (Rn ) Định nghĩa 1.14. Không gian S(Rn ) được định nghĩa như sau S(Rn ) = {ϕ ∈ C ∞ (Rn ) sup |xα Dβ ϕ(x)| < ∞, ∀α, β ∈ Nn }. x∈Rn n n n Dãy {ϕi }∞ i=1 ⊂ S(R ) được gọi là hội tụ đến ϕ ∈ S(R ) trong S(R ) nếu lim sup |xα Dβ (ϕi − ϕ)| = 0, ∀α, β ∈ Nn . i→∞ x∈Rn Khi đó ta viết S− lim ϕi = ϕ. i→∞ Một số tính chất. 1. Hội tụ trong S(Rn ) được định nghĩa xác định một tôpô tương thích với cấu trúc tuyến tính trên S(Rn ) nghĩa là (i) Nếu S− lim ϕi = ϕ và S− lim ψi = ψ thì i→∞ i→∞ S− lim (ϕi + ψi ) = ϕ + ψ. i→∞ (ii) Nếu S− lim ϕi = ϕ và {λi }∞ i=1 ⊆ C, lim λi = λ thì i→∞ i→∞ S− lim λi ϕi = λϕ. i→∞ 10 2. Nếu S− lim ϕi = ϕ thì E− lim ϕi = ϕ. Do đó ta có phép nhúng liên tục S(Rn ) ,→ i→∞ i→∞ E(Rn ). 3. Nếu D− lim ϕi = ϕ thì S− lim ϕi = ϕ. Do đó ta có phép nhúng liên tục D(Rn ) ,→ i→∞ i→∞ S(Rn ). 2 2 Ví dụ 1.15. Hàm e−|x| ∈ S(Rn ) nhưng e−|x| ∈ / C0∞ (Rn ). Ví dụ 1.16. Cho hàm p(x) = đặt pi (x) =  1   e −|x|2 −1 nếu |x| < 1   0 nếu |x| ≥ 1, p(x − i) thì pi ∈ C0∞ (Rn ) và S− lim pi = 0 nhưng không tồn tại giới i→∞ (1 + |x|2 )i hạn D− lim pi . i→∞ n n 4. Dãy {ϕi }∞ i=1 ⊂ S(R ) gọi dãy Cauchy trong S(R ) nếu lim sup |xα Dβ (ϕi − ϕj )| = 0, ∀α, β ∈ Nn . i,j→∞ Khi đó không gian S(Rn ) là một không gian đủ nghĩa là mọi dãy Cauchy trong S(Rn ) đều hội tụ. Định nghĩa 1.17. Hàm suy rộng f ∈ D0 (Rn ) được gọi là hàm suy rộng tăng chậm nếu tồn tại một số tự nhiên m và số dương c thỏa mãn | hf, gi | ≤ c sup (1 + |x|2 )m x∈Rn X |Dα ϕ(x)|, ∀ϕ ∈ C0∞ (Rn ). |α|≤m Không gian các hàm S 0 (Rn ) là tập hợp tất cả các hàm suy rộng tăng chậm. Một số tính chất. 1. Không gian các hàm tăng chậm S 0 (Rn ) là một không gian vector nghĩa là nó đóng với các phép toán tuyến tính. 2. Cho ví dụ sau: 11 Ví dụ 1.18. Cho f ∈ L1loc (Rn ) sao cho Z Rn |f (x)| dx < +∞, (1 + |x|)N với N > 0 nào đó thì nó tương ứng với hàm tăng chậm. Do đó f ∈ Lp (Rn ) với 1 ≤ p ≤ ∞ tương ứng với một hàm tăng chậm. Định lý sau cho ta đặc trưng của phiếm hàm tuyến tính liên tục trên S(Rn ) Định lý 1.19. Cho một hàm suy rộng tăng chậm f ∈ S 0 (Rn ). Khi đó f có thể thác triển duy nhất thành một phiếm hàm tuyến tính liên tục trên S(Rn ). Ngược lại mọi phiếm hàm tuyến tính liên tục trên S(Rn ) đều có thu hẹp trên D(Rn ) là một hàm suy rộng tăng chậm. 0 n 0 n Định nghĩa 1.20. Dãy {fi }∞ i=1 ⊂ S (R ) được gọi là hội tụ đến f ∈ S (R ) nếu tồn tại một số tự nhiên m và số dương c thỏa mãn | hf, gi | ≤ c sup (1 + |x|2 )m x∈Rn X |Dα ϕ(x)|, ∀ϕ ∈ C0∞ (Rn ), |α|≤m 0 n và dãy {fi }∞ i=1 hội tụ trong D (R ) đến f . Một số tính chất. 1. Khái niệm hội tụ trên trong S 0 (Rn ) xác định một cấu trúc tôpô tương thích với cấu trúc tuyến tính, nghĩa là (i) Nếu S−0 lim fi = f và S−0 lim gi = g thì i→∞ i→∞ 0 S− lim (fi + gi ) = f + g. i→∞ (ii) Nếu S−0 lim fi = f và {λi }∞ i=1 ⊆ R với lim λi = λ thì i→∞ i→∞ 0 S− lim λi fi = λf. i→∞ 12 0 n 0 n ∞ 2. Dãy {fi }∞ i=1 ⊆ S (R ) gọi là dãy Cauchy trong S (R ) nếu {fi }i=1 là một dãy Cauchy trong D0 (Rn ) và tồn tại một số tự nhiên m và số dương c thỏa mãn | hf, gi | ≤ c sup (1 + |x|2 )m x∈Rn X |Dα ϕ(x)|, ∀ϕ ∈ C0∞ (Rn ). |α|≤m Không gian S 0 (Rn ) là một không gian đủ, nghĩa là mọi dãy Cauchy trong S 0 (Rn ) đều hội tụ. 1.2 1.2.1 Tích chập Tích chập giữa các hàm trong Lp (Rn ), 1 ≤ p ≤ ∞ Nếu f, g ∈ C0∞ (Rn ) ta định nghĩa tích chập của f và g là Z Z f ∗g = f (x − y)g(y)dy = f (y)g(x − y)dy và f ∗ g ∈ C0∞ (Rn ). Rn Rn Ta có bất đẳng thức Young kf ∗ gkLr ≤ kf kLp kgkLq , trong đó f, g ∈ C0∞ (Rn ), 1 ≤ r, p, q ≤ ∞ thỏa mãn 1r + 1 = p1 + 1q , vì C0∞ (Rn ) trù mật trong Lp (Rn ) với 1 ≤ p < ∞ bất đẳng thức Young cũng thỏa mãn cho f ∈ Lp (Rn ) và g ∈ Lq (Rn ). Định lý 1.21. Phép chập là một ánh xạ song tuyến tính từ (i) D(Rn ) × D(Rn ) vào D(Rn ). (ii) D(Rn ) × E(Rn ) vào E(Rn ) và từ E(Rn ) × D(Rn ) vào E(Rn ). (iii) S(Rn ) × S(Rn ) vào S(Rn ). Khi cố định một biến thì nó liên tục với biến còn lại. Hơn nữa ta có Dα (ϕ ∗ ψ) = Dα (ϕ) ∗ ψ = ϕ ∗ (Dα ψ), với ϕ ∈ C0α (Rn ), ψ ∈ E(Rn ) hoặc ϕ, ψ ∈ S(Rn ). 13 1.2.2 Tích chập giữa hàm suy rộng và hàm cơ bản Định nghĩa 1.22. Cho ϕ ∈ X, f ∈ X 0 , trong đó X là một trong các không gian D(Rn ), E(Rn ), S(R). Tích chập của hàm suy rộng f với hàm ϕ được xác định như sau f ∗ g : x 7→ (f ∗ ϕ)(x) = hf, ϕx i , trong đó ϕx (y) = ϕ(x − y) Định lý 1.23. Tích chập là một song ánh tuyến tính từ (i) D(Rn ) × D(Rn ) vào E(Rn ). (ii) E 0 (Rn ) × E(Rn ) vào E(Rn ). (iii) E 0 (Rn ) × D(Rn ) vào D(Rn ). (iv) S 0 (Rn ) × S(Rn ) vào E(Rn ). (v) E 0 (Rn ) × S(Rn ) vào S(Rn ). Hơn nữa nếu cố định một biến thì nó sẽ liên tục theo biến còn lại. Cuối cùng, nếu ϕ ∈ X, f ∈ X 0 , trong đó X là một trong các không gian D(Rn ), E(Rn ), S(R) thì Dα (f ∗ g) = (Dα f ) ∗ g = f ∗ (Dα g). Định lý 1.24. Cho ϕ, ψ ∈ D(Rn ), f ∈ D0 (Rn ) hay ϕ ∈ E(Rn ), ψ ∈ D(Rn ), f ∈ E 0 (Rn ) hoặc ϕ, ψ ∈ S(Rn ), f ∈ S 0 (Rn ). Khi đó (f ∗ ϕ) ∗ ψ = f ∗ (ϕ ∗ ψ) = f ∗ (ψ ∗ ϕ) = (f ∗ ψ) ∗ ϕ. 1.3 Phép biến đổi Fourier trong S(Rn) và S 0(Rn) Định nghĩa 1.25. Cho ϕ ∈ S(Rn ). Biến đổi Fourier của hàm ϕ, ký hiệu là Fϕ được định nghĩa như sau − n2 Z Fϕ(ξ) = (2π) Rn 14 e−ihx,ξi ϕ(x)dx,
- Xem thêm -

Tài liệu liên quan