Đăng ký Đăng nhập
Trang chủ Phương pháp mann tìm nghiệm bài toán cân bằng và điểm bất động của ánh xạ không ...

Tài liệu Phương pháp mann tìm nghiệm bài toán cân bằng và điểm bất động của ánh xạ không giãn

.PDF
50
1
84

Mô tả:

.. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC PHẠM THỊ BÍCH THẢO PHƯƠNG PHÁP MANN TÌM NGHIỆM BÀI TOÁN CÂN BẰNG VÀ ĐIỂM BẤT ĐỘNG CỦA ÁNH XẠ KHÔNG GIÃN CHUYÊN NGÀNH: TOÁN ỨNG DỤNG MÃ SỐ: 60.46.36 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: GS.TS. NGUYỄN BƯỜNG THÁI NGUYÊN - 2011 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Mục lục Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Một số ký hiệu và chữ viết tắt . . . . . . . . . . . . . . . . . . 6 Chương 1. Một số khái niệm và vấn đề cơ bản 7 1.1. Một số khái niệm cơ bản. . . . . . . . . . . . . . . . . . . . . . 7 1.1.1. Định nghĩa không gian Hilbert . . . . . . . . . . . . . . 7 1.1.2. Một số khái niệm liên quan . . . . . . . . . . . . . . . 8 1.1.3. Định nghĩa ánh xạ không giãn . . . . . . . . . . . . . . 11 1.1.4. Định nghĩa nửa nhóm không giãn . . . . . . . . . . . . 11 1.2. Một số tính chất của toán tử . . . . . . . . . . . . . . . . . . . 11 1.3. Bài toán tìm điểm bất động . . . . . . . . . . . . . . . . . . . 13 1.4. Bài toán cân bằng . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5. Phương pháp Mann . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1. Đặt vấn đề . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2. Nội dung của phương pháp Mann . . . . . . . . . . . . 14 Chương 2. Nghiệm chung của bài toán cân bằng và điểm bất động của họ các ánh xạ không giãn trong không gian Hilbert 19 1 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2.1. Phương pháp tìm điểm bất động của nửa nhóm các ánh xạ không giãn và nghiệm bài toán cân bằng trong không gian Hilbert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1. Các kết quả đã được công bố. . . . . . . . . . . . . . . 19 2.1.2. Các bổ đề cần sử dụng . . . . . . . . . . . . . . . . . . 23 2.1.3. Các kết quả chính . . . . . . . . . . . . . . . . . . . . . 24 2.1.4. Hệ quả . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2. Phương pháp lặp cho bất đẳng thức biến phân trên tập các điểm bất động của họ các ánh xạ không giãn trong không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.1. Bất đẳng thức biến phân và các kết quả liên quan. . . 35 2.2.2. Các bổ đề cần sử dụng . . . . . . . . . . . . . . . . . . 37 2.2.3. Những kết quả chính . . . . . . . . . . . . . . . . . . . 38 2.2.4. Áp dụng . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Lời cảm ơn Luận văn này được hoàn thành tại Trường Đại học Khoa học - Đại học Thái Nguyên dưới sự hướng dẫn của GS.TS. Nguyễn Bường. Trong suốt quá trình làm luận văn, thầy đã luôn dành cho tôi sự hướng dẫn, chỉ bảo rất tận tình, truyền cho tôi nhiều kiến thức và kinh nghiệm quý báu. Tác giả xin bày tỏ lòng biết ơn sâu sắc tới thầy. Trong quá trình học tập và làm luận văn, thông qua các bài giảng, các buổi hội thảo tác giả thường xuyên nhận được sự quan tâm giúp đỡ và đóng góp những ý kiến quí báu của PGS. TS Lê Thị Thanh Nhàn, TS. Nguyễn Thị Thu Thủy và sự quan tâm giảng dạy nhiệt tình của các thầy và các cô công tác tại trường Đại học Khoa Học - Đại học Thái Nguyên, Viện Công Nghệ Thông Tin và Viện toán học thuộc Viện khoa học và Công nghệ Việt Nam. Từ đáy lòng mình tác giả xin bày tỏ lòng biết ơn sâu sắc đến các thầy, các cô. Tác giả xin bày tỏ lòng biết ơn tới các thầy và các cô trong Ban giám hiệu, Tổ Toán - Trường THPT Trại Cau - Đồng Hỷ - Thái Nguyên đã tạo điều kiện giúp đỡ tác giả trong quá trình học tập, nghiên cứu và hoàn thiện luận văn cao học. Cuối cùng, tôi xin chân thành cảm ơn gia đình, các anh chị em học viên cao học toán K3 và bạn bè đồng nghiệp động viên và khích lệ tác giả trong quá trình học tập, nghiên cứu và làm luận văn. Tác giả 3 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Mở đầu Bài toán tìm điểm bất động cho ánh xạ nói chung đã được rất nhiều nhà toán học nghiên cứu như Định lý Brouwer được phát biểu năm 1912 bởi nhà toán học Hà Lan Luizen Egbereis Jan Brouwer còn có tên Nguyên lý điểm bất động Brouwer. Đây là một trong những định lý toán học quan trọng của thế kỷ 20 và sau đó vẫn được nhiều nhà toán học tiếp tục nghiên cứu. Nguyên lý điểm bất động Brouwer: Một ánh xạ liên tục f từ hình cầu đóng trong Rn vào chính nó phải có điểm bất động, tức tồn tại x sao cho f (x) = x. Ví dụ 0.0.1. Trong mặt phẳng phức mọi ánh xạ liên tục của hình tròn đơn vị vào chính nó sẽ có điểm bất động. Sau đó, Schauder (1930), Tikhonov (1935) đã mở rộng nguyên lý này và ở dạng tổng quát nó được gọi là nguyên lý Brouwer- Schauder- Tikhonov phát biểu như sau: Một ánh xạ liên tục f từ một tập lồi compac trong một không gian topo lồi địa phương Hausdorff vào chính nó phải có điểm bất động, tức tồn tại x sao cho f (x) = x. Cho đến nay các nhà toán học cả trong và ngoài nước vẫn đang tiếp tục mở rộng định lý này cho các vấn đề như đối với ánh xạ đa trị, ánh xạ không giãn hay đối với nửa nhóm không giãn. Trong khuôn khổ của luận văn này chúng tôi xin được trình bày một đề tài: "Phương pháp Mann tìm nghiệm của bài toán cân bằng và điểm bất động cho ánh xạ không giãn". Đây là vấn đề gặp nhiều trong nhiều lĩnh vực khoa học và ứng dụng. Đã có rất nhiều nhà toán học nghiên cứu vấn đề này như Martinet đưa ra để giải bài toán 4 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn bất đẳng thức biến phân, sau đó Rockafellar mở rộng để giải bài toán biến phân và toán tử đơn điệu. Phương pháp Mann được sử dụng để giải bài toán bất đẳng thức biến phân và bài toán cân bằng, và một trong những kết quả đẹp về vấn đề này đã được Giáo sư - Tiến sĩ Nguyễn Bường cùng với hai cộng sự Nguyễn Đình Dương và Nguyễn Thị Quỳnh Anh đưa ra trong hai bài báo "Phương pháp lặp tìm nghiệm của bài toán cân bằng và điểm bất động của nửa nhóm các ánh xạ không giãn trên không gian Hilbert" và "Phương pháp lặp cho bất đẳng thức biến phân trên tập các điểm bất động của họ hữu hạn các ánh xạ không giãn trên không gian Hilbert." Luận văn này chúng tôi xin trình bày chi tiết về kết quả đó. Bố cục luận văn này gồm 2 chương: Chương I. Một số khái niệm và vấn đề cơ bản. Chương II. Nghiệm chung của bài toán cân bằng và điểm bất động của họ các ánh xạ không giãn trong không gian Hilbert. Do thời gian có hạn nên luận văn này chỉ dừng lại ở việc tìm hiểu, tập hợp tài liệu và trình bày các kết quả nghiên cứu đã có theo chủ đề đặt ra. Trong quá trình viết luận văn cũng như trong quá trình xử lý văn bản chắc chắn không tránh khỏi sai sót, rất mong nhận được những ý kiến đóng góp của quí thầy, cô và bạn đọc. Thái Nguyên, ngày ... tháng .... năm 2011 Tác giả Phạm Thị Bích Thảo 5 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Một số ký hiệu và chữ viết tắt Rn |β| x := y ∀x ∃x : : : : : Không gian Euclide n-chiều Trị tuyệt đối của số thực β x được định nghĩa bằng y Với mọi x Tồn tại x I A⊂B A⊆B A∪B A∩B A×B convD xk → x xk * x A∗ D(A) R(A) R C : : : : : : : : : : : : : : Ánh xạ đồng nhất Tập A là tập con thực sự của tập B Tập A là tập con của tập B A hợp với B A giao với B Tích Đề-các của hai tập A và B Bao lồi của tập D dãy {xk } hội tụ mạnh tới x dãy {xk } hội tụ yếu tới x Toán tử liên hợp của toán tử A Miền xác định của toán tử A Miền giá trị của toán tử A Tập các số thực. Tập các số phức. 6 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chương 1 Một số khái niệm và vấn đề cơ bản Trong chương này, chúng tôi đề cập đến các vấn đề sau. Trong mục 1.1, chúng tôi giới thiệu một số khái niệm và kiến thức liên quan đến không gian Hilbert. Trong mục 1.2, chúng tôi trình bày một số tính chất của toán tử. Trong mục 1.3 chúng tôi sẽ trình bày bài toán tìm điểm bất động của họ các ánh xạ không giãn trên không gian Hilbert. Mục 1.4 là nội dung của bài toán cân bằng Mục 1.5 là nội dung cơ bản của phương pháp MANN 1.1. 1.1.1. Một số khái niệm cơ bản. Định nghĩa không gian Hilbert Định nghĩa 1.1.1. Cho X là một không gian tuyến tính trên R. Một tích vô hướng trong X là một ánh xạ h., .i : X × X → R thoả mãn các điều kiện sau: i) hx, xi > 0, ∀x 6= 0; hx, xi = 0 ⇔ x = 0; ii) hx, yi = hy, xi, ∀x, y ∈ X; iii) hαx, yi = αhx, yi, ∀x, y ∈ X, ∀α ∈ R; iv) hx + y, zi = hx, zi + hy, zi, ∀x, y, z ∈ X. Không gian tuyến tính X cùng với tích vô hướng h., .i được gọi là không gian tiền Hilbert. Không gian tiền Hilbert đầy đủ được gọi là không gian Hilbert. Chuẩn p của phần tử x được kí hiệu là kxk và được xác định bằng kxk = hx, xi. Các không gian Rn , L2 [a, b] là các không gian Hilbert với tích vô hướng 7 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn được xác định tương ứng là: n X hx, yi = ξi ηi ; x = (ξ1 , ξ2 , ..., ξn ) ∈ Rn ; i=1 y = (η1 , η2 , ..., ηn ) ∈ Rn ; b Z ϕ(x)ψ(x)dx, ϕ, ψ ∈ L2 [a, b]. hϕ, ψi = a 1.1.2. Một số khái niệm liên quan • Cho X là một không gian Hilbert, một dãy {xn } gồm các phần tử xn ∈ X gọi là hội tụ mạnh tới phần tử của x ∈ X nếu kxn − xk → 0 khi n → ∞. Nếu {xn } hội tụ mạnh tới x ∈ X thì: (i) Mỗi dãy con {xnk } ⊂ {xn } cũng hội tụ tới x; (ii) Mỗi dãy {kxn − ξk} bị chặn, ξ ∈ X. • Dãy {xn } ⊂ X được gọi là đủ hay Cauchy, nếu với mỗi ε > 0, tồn tại n0 (ε) sao cho: kxm − xn k < ε với mọi m ≥ n0 (ε), n ≥ n0 (ε). • Cho X, Y là hai không Hilbert. Khi viết A : X → Y có nghĩa A là một toán tử đơn trị từ X vào Y. Khi viết A : X → 2Y có nghĩa A là một toán tử đa trị từ X vào Y. • Toán tử A : X → R được gọi là tuyến tính nếu: (i) A(x1 + x2 ) = Ax1 + Ax2 ∀x1 , x2 ∈ X; (ii)A(αx) = αAx ∀α ∈ R, x ∈ X. • Toán tử tuyến tính A được gọi là bị chặn, nếu tồn tại một hằng số M > 0 sao cho kAxk ≤ M kxk. Giá trị hằng số M nhỏ nhất thỏa mãn bất đẳng thức đó được gọi là chuẩn của A và ký hiệu là kAk. Mệnh đề 1.1.1. Cho X là một không gian Hilbert và x0 ∈ X là một phần tử tùy ý. Khi đó tồn tại một hàm tuyến tính ϕ : X → R sao cho kϕk = 1 và ϕ(x0 ) = kx0 k. • Tập hợp tất cả các phiếm hàm tuyến tính liên tục trên X gọi là không gian liên hợp (hay không gian đối ngẫu của X) và được ký hiệu là X ∗ . 8 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn • Dãy {xn } gồm các phần tử xn ∈ X được gọi là hội tụ yếu tới phần tử x ∈ X (viết tắt là xn * x) nếu hφ, xn i → hφ, xi với mỗi φ ∈ X ∗ . • Cho X là không gian Hilbert, và C là tập con của X. Một ánh xạ T : C → X được gọi là demicompact, nếu nó thỏa mãn tính chất với mỗi dãy {xn } bị chặn trong X và {T xn − xn } hội tụ mạnh thì tồn tại một dãy con {xnk } của {xn } cũng hội tụ mạnh đến p thì T (x) = p. Nếu dãy {xn } hội tụ yếu tới x ∈ X thì dãy {kxn k} là bị chặn. Định nghĩa 1.1.2. Cho X là một không gian Hilbert, M là một tập con khác rỗng của X. (i) M được gọi là lồi nếu với mọi x, y ∈ M, 0 ≤ λ ≤ 1 ta có: λx + (1 − λ)y ∈ M ; (ii) M được gọi là compact nếu mọi dãy {xn } ⊂ M đều chứa dãy con hội tụ tới một điểm thuộc M . • Mỗi tập con đóng bị chặn M của một không gian Hilbert là compact yếu, tức là với mỗi dãy bị chặn trong M có thể trích ra được một dãy con hội tụ yếu tới một phần tử của không gian này. • Tập M ⊂ X được gọi là tập đóng yếu, nếu {xn } * x, thì x ∈ M . Định lý 1.1.1. Định lý Mazur Mỗi tập con lồi đóng của một không gian Hilbert là đóng yếu. Định nghĩa 1.1.3. Một phiếm hàm ϕ xác định trên X được gọi là lồi, nếu ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y) với mọi x, y ∈ X, t ∈ [0, 1]. Nếu dấu "=" xảy ra chỉ khi x = y, thì ϕ được gọi là lồi chặt. • Nếu tồn tại một hàm liên tục tăng γ : [0; +∞) → R, γ(0) = 0 sao cho: ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y) − t(1 − t)γ(kx − yk) 9 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn với mọi x, y ∈ X thì ϕ được gọi là lồi đều và hàm γ(t) gọi là modul lồi của ϕ. • Nếu γ(t) = ct2 (c > 0) thì phiếm hàm ϕ được gọi là lồi mạnh. Định nghĩa 1.1.4. Một phiếm hàm ϕ được gọi là nửa liên tục dưới tại x0 ∈ X, nếu với mỗi dãy {xn } ⊂ X sao cho xn → x0 ta có: ϕ(x0 ) ≤ lim inf ϕ(xn ). n→∞ Nếu xn * x0 và ϕ(x0 ) ≤ lim inf ϕ(xn ), n→∞ thì ϕ được gọi là nửa liên tục yếu tại x0 . Định lý 1.1.2. (i) Nếu ϕ(x) là một phiếm hàm lồi trên X thì ϕ0 (x) thỏa mãn bất đẳng thức sau: hϕ0 (x) − ϕ0 (y), x − yi ≥ 0, ∀x, y ∈ X; (ii) Nếu ϕ(x) là một phiếm hàm lồi đều trên X thì: hϕ0 (x) − ϕ0 (y), x − yi ≥ 2γ(kx − yk), ∀x, y ∈ X; (iii) Nếu ϕ(x) là một phiếm hàm lồi mạnh trên X thì: hϕ0 (x) − ϕ0 (y), x − yi ≥ 2ckx − yk2 , ∀x, y ∈ X. Định lý 1.1.3. (i) Nếu ϕ(x) là một phiếm hàm lồi trên X thì ϕ0 (x) thỏa mãn bất đẳng thức sau: hϕ0 (x), x − yi ≥ ϕ(x) − ϕ(y), ∀x, y ∈ X; (ii) Nếu ϕ(x) là một phiếm hàm lồi đều trên X thì: hϕ0 (x), x − yi ≥ ϕ(x) − ϕ(y) + γ(kx − yk), ∀x, y ∈ X; (iii) Nếu ϕ(x) là một phiếm hàm lồi mạnh trên X thì: hϕ0 (x), x − yi ≥ ϕ(x) − ϕ(y) + ckx − yk2 , ∀x, y ∈ X. 10 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1.1.3. Định nghĩa ánh xạ không giãn Định nghĩa 1.1.5. Cho C là tập con lồi đóng khác rỗng trong không gian Hilbert thực H. Phép chiếu của phần tử x ∈ H vào C kí hiệu là PC x. Ánh xạ T : C → C được gọi là ánh xạ không giãn trên C nếu T : C → C sao cho kT x − T yk ≤ kx − yk với mọi x, y ∈ C. Ta kí hiệu F (T ) là tập các điểm bất động của T , tức là: F (T ) = {x ∈ C : x = T x}. 1.1.4. Định nghĩa nửa nhóm không giãn Định nghĩa 1.1.6. Cho C là tập con lồi đóng khác rỗng trong không gian Hilbert thực H. Ánh xạ T : C → C là ánh xạ không giãn trên C. Tập {T (s) : s > 0} được gọi là nửa nhóm không giãn trên C nếu thỏa mãn các điều kiện sau: (1) Với mỗi s > 0, T (s) là ánh xạ không giãn trên C; (2) T (0)x = x với mọi x ∈ C; (3) T (s1 + s2 ) = T (s1 ) ◦ T (s2 ) với mọi s1 , s2 > 0; và (4) Với mỗi x ∈ C, ánh xạ T (.)x từ (0, ∞) vào C là liên tục Ta kí hiệu F = ∩s>0 F (T (s)). Khi đó F là tập con lồi đóng trong H và F 6= ∅ nếu C bị chặn. 1.2. Một số tính chất của toán tử Định nghĩa 1.2.1. Toán tử A : X → 2Y được gọi là bị chặn nếu nó biến mỗi tập bị chặn trong X thành một tập bị chặn trong Y . Nếu R(A) ⊂ Y là một tập bị chặn thì toán tử A được gọi là bị chặn đều. ∗ Định nghĩa 1.2.2. Toán tử A : X → 2X được gọi là bức nếu nó tồn tại 11 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn một hàm c(t) xác định với t ≥ 0 sao cho c(t) → +∞ khi t → ∞, thì: hy, xi ≥ c(kxk)kxk, ∀x ∈ X, ∀y ∈ Ax. Điều kiện trên tương đương với: A là toán tử bức khi và chỉ khi: hAx, xi lim = +∞. kxk→∞ kxk Định nghĩa 1.2.3. Toán tử A : X → X được gọi là compact trên X nếu nó biến mỗi tập bị chặn trong X thành một tập compact trong Y. Định nghĩa 1.2.4. Cho X, Y là không gian Hilbert. Toán tử A : X → Y được gọi là: (i) liên tục tại x0 ∈ X nếu với mỗi dãy con {xn } ⊂ X sao cho: Axn → Ax0 , khi xn → x0 ; (ii) h - liên tục tại x0 ∈ X nếu A(x0 + tn h) * Ax0 khi tn → 0 với mỗi véctơ h ∈ X ; (iii) d - liên tục tại x0 ∈ X nếu với mỗi dãy con {xn } ⊂ X sao cho khi xn → x0 thì Axn * Ax0 ; (iv) liên tục Lipschitz nếu ∃L > 0 sao cho: kAx − Ayk ≤ Lkx − yk, ∀x, y ∈ X. ∗ Toán tử A : X → 2X được gọi là d - đơn điệu trên X nếu tồn tại một hàm không âm d(t), không giảm với t ≥ 0, và d(0) = 0 thỏa mãn tính chất: hAx − Ay, x − yi ≥ (d(kxk) − d(kyk))(kxk − kyk), ∀x, y ∈ X. ∗ Định nghĩa 1.2.5. Toán tử A : X → 2X được gọi là đơn điệu đều trên X nếu tồn tại một hàm không âm δ(t), không giảm với t ≥ 0, và δ(0) = 0 và thỏa mãn tính chất: hAx − Ay, x − yi ≥ δ(kx − yk), ∀x, y ∈ X. Nếu δ(t) = ct2 , (c > 0) thì toán tử A được gọi là đơn điệu mạnh. Toán tử A được gọi là nửa đơn điệu, nếu tồn tại một toán tử compact C sao cho A + C là một toán tử đơn điệu. 12 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1.3. Bài toán tìm điểm bất động Bài toán tìm điểm bất động chung cho họ hữu hạn các ánh xạ không giãn trong không gian Hilbert H được phát biểu như sau: Tìm một điểm p ∈ C := ∩N i=1 (Ci ) trong đó N ≥ 1 là một số nguyên và mỗi Ci là tập các điểm bất động F ix(Ti ) của các ánh xạ không giãnTi : H → H, i = 1, 2..N Trong trường hợp đơn giản, khi N = 1 và T1 = T là ánh xạ không giãn trên một tập lồi đóng C của không gian Hilbert H, tức là T : C → C và kT x − T yk ≤ kx − yk với mọi x, y ∈ C. Bài toán tìm điểm bất động cho họ các ánh xạ loại không giãn xác định trên một tập lồi đóng của không gian Hilbert là một vấn đề lớn và hiện được rất nhiều các nhà toán học trên thế giới quan tâm. Trong luận văn này chúng tôi chỉ xin được trình bày một khía cạnh liên quan đến phương pháp MANN tìm nghiệm của bài toán cân bằng và điểm bất động của họ các ánh xạ không giãn trên không gian Hilbert ở trong chương sau. 1.4. Bài toán cân bằng Định nghĩa 1.4.1. Bài toán cân bằng của một hàm hai biến G(u, v) trên C × C là tìm phần tử u∗ ∈ C sao cho G(u∗ , v) ≥ 0 ∀v ∈ C. (1.1) Ở đây hàm hai biến G thỏa mãn các điều kiện sau: (A1) G(u, u) = 0 ∀u ∈ C; (A2) G(u, v) + G(v, u) ≤ 0 ∀(u, v) ∈ C × C; (A3)Với mỗi u ∈ C, G(u, .) : C → (−∞, +∞) là phiếm hàm liên tục dưới yếu ; (A4) limt→+0 G((1 − t)u + tz, v) ≤ G(u, v) ∀(u, z, v) ∈ C × C × C; 13 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Ta kí hiệu tập nghiệm của bài toán (1.1) là EP (G). Khi đó EP (G) là tập con lồi đóng trên H. 1.5. 1.5.1. Phương pháp Mann Đặt vấn đề Năm 1952 W.R.MANN đã đưa ra một phương pháp tìm điểm bất động cho một tập E lồi trong không gian Banach với một ánh xạ liên tục T từ E vào chính nó. Nội dung cơ bản của phương pháp Mann như sau: Trong E ta sẽ xây dựng một dãy xn và dãynà y sẽ hội tụ đến điểm bất động của T , bằng cách chọn phần tử ban đầu x1 ∈ E và các phần tử tiếp theo được xác định thông qua quá trình lặp: xn+1 = T (xn ), ∀n ≥ 1. (1.2) Nếu dãy này hội tụ thì nó sẽ hội tụ đến điểm bất động của T . Nhưng để nó hội tụ thì ta phải hạn chế một số điều kiện của T , ví dụ như T là một hàm khoảng cách giảm chẳng hạn. Tuy nhiên, những giả thiết như thế là rất đặc biệt, vấn đề đặt ra là ta cần tìm những điều kiện khác mà không cần đến những giả thiết đặc biệt đó mà bài toán vẫn được giải quyết. 1.5.2. Nội dung của phương pháp Mann Giả sử quá trình lặp được xác định bởi (1.2) là không hội tụ, khi đó ta xét ma trận A như sau:  1 0 0 ··· 0 0  a21 a22 0 · · · 0 0    A = . . . . . . . . . . . . . . . . . . . , an1 an2 · · · ann 0 0 ...................  trong đó các phần tử của A thỏa mãn các điều kiện sau: aij ≥ 0, ∀i, j, 14 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ∀i > j, aij = 0, i X aij = 1, (1.3) ∀i. j=1 Bắt đầu với phần tử x1 ∈ E và quá trình lặp được xác định như sau: xn+1 = T (vn ), trong đó vn = n X (1.4) ank xk . (1.5) k=1 Quá trình này được xác định bởi điểm ban đầu x1 , ma trận A và ánh xạ T được biểu thị bởi bộ (x1 , A, T ) có thể được coi là quá trình lặp, vì khi ma trận A là ma trận đơn vị I thì (x1 , I, T ) là quá trình lặp thông thường (1.2) Định lý 1.5.1. Nếu một trong hai dãy {xn } và {vn } hội tụ thì dãy còn lại cũng hội tụ đến cùng một điểm, và điểm hội tụ chung là điểm bất động của T. Chứng minh. Giả sử lim xn = p, vì A là ma trận xác định như trên và theo (1.5) nên lim vn = p. Từ T là ánh xạ liên tục nên lim T (vn ) = T (p), nhưng T (vn ) = xn+1 do đó T (p) = p Bây giờ ta giả rằng lim vn = q thì lim xn = T (q) và theo qui luật của A nên lim vn = T (q). Do đó T (q) = q.  Nếu {xn } hoặc {vn } không có điểm giới hạn. Khi đó ta gọi X là tập các điểm giới hạn của x0 s và V là tập các điểm giới hạn của v 0 s. Ta có định lý sau: Định lý 1.5.2. Nếu ma trận A xác định như trên và bổ xung thêm điều kiện lim ann = 0, 15 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn lim n X |a(n+1),k − an,k | = 0, (1.6) k=1 thì X và V là các tập đóng liên thông. Chứng minh. V là tập đóng và compact và vì (1.6), lim(vn+1 − vn ) = 0 do đó, V là tập liên thông. Khi T là liên tục và X = T (V ) nên X là đóng và liên thông  Định lý 1.5.3. V chứa trong bao lồi của X. Chứng minh. Giả sử X 0 là một bao lồi của X. Áp dụng định lý Mazur, thì X 0 là tập đóng. Do một số hữu hạn các phần tử của {xn } nằm trong tập mở chứa X nên với n đủ lớn thì vn nằm trong lân cận đóng của X. Do đó, các giới hạn của mỗi dãy hội tụ {vn } nằm trong X và định lý được chứng minh.  Ví dụ 1.5.1. Ta xét ma trận A là ma trận Cesaro, có dạng   1 0 0 0 0 ··· ··· ···  1/2 1/2 0 0 0 · · · · · · · · ·    1/3 1/3 1/3 0  0 · · · · · · · · ·  . A=  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1/n 1/n 1/n · · · 1/n 0 0 · · · ............................... Khi đó A thỏa mãn tất cả các giả thiết của định lý(1.5.2). Áp dụng (1.4) và (1.5) ta thấy rằng (x1 , A, T ) biểu thị quá trình lặp, bắt đầu với điểm x1 ∈ E và áp dụng công thức: xn+1 = T (vn ), ∀n ≥ 1, trong đó n 1X vn = xk . n k=1 16 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Nói cách khác, (k + 1) phần tử trong dãy {xn } là ảnh của k phần tử đầu tiên qua T. Dễ dàng thấy quá trình thỏa mãn vn+1 − vn = T (vn ) − vn . n+1 (1.7) Bây giờ, trong trường hợp cụ thể mà không gian Banach chỉ là trục thực và các tập lồi compact E là đóng và bị chặn. Ta thu được kết quả đặc biệt sau đây. Định lý 1.5.4. Nếu T là một hàm liên tục trên [a; b] và có một điểm bất động duy nhất p trên [a; b] thì (x1 , A, T ) hội tụ đến p với mọi cách chọn x1 ∈ [a; b]. Chứng minh. Từ (1.7) ta thấy (vn+1 − vn ) → 0. Vì T (x) là hàm liên tục và p là duy nhất thỏa mãn T (x) − x > 0 nếu x < p và T (x) − x < 0 nếu x > p. Hơn nữa, với mỗi δ > 0 tồn tại một số ε > 0 sao cho |T (x) − x| ≥ ε khi |x − p| ≥ δ. Sử dụng (1.7) để viết vn+1 theo dạng sau: vn+1 = v1 + n X T (vk ) − vk k=1 k+1 ; chúng ta thấy kết quả lim vn = p, theo định lý (1.2.1) suy ra lim xn = p  Trong không gian chiều vô hạn chiều không có kết quả tương đương với định lý (1.2.1) đã thu được, mặc dù trong nhiều trường hợp cụ thể quá trình lặp khái quát (x1 , A, T ) có thể dẽ dàng nhận thấy sự hội tụ, tuy nhiên cũng có trường hợp quá trình lặp lại phân kì. Ví dụ 1.5.2. Nếu E biểu thị bởi vòng tròn cùng với miền trong cua nó, T π biểu thị phép quay với góc quay về tâm, quá trình lặp sẽ được sử dụng ít 4 hơn trong một quá trình nỗ lực tìm điểm bất động duy nhất. Sử dụng quá trình (x1 , A, T ) các dãy {xn } và {vn } luôn hướng vào trung tâm không phân biệt điểm đầu được chọn. Nó mở ra một hy vọng rằng người ta có thể chứng minh sự hội tụ của phương pháp lặp tổng quát theo giả 17 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn thuyết yếu hơn so với những yêu cầu mà vẫn bao hàm sự hội tụ của quá trình lặp thông thường. Kết quả theo hướng này sẽ được quan tâm, ví dụ, trong các vấn đề biên của hàm phi tuyến, các ánh xạ không giãn... với một điều kiện Lipschitz dể đảm bảo sự hội tụ của xấp xỉ tiếp theo. 18 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chương 2 Nghiệm chung của bài toán cân bằng và điểm bất động của họ các ánh xạ không giãn trong không gian Hilbert Trong chương này chúng tôi trình bày hai vấn đề cơ bản của luận văn. Mục 2.1 là nội dung phương pháp tìm điểm bất động của nửa nhóm các ánh xạ không giãn và nghiệm bài toán cân bằng trong không gian Hilbert. Mục 2.2 là nội dung Phương pháp lặp cho bất đẳng thức biến phân trên tập các điểm bất động của họ các ánh xạ không giãn trên không gian Hilbert. Nội dung của chương này được chúng tôi tổng hợp từ hai bài báo của GS. TS Nguyễn Bường và hai cộng sự Nguyễn Đình Dương và Nguyễn Thị Quỳnh Anh (xem [19]- [20]) 2.1. 2.1.1. Phương pháp tìm điểm bất động của nửa nhóm các ánh xạ không giãn và nghiệm bài toán cân bằng trong không gian Hilbert. Các kết quả đã được công bố. Cho C1 và C2 là các tập con lồi đóng trong H. G(u, v) là hàm hai biến xác định bởi các điều kiện từ (A1) - (A4). Thay C bởi C1 và cho {T (s) : s > 0} là nửa nhóm không giãn trên C2 . Cần tìm một phần tử p ∈ EP (G) ∩ F, (2.1) trong đó EP (G) và F được biểu thị là tập các trạng thái cân bằng trên C1 × C1 và tập các điểm bất động của nửa nhóm không giãn {T (s) : s > 0} trên tập lồi đóng C2 tương ứng. 19 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất