Đăng ký Đăng nhập
Trang chủ Số mũ đặc trưng vectơ và ứng dụng...

Tài liệu Số mũ đặc trưng vectơ và ứng dụng

.PDF
72
1
109

Mô tả:

.. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ĐỖ VĂN CHUNG SỐ MŨ ĐẶC TRƯNG VECTƠ VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2012 1Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ĐỖ VĂN CHUNG SỐ MŨ ĐẶC TRƯNG VECTƠ VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành : TOÁN ỨNG DỤNG Mã số : 60 46 0112 Giáo viên hướng dẫn: PGS. TS TẠ DUY PHƯỢNG THÁI NGUYÊN, 2012 2Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn LỜI CẢM ƠN Luận văn được thực hiện và hoàn thành tại trường Đại học Khoa họcĐại học Thái Nguyên. Qua đây tôi xin chân thành cảm ơn các thầy cô giáo Khoa Toán-Tin, Ban Giám hiệu, Phòng Đào nhà trường đã trang bị kiến thức cơ bản và tạo điều kiện tốt nhất cho tôi trong quá trình học tập và nghiên cứu. Tôi xin bày tỏ lòng biết ơn chân thành tới PGS. TS. Tạ Duy Phượng, người đã tận tình chỉ bảo, tạo điều kiện và giúp đỡ tôi có thêm nhiều kiến thức, khả năng nghiên cứu, tổng hợp tài liệu để hoàn thành luận văn. Tôi cũng xin gửi lời cảm ơn đến gia đình, bạn bè và các đồng nghiệp đã động viên, giúp đỡ tôi quá trình học tập của mình. Do thời gian và trình độ còn hạn chế nên luận văn không tránh khỏi những thiếu sót. Chúng tôi rất mong nhận được sự góp ý của các thầy cô và các bạn để luận văn được hoàn thiện hơn. Tôi xin chân thành cảm ơn! 2 3Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Mục lục 1 Vectơ đặc trưng 7 1.1 Số mũ Lyapunov . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Vectơ đặc trưng của hàm số . . . . . . . . . . . . . . . . . 10 1.3 Vectơ đặc trưng của ma trận hàm . . . . . . . . . . . . . . 17 2 Số mũ đặc trưng vectơ của nghiệm của phương trình vi phân đại số 2.1 Phương trình vi phân đại số . . . . . . . . . . . . . . . . . 2.1.1 Phép chiếu . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Chỉ số của phương trình vi phân đại số với thành phần đầu chính thường . . . . . . . . . . . . . . . . 2.2 Phân rã hệ phương trình vi phân đại số chỉ số 1 với thành phần đầu chính thường . . . . . . . . . . . . . . . . . . . . 2.2.1 Số mũ Lyapunov của nghiệm của phương trình vi phân đại số chính quy chỉ số 1 . . . . . . . . . . . . 2.2.2 Vectơ đặc trưng của nghiệm của phương trình vi phân đại số chính quy chỉ số 1 . . . . . . . . . . . . 2.3 Phân rã phương trình vi phân đại số chỉ số 2 với thành phần đầu chính thường . . . . . . . . . . . . . . . . . . . . . . . 2.4 Phổ của phương trình vi phân đại số chính quy chỉ số 1 . . 2.5 Hệ chính qui cấp m . . . . . . . . . . . . . . . . . . . . . . 20 20 20 21 23 25 27 29 34 44 3 Nghiên cứu sự ổn định của nghiệm của phương trình vi phân đại số chỉ số 1 48 3.1 Sự ổn định tiệm cận mũ của nghiệm tầm thường của hệ phương trình vi phân đại số với thành phần đầu chính thường 48 3.2 Định nghĩa vectơ đặc trưng ổn định (cấp m) của hệ vi phân đại số tuyến tính chỉ số 1 . . . . . . . . . . . . . . . . . . . 64 3 4Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Kết luận 68 Tài liệu tham khảo 70 4 5Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn MỞ ĐẦU Năm 1892, Lyapunov đã đưa ra và sử dụng khái niệm số mũ đặc trưng để nghiên cứu tính ổn định nghiệm của hệ phương trình vi phân tuyến tính. Khái niệm số mũ đặc trưng Lyapunov đã được Hoàng Hữu Đường mở rộng thành khái niệm số mũ vectơ đặc trưng (chỉ số vectơ đặc trưng) để nghiên cứu tính ổn định nghiệm của phương trình vi phân trong trường hợp tới hạn vào những năm 1965 - 1982. Bắt đầu từ những năm 1980, do nhu cầu thực tiễn và phát triển lý thuyết, phương trình vi phân đại số đã được chú ý và nghiên cứu sâu rộng. Nhiều tác giả Việt Nam: GS. Phạm Kỳ Anh, GS. Nguyễn Đình Công, GS. Nguyễn Hữu Dư, PGS. Vũ Hoàng Linh, TS. Lê Công Lợi, GS. Vũ Ngọc Phát, PGS. Cấn Văn Tuất... đã tham gia nghiên cứu và giải quyết các vấn đề khác nhau của phương trình vi phân đại số. Vấn đề sử dụng lý thuyết số mũ đặc trưng của Lyapunov để nghiên cứu các tính chất định tính của phương trình vi phân đại số đã được Nguyễn Đình Công và Hoàng Nam nghiên cứu trong [2], [3], [8] và[9]. Trong luận văn, chúng tôi đặt vấn đề sử dụng khái niệm vectơ đặc trưng của Hoàng Hữu Đường để nghiên cứu phương trình vi phân đại số với thành phần đầu chính thường. Các vấn đề luận văn quan tâm là: 1) Đưa ra khái niệm vectơ đặc trưng của nghiệm của phương trình vi phân đại số tuyến tính chính qui chỉ số 1 với thành phần đầu chính thường; trình bày mối quan hệ giữa vectơ đặc trưng của nghiệm của phương trình vi phân đại số và vectơ đặc trưng của nghiệm của phương trình vi phân thường tương ứng. 2) Hệ cơ bản chuẩn tắc và phổ của phương trình vi phân đại số tuyến tính chính qui chỉ số 1. 5 6Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 3) Hệ chính qui cấp m. 4) Định nghĩa sự ổn định (cấp m) của các vectơ đặc trưng của phương trình vi phân đại số thuần nhất đối với các nhiễu động tuyến tính và phi tuyến. Các kết quả nhận được trong luận văn tương tự các kết quả tương ứng trong [4]. Luận văn gồm phần Mở đầu, 3 chương, phần Kết luận và các tài liệu tham khảo. Trong chương 1, chúng tôi nhắc lại khái niệm số mũ đặc trưng; trình bày lại khái niệm vectơ đặc trưng của hàm số và ma trận hàm cùng các chứng minh một cách chi tiết một số tính chất của vectơ đặc trưng. Trong chương 2, chúng tôi trình bày cách phân rã hệ phương trình vi phân đại số chỉ số 1 và chỉ số 2 dựa theo [12]. Đồng thời cũng đưa ra khái niệm vectơ đặc trưng của nghiệm, phổ của hệ phương trình vi phân đại số chỉ số 1, hệ cơ bản chuẩn tắc cũng như hệ chính qui cấp m dựa trên sự mở rộng các khái niệm tương ứng của hệ phương trình vi phân tuyến tính trong [8]. Trong chương 3, chúng tôi nghiên cứu sự ổn định tiệm cận mũ của nghiệm tầm thường của hệ phương trình vi phân đại số với thành phần đầu chính thường và định nghĩa vectơ đặc trưng ổn định. Thái Nguyên, ngày 10 tháng 10 năm 2012 Người thực hiện Đỗ Văn Chung 6 7Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chương 1 Vectơ đặc trưng Năm 1982 trong luận án Tiến sĩ khoa học của mình, Hoàng Hữu Đường đã đưa ra khái niệm vectơ đặc trưng là mở rộng khái niệm số mũ đặc trưng Lyapunov và áp dụng vectơ đặc trưng nghiên cứu tính ổn định nghiệm của hệ phương trình vi phân trong trường hợp tới hạn. Trước tiên chúng ta nhắc lại khái niệm số mũ Lyapunov (số mũ đặc trưng) của hàm số, ma trận hàm và một số tính chất cơ bản của số mũ Lyapunov. 1.1 Số mũ Lyapunov . Xét phương trình vi phân tuyến tính x = αx, t ≥ 0 với điều kiện ban đầu x(0) = x0 có nghiệm là x(t) = x0 eαt . (∗) Với α > 0 thì x(t) −→ +∞. Ta nói nghiệm x ≡ 0 của phương trình (*) là không ổn định. Với α = 0 thì x(t) ≡ x0 , ∀t ≥ 0. Ta nói nghiệm x ≡ 0 của phương trình (*) là ổn định (không ổn định tiệm cận). Với α < 0 thì x(t) −→ 0 khi t −→ +∞. Ta nói nghiệm x ≡ 0 của phương trình (*) là ổn định tiệm cận (theo Lyapunov). Như vậy số α đặc trưng cho tính ổn định của nghiệm x ≡ 0 của phương trình (*). Dựa trên quan sát này, Lyapunov đưa ra khái niệm số mũ đặc trưng nhằm nghiên cứu tính ổn định nghiệm của hệ phương trình vi phân. Xét hàm số thực f (t) = eαt , trong đó α là số thực. Số α đặc trưng cho tốc độ tăng trưởng của hàm eαt . 7 8Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Từ nay về sau, vì ta chỉ xét t → +∞ nên để cho gọn, khi t → +∞ ta chỉ viết t → ∞. 1 Ta có thể viết |f (t)| = eα(t).t , trong đó α(t) = ln |f (t)|. Như vậy, để t so sánh sự tăng trưởng của hàm |f (t)| với hàm mũ, điều cần thiết là phải xem xét giá trị của hàm α(t), trên cơ sở đó chúng ta đưa vào khái niệm số mũ đặc trưng của hàm số như sau. Định nghĩa 1.1. [10] Giả sử f (.) là hàm nhận giá trị thực và xác định trên khoảng J = [t0 , +∞). Số (hoặc giá trị +∞, −∞) xác định bởi công thức 1 χ(f ) := lim ln |f (t)| (1.1) t→∞ t được gọi là số mũ Lyapunov (số mũ đặc trưng) của hàm số f (.). Nói chung số mũ Lyapunov có thể hữu hạn hoặc vô hạn, nhưng sau này chúng ta chủ yếu xét trường hợp số mũ Lyapunov là hữu hạn. Chúng ta qui ước ln 0 = −∞, do đó nếu f (t) ≡ 0 thì χ(f ) = −∞. Định lý 1.1. [10] Nếu χ(f ) = α 6= ±∞ thì  1) Với mỗi  > 0 ta có f (t) = o e(α+)t , nghĩa là |f (t)| = 0; t→∞ e(α+)t lim (1.2) |f (t)| = ∞, nghĩa là tồn tại dãy tk → ∞ sao cho t→∞ e(α−)t |f (tk )| lim (α−)t = ∞. k tk →∞ e 2) lim (1.3) Ngược lại, nếu có một số α nào đó mà với mỗi  > 0 bất kỳ ta đều có (1.2) thì χ(f ) ≤ α; nếu có (1.3) thì χ(f ) ≥ α. Cuối cùng, nếu có cả hai công thức (1.2) và (1.3) thì χ(f ) = α. Như vậy, nếu χ(f ) = α thì khi t → ∞ hàm số y = |f (t)| tăng chậm hơn bất kỳ một hàm mũ y1 = e(α+)t với  > 0 bất kỳ. Hơn nữa, hàm |f (t)|e−(α+)t → 0 và theo một dãy tk → ∞ nó tăng nhanh hơn hàm y2 = e(α−)t và hàm |f (t)|e(−α+)t không bị chặn. 8 9Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Định nghĩa 1.2. [10] Hàm f (t) được gọi là có số mũ đặc trưng đúng nếu 1 tồn tại giới hạn hữu hạn χ(f ) = lim ln |f (t)|. t→∞ t Sau đây chúng ta nhắc lại một số tính chất cơ bản của số mũ đặc trưng (xem [1]). Giả sử f1 (.), . . . , fm (.) là các hàm số nhận giá trị thực xác định trên J = [t0 , ∞), khi đó i) χ(f ) = χ(|f |). ii) χ(cf ) = χ(f ) với mọi số thực c 6= 0.  iii) Với c1 , . . . , cm là các hằng số thực bất kỳ thì χ m P  ci fi i=1 ≤ max χ(fi ) 1≤i≤m và nếu tồn tại ck 6= 0 sao cho χ(fk ) > χ(f  mj ) với mọi P j 6= k, (j = 1, . . . , m; 1 ≤ k ≤ m) thì χ ci fi = χ(fk ). i=1  m  m Q P iv) χ fi ≤ χ(fi ). i=1 i=1 Giả sử F (.) = [fjk (.)] là n × q ma trận hàm xác định trên J . Định nghĩa 1.3. [10] Số (hoặc giá trị ±∞) χ(F ) := max χ(fjk (t)) được j,k gọi là số mũ Lyapunov của ma trận hàm F (.). Số mũ Lyapunov của ma trận hàm cũng có một số tính chất tương tự số mũ Lyapunov của vectơ hàm. i) Nếu F (.) là ma trận vuông thì χ(F T ) = χ(F ) với F T (t) là ma trận chuyển vị của ma trận F (t) với t ∈ J . ii) χ(F ) = χ(||F ||). ii) Nếu F1 (.), . . . , Fm (.) là các n × n ma trận hàm xác định trên 9 10Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn J = [t0 , +∞) thì χ X m χ i=1 Y m  ≤ max χ(Fi ), Fi i  Fi ≤ i=1 m X χ(Fi ). i=1 Dưới đây là trình bày chi tiết khái niệm vectơ đặc trưng của hàm số, của ma trận hàm và một số tính chất của chúng (xem [4]). Khái niệm vectơ đặc trưng là sự mở rộng khái niệm số mũ đặc trưng Lyapunov. 1.2 Vectơ đặc trưng của hàm số Xét x : [t0 , +∞) → R. Giả sử tồn tại số hữu hạn α0 sao cho ln |x(t)| = α0 . t→∞ t lim Khi đó, theo định nghĩa lim với mọi  > 0 tồn tại số T () sao cho ln |x(t)| < α0 +  t với mọi t > T (). Do đó |x(t)| < a0 e(α0 +)t với  > 0 và a0 ≥ 1 là hằng số bất kỳ. Giả sử tồn tại giới hạn trên ln{|x(t)|e−α0 t } = α1 , lim t→∞ ln t với α1 hữu hạn. Khi đó, |x(t)| < a1 eα0 t tα1 + với  > 0 và a1 ≥ 1 là hằng số bất kỳ. Một cách tổng quát giả sử tồn tại số hữu hạn αm sao cho ln{|x(t)|e−α0 t t−α1 (ln t)−α2 · · · (lnm−2 t)−αm−1 } = αm , t→∞ lnm t lim trong đó lnj t = ln(lnj−1 t) với j = 3, 4, 5, . . . , m. Khi đó, |x(t)| < am eα0 t tα1 · · · (lnm−2 t)αm−1 (lnm−1 t)αm + 10 11Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn với  > 0 và am ≥ 1 là hằng số bất kỳ. Từ đây ta đi đến định nghĩa sau. Định nghĩa 1.4. [4] Vectơ α(m) (x) = (α0 , α1 , . . . , αm ) được gọi là vectơ đặc trưng cấp m (chỉ số vectơ cấp m) của x(t). Nhận xét 1.1. Khi m = 0 thì α(0) (x) = α0 chính là số mũ đặc trưng Lyapunov của x. Ví dụ 1.1. Hàm x(t) = t có vectơ đặc trưng α(m) (x(t)) = (0, 1, 0, . . . , 0). Ví dụ 1.2. Hàm x(t) = eαt có vectơ đặc trưng α(m) (eαt ) = (α, 0, 0, . . . , 0). Trong Rm+1 , xét tập K các vectơ γ (m) = (γ0 , γ1 , . . . , γm ), trong đó γk = 0 với k < j và γj > 0, γj+1 , . . . , γm bất kỳ. Với mọi x ∈ K và số thực dương λ nào đó ta có λγ (m) = λ(γ0 , γ1 , . . . , γm ) = (λγ0 , λγ1 , . . . , λγm ) và λγk = 0 với k < j , λγj > 0, λγj+1 , . . . , λγm bất kì. Do đó K là một hình nón chuẩn tắc (tức thành phần đầu tiên khác không là dương), và Rm+1 trở thành một không gian được sắp thứ tự (toàn phần) theo nón K . Xét tập {α(m) } được sắp thứ tự như sau: Cho (m) α1 (m) (m) = (α01 , α11 , . . . , αm1 ), α2 = (α02 , α12 , . . . , αm2 ), (m) α1 ≺ α2 nếu và chỉ nếu tồn tại j ≤ m sao cho αi1 − αi2 = 0, với i = 0, 1, . . . , j − 1 và αj2 − αj1 > 0. (m) Ký hiệu α1 (m)  α2 (m) có nghĩa là α1 (m) ≺ α2 (m) hoặc α1 (m) = α2 . Ký hiệu θ là phần tử không của Rm . Dưới đây ta xét một số tính chất của vectơ đặc trưng đối với hàm số (xem [4], trang 8 - 17). Tính chất 1.1. α(m) (|x(t)|) = α(m) (x(t)). Chứng minh. Ta có ln |(|x(t)|)| ln |x(t)| = lim = α0 (x(t)). t→∞ t→∞ t t α0 (|x(t)|) = lim 11 12Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ln{|(|x(t)|)|e−α0 t } ln{|x(t)|e−α0 t } α1 (|x(t)|) = lim = lim = α1 (x(t)). t→∞ t→∞ ln t ln t Tương tự ta có αi (|x(t)|) = αi (x(t)), với i = 2, 3, . . . , m và suy ra điều phải chứng minh. Tính chất 1.2. α(m) (cx) = α(m) (x) với mọi c ∈ R, c 6= 0. Chứng minh. Giả sử α(m) (x) = (α0 , α1 , . . . , αm ). Khi đó ta có |x(t)| < a0 e(α0 +)t và tồn tại dãy tn → ∞ sao cho ln |x(tn )| = α0 . tn →∞ tn lim Vậy |cx(t)| ≤ |c||x(t)| < |c|a0 e(α0 +)t = be(α0 +)t , b = |c|a0 . Suy ra ln |cx(t)| ln b ≤ + α0 +  ≤ α0 + 2 t t với t đủ lớn. Vì  bất kỳ nên ln |cx(t)| ≤ α0 . t Mặt khác, tồn tại tn → ∞ sao cho ln |cx(tn )| ln |c| ln |x(tn )| = lim + lim = α0 . tn →∞ tn →∞ tn tn →∞ tn tn lim Chứng tỏ α0 (cx) = α0 (x). Chứng minh tương tự ta có αi (cx) = αi (x) với i = 1, 2, . . . , m. Tính chất 1.3. α (m) X p  xi  max α(m) (xi ), i=1 (1.4) i trong đó max của các vectơ α(m) (xi ) được hiểu theo thứ tự của nón K . Chứng minh. Giả sử max α(m) (xi ) = (α0 , α1 , . . . , αm ) = α(m) . i Nếu α0 (xi ) ≤ α0 với i ∈ {1, . . . , p} nào đó thì với mọi 0 > 0 ta có |xi (t)| < ae(α0 +0 )t . 12 13Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Suy ra p p X X xi (t) ≤ |xi (t)| < pae(α0 +0 )t = be(α0 +0 )t , i=1 i=1 trong đó b = pa. Do đó, α0 X p  xi (t) = lim Nếu α0 p P i=1 t t→∞ i=1  p P ln xi (t)  xi < α0 thì α (m)  i=1  Nếu α0 p P ln p P ≤ lim  ≤ α0 . t t→∞ p P |xi (t)| i=1  α(m) . xi i=1  xi  = α0 thì ta xét α1 i=1 p P   xi . Vì α0 i=1 p P  xi = α0 nên i=1 ta có α1 X p  xi (t) = lim t→∞ i=1  Nếu α1 p P  p  P −α t ln xi e 0 i=1 ln t  ln ≤ lim t→∞ p P |xi |e i=1 ln t −α0 t  ≤ α1 .  xi < α1 thì ta có điều phải chứng minh. i=1  Nếu α1 p P  xi  = α1 thì ta xét α2 i=1 p P  xi . i=1  p P  Một cách tổng quát nếu αj xi = αj , j = 0, 1, . . . , l − 1, l ≤ m thì i=1  p   p  P P tương tự ta có αl xi ≺ αl hoặc αl xi = αl . Do đó ta có điều i=1 i=1 phải chứng minh. Nếu α0 (xi ) = α0 với mọi i = 1, . . . , p thì ta xét α1 (xi ). Nếu α1 (xi ) ≤ α1 ta làm như trên. Nếu α1 (xi ) = α1 với mọi i = 1, . . . , p thì ta xét α2 (xi ). Một cách tổng quát, nếu αj (xi ) = αj , j = 1, . . . , l − 1 thì ta xét αl (xi ) với l ≤ m và làm tương tự như trên ta có điều phải chứng minh. Chú ý 1.1. Nếu chỉ có một vectơ xl có α(m) (xl ) = α(m) thì (1.4) xảy ra 13 14Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn dấu bằng. Thật vậy, theo (1.4) ta có X  p (m) α xi  α(m) . (1.5) i=1 Ta chứng minh α(m)  α(m)  p P  xi . i=1 Nếu α0 (xi ) < α0 với mọi i = 1, . . . , p, i 6= l và α0 (xl ) = α0 thì ln |xl (t)| = α0 , t→∞ t lim do đó tồn tại dãy tk → ∞ sao cho ln |xl (tk )| = α0 . tk →∞ tk lim Suy ra với mọi  > 0, tồn tại T () sao cho với mọi t > T () ta có 1 ln |xl (tk )| > α0 − . tk Vậy |xl (tk )| > e(α0 −)tk hay |xl (tk )|e(−α0 +)tk → ∞ khi tk → ∞. Ta có  p  X X p (−α +)t (−α +)t (−α0 +)tk 0 k 0 k x (t ) e ≥ |x (t )|e − x (t ) . i k l k i k e i=1 i=1,i6=l (1.6) Vì số hạng đầu ở vế phải (1.6) tiến đến vô cùng và số hạng thứ hai tiến đến 0 nên   X p (−α +)t e 0 k → ∞. x (t ) i k i=1 Do đó   X p > e(α0 −)tk . x (t ) i k i=1 Suy ra α0 ≤ lim t→∞ p P ln xi (t) i=1 t ≤ lim p P ln xi (t) t→∞ 14 15Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên i=1 t = α0 X p  xi (t) . i=1 http://www.lrc-tnu.edu.vn  Nếu α0 < α0 p P  xi thì kết hợp với (1.5) ta có điều phải chứng minh. i=1  p P  Nếu α0 = α0 xi  p  i=1 P xi . α1 ≤ α1 thì ta xét α1 . Làm tương tự như trên ta cũng có i=1  p P  Một cách tổng quát, nếu αj = αj xi , j = 0, 1, . . . , l − 1, l ≤ m, i=1  p  P thì αl ≤ αl xi . Kết hợp với (1.5) ta có điều phải chứng minh. i=1 Tính chất 1.4. Nếu |x(t)| ≤ |y(t)| với mọi t thì α(m) (x(t))  α(m) (y(t)). Chứng minh. Ta có ln |x(t)| ln |y(t)| ≤ lim = α0 (y(t)). t→∞ t→∞ t t α0 (x(t)) = lim Nếu α0 (x(t)) < α0 (y(t)) thì ta có điều phải chứng minh. Nếu α0 (x(t)) = α0 (y(t)) thì ln{|x(t)|e−α0 (x)t } ln{|y(t)|e−α0 (y)t } ≤ lim = α1 (y(t)). α1 (x(t)) = lim t→∞ t→∞ ln t ln t Một cách tổng quát nếu αj (x) = αj (y), j = 0, 1, . . . , l − 1, l ≤ m thì αl (x) ≤ αl (y) và ta có điều phải chứng minh.  k  k Q P Định lý 1.2. [4] α(m) fi (t)  α(m) (fi (t)). i=1 i=1 Chứng minh. Ta có α0 Y k  fi (t) = lim i=1  Nếu α0 k Q ln fi (t) i=1 t t→∞ ≤ k X i=1 k ln |fi | X lim = α0 (fi (t)). t→∞ t i=1  k k P Q fi (t) < α0 (fi (t)) thì ta có điều phải chứng minh. Nếu i=1 i=1 α0 Y k  X k fi (t) = α0 (fi (t)) i=1 15 16Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên i=1 http://www.lrc-tnu.edu.vn thì ta có α1 Y k  fi (t) = lim  k  Q −α t ln fi (t) e 0 i=1 ln t t→∞ i=1 = k X ≤ k X i=1 ln{|fi |e−α0 t } lim t→∞ ln t α1 (fi (t)). i=1 Một cách tổng quát nếu Y  X k k αj fi (t) < αj (fi (t)), i=1  thì αl j = 0, 1, . . . , l − 1, l ≤ m i=1  k k Q P fi (t) < αl (fi (t)) và ta có điều phải chứng minh. i=1 i=1 Hệ quả 1.1. [4] Nếu f (t) 6= 0 với t > T thì α (m) (f (t))+α (m)  1 f (t)   θ, trong đó θ là phần tử không của Rm . Hệ quả 1.2. [4] Nếu α(m) (ck (t))  θ, thì X  m (m) α ck (t)fk (t)  max α(m) (fk (t)). k k=1 Đặc biệt nếu ck (t) là hàm giới nội thì bất đẳng thức trên đúng. Định nghĩa 1.5. [4] Ta nói α(m) (x(t)) là vectơ đặc trưng đúng của x(t) nếu trong định nghĩa của vectơ đặc trưng, thay vì các lim (giới hạn trên) ta có các lim (giới hạn đúng).   1 Định lý 1.3. [4] Điều kiện cần và đủ để α(m) (f (t)) = −α(m) là f (t) f (t) có vectơ đặc trưng đúng. Chứng minh. Giả sử α(m) (f (t)) = −α(m)  1 f (t)  = (α0 , α1 , . . . , αm ). Khi đó ln f (t) α0 = lim = − lim t→∞ t→∞ t 1 ln f (t) t − ln |f (t)| ln |f (t)| = lim . t→∞ t t t→∞ = − lim 16 17Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ln |f (t)| = α0 . Tương tự ta có t→∞ t   1 −α t e 0 ln ln{ f (t) e−α0 t } f (t) = − lim = lim t→∞ t→∞ ln t ln t −α0 t ln{|f (t)|e−α0 t } − ln{|f (t)|e } = − lim = lim ,..., t→∞ ln t ln t t→∞ Suy ra tồn tại lim α1 αj+1 ln{ f (t) e−α0 t t−α1 (ln t)−α2 · · · (lnj t)−αj+1 } = lim t→∞ ln t −α t −α j+1 −α ln{ f (t) e 0 t 1 (ln t) 2 · · · (lnj t)−αj+1 } , = lim lnj+1 t t→∞ với j = 0, 1, . . . , m − 1. Vậy ta có điều phải chứng minh. Điều kiện đủ được suy ra từ định nghĩa của vectơ đặc trưng đúng. Hệ quả 1.3. [4] Nếu α(m) (f ) là vectơ đặc trưng đúng thì α(m) (f g) = α(m) (f ) + α(m) (g) với mọi g(t) ∈ C[t0 , ∞). Dưới đây sẽ là trình bày chi tiết về vectơ đặc trưng của ma trận hàm. 1.3 Vectơ đặc trưng của ma trận hàm Định nghĩa 1.6. Giả sử A(t) = [ajk (t)] là ma trận cấp n × q xác định trên [t0 , ∞). Đặt α(m) (A(t)) = max α(m) (ajk (t)). j,k   2 t t Ví dụ 1.3. Cho A = −1 t . Tính số mũ đặc trưng cho từng số hạng của ma trận A ta được α(m) (t) = (0, 1, 0, . . . , 0), α(m) (−1) = θ, α(m) (t2 ) = (0, 2, 0, . . . , 0). Vậy α(m) (A(t)) = (0, 2, 0, . . . , 0). 17 18Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Vectơ đặc trưng của ma trận hàm cũng có một số tính chất tương tự như vectơ đặc trưng của hàm số (xem [4], trang 17). Dưới đây ta xét P ||A|| = max |ajk |. j k Tính chất 1.5. α(m) (||A(t)||) = α(m) (A(t)). Chứng minh. Vì |ajk (t)| ≤ ||A(t)|| với mọi t nên α(m) (ajk (t)) = α(m) (|ajk (t)|)  α(m) (||A(t)||). Suy ra max α(m) (ajk (t))  α(m) (||A(t)||). Do đó j,k α(m) (A(t))  α(m) (||A(t)||). P Mặt khác có ||A(t)|| ≤ |ajk (t)|. Suy ra j,k α (m) (||A(t)||)  α (m) X  |ajk |(t)  max α(m) (ajk (t)) = α(m) (A(t)). j,k j,k Vậy ta có điều phải chứng minh. Tính chất 1.6. α(m) X p  Ai (t)  max α(m) (Ai (t)). (1.7) i i=1 Chứng minh.  X   X X  p p p α(m) Ai (t)  α(m) Ai (t)  α(m) ||Ai (t)|| i=1  max α i i=1 (m) (||Ai (t)||) = max α i i=1 (m) (Ai (t)). Chú ý 1.2. Nếu chỉ có một ma trận Ai (t) = [aijk (t)] với i ∈ {1, . . . , p} có vectơ đặc trưng lớn nhất thì (1.7) xảy ra dấu bằng. Thật vậy, giả sử α(m) A1 (t)  α(m) (Ai (t)) với mọi i 6= 1. Vì |aijk (t)| ≤ ||Ai (t)|| nên α(m) (aijk (t)) = α(m) (|aijk (t)|)  α(m) (||Ai (t)||) = α(m) (Ai (t))  α(m) (A1 (t)) = max α(m) (a1jk (t)) j,k 18 19Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn với mọi i 6= 1. Suy ra chỉ có a1jk (t) có vectơ đặc trưng đạt max. Do đó  p  p P P α(m) Ai (t) = [ajk (t)]. Ta có aiij (t) = max(a1jk (t)). Đặt A(t) = j,k i=1 α (m) i=1 (A(t)) = max α (m) (ajk (t))  α = max α (m) (a1jk (t)) j,k (m) X p  aijk (t) i=1 j,k =α (m) (A1 (t)). Vậy α(m) (A(t))  α(m) (A1 (t)). Kết hợp với (1.7) ta có điều phải chứng minh.  n  n Q P Tính chất 1.7. α(m) Ai (t)  α(m) (Ai (t)). i=1 Chứng minh. Đặt A(t) = i=1 n Q  Ai (t) = i=1 α (m) (A(t))  max α (m) j,k = n X i=1 Y n α aijk (t) j,k i=1  aijk (t)  n X i=1 (m)  . Ta có n PQ (|aijk (t)|) α(m) (aijk (t)) i=1  n X α (m) (||Ai (t)||) = i=1 n X α(m) (Ai (t)). i=1 Từ Tính chất 1.5 ta đi đến định nghĩa sau. Nhận xét 1.2. [4] Nếu x(t) là vectơ n chiều, ta có thể định nghĩa α(m) (x(t)) = α(m) (||x(t)||). 19 20Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất