Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Công nghệ thông tin Phát hiện người ngã sử dụng đặc trưng kết hợp từ nhiều nguồn cảm biến...

Tài liệu Phát hiện người ngã sử dụng đặc trưng kết hợp từ nhiều nguồn cảm biến

.PDF
52
155
87

Mô tả:

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG --------------------------------------- PHẠM ANH TUẤN PHÁT HIỆN NGƯỜI NGÃ SỬ DỤNG ĐẶC TRƯNG KẾT HỢP TỪ NHIỀU NGUỒN CẢM BIẾN LUẬN VĂN THẠC SĨ KỸ THUẬT (Theo định hướng ứng dụng) HÀ NỘI - 2019 HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG --------------------------------------- PHẠM ANH TUẤN PHÁT HIỆN NGƯỜI NGÃ SỬ DỤNG ĐẶC TRƯNG KẾT HỢP TỪ NHIỀU NGUỒN CẢM BIẾN Chuyên ngành: Hệ thống Thông tin Mã số: 8.48.01.04 LUẬN VĂN THẠC SĨ KỸ THUẬT (Theo định hướng ứng dụng) NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. PHẠM VĂN CƯỜNG HÀ NỘI - 2019 i LỜI CAM ĐOAN Tôi xin cam đoan: Những nội dung trong luận văn này là do tôi thực hiện. Mọi tham khảo dùng trong luận văn đều được trích dẫn rõ ràng và trung thực về tên tác giả, tên công trình, thời gian và địa điểm công bố. Mọi sao chép không hợp lệ, vi phạm quy chế đào tạo, hay gian trá, tôi xin chịu hoàn toàn trách nhiệm. Tác giả luận văn Phạm Anh Tuấn ii LỜI CẢM ƠN Em xin chân thành gửi lời cảm ơn sâu sắc đến thầy: PGS.TS. Phạm Văn Cường Giảng viên khoa Công nghệ Thông tin 1 - Học viện Công nghệ Bưu chính Viễn thông. Thầy đã định hướng nghiên cứu, chỉ bảo tận tình, đôn đốc đầy trách nhiệm, cho em các ý kiến đóng góp rất giá trị trong suốt quá trình làm nghiên cứu khoa học, làm luận văn, đồng thời tạo điều kiện thuận lợi để em hoàn thành luận văn này. Em xin chân thành cảm ơn toàn thể các thầy cô Khoa Đào tạo Sau Đại học; Khoa Công nghệ Thông tin 1 - Học viện Công nghệ Bưu chính Viễn thông đã truyền đạt những kiến thức bổ ích và lý thú, giúp ích cho em trên con đường học tập và nghiên cứu của mình. Cuối cùng, tôi cũng xin cảm ơn tất cả những người bạn đã đóng góp ý kiến, động viên, giúp đỡ tôi hoàn thành luận văn này. Hà Nội, ngày 23 tháng 01 năm 2019 Tác giả luận văn Phạm Anh Tuấn iii 1 MỤC LỤC LỜI CAM ĐOAN ....................................................................................................... i LỜI CẢM ƠN ............................................................................................................ ii MỤC LỤC ................................................................................................................. iii DANH MỤC CÁC BẢNG..........................................................................................v DANH MỤC HÌNH VẼ ............................................................................................ vi DANH MỤC CÁC TỪ VIẾT TẮT ......................................................................... vii MỞ ĐẦU .....................................................................................................................1 CHƯƠNG 1: TỔNG QUAN .......................................................................................4 1.1 Giới thiệu bài toán ............................................................................................4 1.2 Các nghiên cứu trước đây.................................................................................5 1.3 Phạm vi nghiên cứu ........................................................................................14 1.4 Kết luận chương .............................................................................................15 CHƯƠNG 2: PHÁT HIỆN NGÃ SỬ DỤNG NHIỀU CẢM BIẾN .........................16 2.1. Các cảm biến gia tốc (accelerometer) và cảm biến con quay hồi chuyển (gyroscope) ............................................................................................................16 2.1.1 Cảm biến gia tốc (accelerometer) ............................................................16 2.1.2 Cảm biến con quay hồi chuyển (gyrosope) .............................................20 2.2. Phân tích và xử lý dữ liệu cảm biến ...............................................................22 2.3. Trích xuất và kết hợp các đặc trưng ...............................................................25 2.4. Thuật toán nhận dạng .....................................................................................29 2.5. Kết luận chương .............................................................................................30 CHƯƠNG 3: THỬ NGHIỆM VÀ ĐÁNH GIÁ .......................................................32 3.1. Tập dữ liệu......................................................................................................32 iv 3.2. Phân tích và đánh giá kết quả .........................................................................33 3.2.1. Độ đo đánh giá .........................................................................................33 3.2.2. Kết quả trên cảm biến đơn .......................................................................34 3.2.3. Kết quả cho kết hợp đặc trưng cảm biến .................................................35 3.3. Kết luận chương .............................................................................................36 KẾT LUẬN ...............................................................................................................38 DANH MỤC TÀI LIỆU THAM KHẢO ..................................................................39 v 2 DANH MỤC CÁC BẢNG Bảng 1. 1: Năm bộ dữ liệu về ngã [9] .......................................................................10 Bảng 1. 2: So sánh giữa một vài bộ dữ liệu phát hiện ngã khác nhau. .....................13 Bảng 3. 1: Các hoạt động ngã và không phải ngã .....................................................33 Bảng 3. 2: Kết quả đánh giá từ cảm biến đơn. ..........................................................34 Bảng 3. 3: Kết quả thu được khi thay đổi giá trị của α và β .....................................35 Bảng 3. 4: Chi tiết kết quả cho sự kết hợp các đặc trưng của cảm biến. ..................36 vi 3 DANH MỤC HÌNH VẼ Hình 1. 1: Hình minh họa của môi trường và thiết bị cài đặt. ....................................6 Hình 1. 2: Hình minh họa dữ liệu thu thập từ nhiều cảm biến....................................7 Hình 1. 3: Mô hình đề xuất cho sự phát hiện ngã [3] .................................................8 Hình 1. 4: Ví dụ về ngã bị che khuất được ghi tại hai điểm quan sát .......................12 Hình 2. 1: Cảm biến gia tốc tuyến tính .....................................................................16 Hình 2. 2: Gia tốc kế 3 chiều trên smartphone..........................................................17 Hình 2. 3: Nguyên lý đo gia tốc theo trục y ..............................................................18 Hình 2. 4: Minh họa giá trị của x, y, z ......................................................................18 Hình 2. 5: Một số nghiên cứu liên quan sử dụng cảm biến gia tốc...........................19 Hình 2. 6: Con quay hồi chuyển................................................................................20 Hình 2. 7: Raspberry MPU 6050 [23] (trái) và cổng xPico 200 IoT [24] (phải) ......23 Hình 2. 8: Tín hiệu cảm biến của ngã từ từ; tín hiệu chuẩn hóa của gia tốc kế ........24 Hình 3. 1: Thiết bị đeo được gắn cho các đối tượng tham gia thử nghiệm...............33 vii 4 DANH MỤC CÁC TỪ VIẾT TẮT KÝ HIỆU AAE ADL TIẾNG ANH Averaged Acceleration Energy Activities of Daily Living Averaged Rotation Angles ARATG related to Gravity TIẾNG VIỆT Trung bình năng lượng gia tốc Các hoạt động sống hàng ngày Trung bình góc quay theo hướng trọng lực Direction Averaged Rotation Energy Trung bình năng lượng quay Averaged Velocity along Vận tốc trung bình theo hướng trọng Gravity Direction lực Averaged Velocity along Vận tốc trung bình theo hướng di Heading Direction chuyển DCT Discrete Cosine Transform Biến đổi Cosin rời rạc DF Dominant Frequency Tần số chính DT Decision Tree Cây quyết định ARE AVG AVH EVA Eigenvalues of Dominant Directions Trị riêng của các hướng chính IoT Internet of Things Mạng lưới thiết bị kết nối Internet KNN K Nearest Neighbours K láng giềng gần nhất LLSF Linear Least Square Fit Tuyến tính bình phương nhỏ nhất viii KÝ HIỆU TIẾNG ANH TIẾNG VIỆT MI Movement Intensity Cường độ chuyển động NB Naïve Bayes Nnet Neural Network PCA Principal Component Analysis Tính toán các xác suất chưa biết dựa trên các xác suất có điều kiện khác Mạng nơron Phân tích thành phần chính RBF Radial Basis Function Hạt nhân cơ sở hướng tâm RF Random Forest Rừng ngẫu nhiên SMA SVM Normalized Signal Magnitude Area Support Vector Machine Diện tích độ lớn tín hiệu chuẩn hóa Máy vector hỗ trợ 1 5 MỞ ĐẦU Tuổi thọ của con người ngày càng gia tăng, trong khi có nhiều dự báo cho thấy những người lớn tuổi sẽ phải sống độc lập trong ngôi nhà của họ. Một trong những rủi ro lớn đối với người lớn tuổi khi sống một mình là thường hay bị ngã. Hơn nữa, nguy cơ té ngã tăng rõ rệt theo độ tuổi do phản ứng chậm hơn, cân bằng và sức mạnh cơ bắp giảm. Vì vậy, hàng năm cứ trong 3 người cao tuổi thì có một người bị ngã và những cú ngã đột ngột này là nguyên nhân phổ biến gây thương tích và nhập viện trong độ tuổi này. Theo số liệu thống kê thực tế cho thấy thì ở Việt Nam ước tính có khoảng 1,6 đến 2 triệu người cao tuổi bị té ngã mỗi năm và ở Mỹ có khoảng 1/3 người có độ tuổi trên 65 tuổi bị ngã mỗi năm. Những chấn thương do ngã gây ra có thể là thiệt hại mô mềm, các liên kết xương và chấn thương vùng đầu hoặc có thể dẫn đến gãy xương đe dọa nghiêm trọng đến sức khỏe và cuộc sống của người cao tuổi. Theo nghiên cứu hàng năm cho thấy 80% người cao tuổi được trang bị nút cứu trợ nhưng họ lại không thể sử dụng được khi bị ngã mạnh, chủ yếu là vì họ không mang theo thiết bị vào thời điểm ngã hoặc ngã quá mạnh khiến họ không có khả năng nhấn nút cứu trợ tại thời điểm bị ngã. Để tăng khả năng sống độc lập của người cao niên, các nhà nghiên cứu đang hướng đến một số công nghệ thông minh tích hợp trong ngôi nhà nhằm phát hiện ngã và trợ giúp kịp thời. Chính vì vậy học viên chọn Đề tài: “Phát hiện người ngã sử dụng đặc trưng kết hợp từ nhiều nguồn cảm biến” cho luận văn cao học của mình với mục tiêu khảo sát bài toán phát hiện người ngã, và ứng dụng các thuật toán học máy để phân tích dữ liệu từ nhiều nguồn cảm biến nhằm phân biệt được nhiều tư thế ngã khác nhau. Mục đích nghiên cứu của học viên đó là khảo sát bài toán phát hiện người ngã, và ứng dụng các thuật toán học máy để phân tích dữ liệu từ nhiều nguồn cảm biến nhằm phân biệt được nhiều tư thế ngã khác nhau. Đối tượng nghiên cứu của học viên là người cao tuổi và phương pháp kết hợp nhiều dữ liệu cảm biến cho bài toán phát hiện 2 ngã. Phạm vi học viên nghiên cứu là: Cảm biến gia tốc (accelerometer) và cảm biến con quay hồi chuyển (gyroscope), thử nghiệm trên tập dữ liệu thu thập được. Phương pháp mà học viên áp dụng trong việc xây dựng luận văn cụ thể gồm: nghiên cứu lý thuyết và nghiên cứu thực nghiệm, trong đó nghiên cứu lý thuyết bao gồm: Đọc tài liệu, phân tích các tư thế ngã và nghiên cứu các phương pháp phát hiện ngã bằng cách kết hợp nhiều cảm biến. Nghiên cứu thực nghiệm học viên thu thập dữ liệu từ nhiều nguồn cảm biến với các tư thế ngã khác nhau sau đó thử nghiệm và đánh giá phương pháp phát hiện ngã từ nhiều nguồn cảm biến. Phần nội dung của luận văn được chia thành các phần như sau: Phần mở đầu, 03 chương chính, phần kết luận, danh mục tài liệu tham khảo, các phần được bố trí thứ tự như sau: Phần mở đầu của luận văn nêu lên nguy cơ té ngã ở những người lớn tuổi và những rủi ro họ gặp phải khi té ngã. Đã có rất nhiều nghiên cứu cho sự phát hiện ngã của con người tuy nhiên những nghiên cứu đó hầu hết dựa vào dữ liệu từ một nguồn cảm biến nên trong những trường hợp phức tạp thì phát hiện ngã và các hoạt động gần giống ngã vẫn còn nhiều vấn đề cần giải quyết từ đó luận văn đưa ra các nội dung chính về mục đích, đối tượng, phạm vi nghiên cứu cũng như phương pháp nghiên cứu. Nội dung chương 1 là: Tổng quan, chương này sẽ trình bầy về khảo sát bài toán phát hiện ngã; tiếp theo là khảo sát các nghiên cứu liên quan đến bài toán phát hiện ngã, bao gồm: cách tiếp cận, cảm biến được sử dụng, phương pháp học máy và phương pháp thực nghiệm; Tiếp theo sẽ trình bầy phạm vi nghiên cứu của luận văn này, và chương này sẽ kết thúc bằng nội dung đánh giá, nhận xét được rút ra trong mục kết chương. Chương 2 bắt đầu bằng việc trình bầy về các cảm biến được sử dụng trong luận văn; tiếp theo là phương pháp phân tích và xử lý dữ liệu cảm biến; Phương pháp trích xuất 3 và kết hợp các đặc trưng từ nhiều nguồn cảm biến. Cuối cùng sẽ trình bầy về mô hình học máy sẽ được sử dụng trong chương này và kết chương. Chương 3 tập trung vào thử nghiệm để đánh giá phương pháp được trình bầy trong chương 2; mô tả quá trình thu thập và gán nhãn dữ liệu hoặc sử dụng tập dữ liệu đã công bố. Tiếp đến là trình bầy quá trình và phương pháp thử nghiệm cũng như phân tích, đánh giá các kết quả thử nghiệm. 4 6 CHƯƠNG 1: TỔNG QUAN Chương này sẽ trình bầy về bài toán phát hiện ngã; tiếp theo là khảo sát các nghiên cứu liên quan đến bài toán phát hiện ngã, bao gồm: cách tiếp cận, cảm biến được sử dụng, phương pháp học máy và phương pháp thực nghiệm; Tiếp theo sẽ trình bầy phạm vi nghiên cứu của luận văn này, và chương này sẽ kết thúc bằng nội dung đánh giá, nhận xét được rút ra trong mục kết chương. 1.1 Giới thiệu bài toán Ngã thường xuyên xảy ra đối với những người bệnh và người cao tuổi, và là một trong những nguyên nhân chính có thể dẫn đến tử vong ở người cao tuổi. Té ngã không chỉ gây ra các chấn thương vật lý mà còn ảnh hưởng đến tâm lý của người cao tuổi. Ngã cũng là nguyên nhân khiến cho người cao tuổi sợ việc vận động, qua đó tác động một cách gián tiếp đến sức khỏe của họ. Ngoài ra, khi điều trị chấn thương thường phải cách ly tạm thời ra khỏi cộng đồng, xã hội sẽ làm ảnh hưởng xấu đến tâm lý của người ngã vì làm tăng cảm giác cô đơn và có thể dẫn đến trầm cảm. Chính vì vậy, việc sử dụng hệ thống tự động phát hiện ngã sẽ là rất cần thiết để giúp cho việc cấp cứu kịp thời để giảm thiểu rủi ro cho người ngã. Kết quả là, nhu cầu phát triển hệ thống giám sát thông minh có khả năng phát hiện ngã đã tăng lên đáng kể trong việc chăm sóc sức khỏe cộng đồng. Bài toán phát hiện ngã thường được tiếp cận bằng một trong 2 phương pháp: sử dụng cảm biến tích hợp vào môi trường (ambient sensors) hoặc cảm biến mang trên người (wearable sensors). Các cảm biến có thể là cảm biến tốc độ, gia tốc, hình ảnh, âm thanh, rung chấn v.v… các dữ liệu cảm biến này được thu thập và phân tích, trích chọn các đặc trưng để huấn luyện mô hình học máy; sau đó mô hình học máy sẽ được sử dụng để phát hiện ngã xảy ra trong thời gian thực. Trong đó, cảm biến hình ảnh (camera) và cảm biến gia tốc được sử dụng khá phổ biến. Trong các nghiên cứu ban đầu thì các hệ thống phát hiện ngã thường dựa vào các ngưỡng (threshold) được xác định dựa trên kinh nghiệm của các nhà nghiên cứu, phát triển để đưa ra quyết định ngã hoặc không phải là ngã. Sau đó, phần lớn các nghiên cứu về phát hiện ngã 5 hiện nay dựa trên học máy (machine learning). Nhiều mô hình học máy đã được đề xuất như mô hình Markov ẩn (hidden Markov model), mô hình cây quyết định (C 4.5 Decision Tree), mô hình máy véc tơ hỗ trợ (support vector machine), mô hình rừng ngẫu nhiên (random forests)… Các mô hình này thường được huấn luyện từ một nguồn cảm biến (single sensory source) và đã cho kết quả phát hiện ngã khá cao (thường trên 90%). Tuy nhiên, nếu áp dụng trực tiếp các phương pháp này để phát hiện ngã trong những trường hợp phức tạp (nhưng thường xuyên xảy ra trong thực tế) chẳng hạn như phân biệt ngã với một số hoạt động gần giống ngã như cúi người xuống chơi với vật cưng, uốn cong để lấy một vật từ sàn nhà, hoặc thậm chí chỉ nằm ngủ, hoặc phân biệt các tư thế ngã khác nhau (ngã nghiêng), ngã bên trái, ngã từ giường xuống đất, v.v… thì vẫn còn những thử thách cần phải giải quyết. 1.2 Các nghiên cứu trước đây Một số nghiên cứu [2,3] đã kết hợp cảm biến gia tốc và hình ảnh từ video để phát hiện ngã và các hoạt động hàng ngày. Chẳng hạn, công trình [2] thực hiện bởi T. H. Tran và các cộng sự tại viện MICA, trường đại học Bách Khoa Hà Nội, đã kết hợp dữ liệu cảm biến gia tốc không dây WAX3 gắn trên hông và cổ tay đối tượng thực hiện thử nghiệm với hình ảnh RGB-D được chụp từ 7 Kinect cameras được cài đặt trong một căn phòng lớn để phân biệt ngã và một số hoạt động gần giống như ngã nhằm hỗ trợ người cao tuổi tại nhà của họ. 6 Hình 1. 1: Hình minh họa của môi trường và thiết bị cài đặt. Hình trên cho thấy sự bố trí của hệ thống thu thập dữ liệu của chuyển động. Sáu Kinect cameras được cài đặt ở độ cao 1.8m xung quanh một không gian 3.6mx6.8m để mô phỏng giống như một căn phòng tại gia đình. Chiếc Kinect thứ 7 được gắn trên trần có độ cao 3m để quan sát từ phía trên toàn cảnh. Hai cảm biến không dây được gắn vào cổ tay trái và bên phía hông trái của đối tượng thử nghiệm. Với cách thiết lập này, mọi vị trí trong không gian có thể được quan sát bởi tất cả các cảm biến Kinect. Tổng cộng tập dữ liệu thu thập được chứa 1000 mẫu hoạt động (400 kiểu ngã và 600 hoạt động thường ngày) được thu từ 50 đối tượng. Sau đó các dữ liệu và các đặc trưng từ RGB, chiều sâu (RGB-D), khung xương (skeleton), cảm biến gia tốc (accelerometer) được trích xuất riêng rẽ. Trong đó dữ liệu RGB-D, và khung xương được thu thập từ 7 góc nhìn khác nhau (xem vị trí đặt Kinect camera tại hình 1.1), và dữ liệu của cảm biến gia tốc được thu thập từ 2 vị trí trên cơ thể của đối tượng thử nghiệm. Tất cả các dữ liệu được thu thập liên tục, đồng bộ hóa và được chú thích cho mục đích nghiên cứu. Trong thử nghiệm này, người tham gia thử nghiệm được yêu cầu mô phỏng các cú ngã theo các hướng khác nhau (ngã về phía sau, ngã về phía trước, ngã về bên trái, ngã về bên phải) và các kiểu ngã (ngã khi đang nằm trên giường, ngã khi đang ngồi trên ghế hay ngã khi đang đi bộ). Một số phương pháp phát hiện ngã đã được sử dụng trên thực tế [4], [5], [6]. Mỗi phương pháp có sức mạnh và hạn chế khác nhau, sau khi phân tích các phương 7 pháp khác nhau sẽ giúp chúng ta biết cách bổ sung các thuộc tính cho việc nhận dạng hoạt động của con người được tốt hơn. Trong nghiên cứu này, đầu tiên họ lấy dữ liệu từ 1 cảnh quan trong số 7 cảnh quan thu thập được, áp dụng kỹ thuật tiên tiến để phân tích từng phương pháp. Cụ thể, mạng tích chập 3D được sử dụng trong dữ liệu RGB [7]; bản đồ chuyển động chiều sâu (DMM) với bộ mô tả hạt nhân cải tiến (KDES) được áp dụng trên dữ liệu chiều sâu [8]; Res– TCN cho dữ liệu khung xương và 2D convent cho dữ liệu của cảm biến gia tốc [1]. Dữ liệu đa phương thức được đồng bộ hóa trong cùng 1 thời điểm, kết quả tìm được của tất cả các phương pháp được so sánh sau đó kết hợp các phương pháp khác nhau là báo cáo tốt nhất của nghiên cứu. Hình 1. 2: Hình minh họa dữ liệu thu thập từ nhiều cảm biến. Hình 1.2 cho thấy ảnh chụp nhanh của dữ liệu đa phương thức được đồng bộ hóa từ 7 Kinect cameras và các cảm biến gia tốc, vận tốc góc và từ trường. Tổng cộng, kích thước của tập dữ liệu khoảng 350 Giga bytes. Tất cả dữ liệu được đồng bộ hóa theo thời gian. Sau đó dữ liệu được gán nhãn, thời gian bắt đầu và thời gian kết thúc của mỗi hành động theo trình tự được ghi chú cho hoạt động của con người. Đây là bộ dữ liệu tương đối lớn và thú vị với số lượng người tham gia thử nghiệm và các tư thế hoạt động đa dạng, hơn thế nữa mỗi hoạt động được thu thập với nhiều góc nhìn (multiview) và nhiều cảm biến (multimodal) khác nhau. Ngoài ra, một số hoạt động dễ bị nhầm lẫn với ngã cũng tạo nên các thách thức đáng kể cho việc phát hiện ngã. Cụ thể, nhiều hoạt động thường ngày giống ngã, ví dụ như: chống tay trái để đứng 8 dậy, chống tay phải để đứng dậy, đang ngồi trên ghế sau đó đứng dậy, đang ngồi trên giường sau đó đứng dậy v.v... Một nghiên cứu khác [3] đề xuất phương pháp tiếp cận phát hiện ngã bằng cách kết hợp cảm biến gia tốc gắn bên hông và các hình ảnh độ sâu (depth images) từ cameras. Trong phương pháp tiếp cận này, hình ảnh độ sâu được lưu trữ trong bộ nhớ đệm để được sử dụng khi cần thiết. Sự kiện ngã được phát hiện dựa trên mô - đun xử lý dữ liệu cảm biến gia tốc. Mô đun dữ liệu cảm biến gia tốc nhận đầu vào là luồng tín hiệu cảm biến gia tốc sau đó được so sánh với một ngưỡng (threshold) để đưa ra quyết định một khoảng thời gian có khả năng chứa sự kiện ngã hay không. Nếu có tiềm năng là một sự kiện ngã thì các hình ảnh độ sâu sẽ được xử lý và phân tích để khẳng định có cú ngã xảy ra hay không. Phương pháp này có sự khác biệt với những phương pháp tiếp cận trước đây vì phương pháp này trích xuất những đặc trưng không chỉ trên hình ảnh độ sâu mà còn xử lý các đám mây điểm để trích xuất bộ mô tả về té ngã được phân biệt rất rõ ràng. Do con người thường làm những việc theo thói quen cá nhân tại những thời điểm và vị trí cụ thể trong căn nhà của họ như những hoạt động thường ngày nên phương pháp này sử dụng thuật toán k - nn (k –nearest neighbors) phân loại các hoạt động để tìm ra tín hiệu phát hiện ngã. Hình 1. 3: Mô hình đề xuất cho sự phát hiện ngã [3] 9 Tập dữ liệu được thu bao gồm các ảnh độ sâu với các hoạt động điển hình như: Đi bộ, ngồi xuống, cúi xuống và giả vờ nằm xuống đã được phân tích để xây dựng các phân lớp đáng tin cậy để kiểm tra xem vị trí, nơi mà một người đang nằm trên sàn và để đánh giá hiệu quả của việc phát hiện ngã. Trong tổng số 2395 hình ảnh được chọn từ bộ dữ liệu phát hiện ngã UR của các tác giả và các chuỗi hình ảnh được ghi lại trong các căn phòng tượng trưng như: Văn phòng làm việc, lớp học, v.v… Bộ ảnh được chọn ra bao gồm 1492 hình ảnh với các hoạt động thường ngày (ADLs), trong số đó có 903 hình ảnh mô tả hình ảnh một người đang nằm trên sàn. Những hình ảnh này được sử dụng để xác định tính năng độ sâu và đề xuất các nhận định về mô tả ngã. Bộ dữ liệu phát hiện ngã UR bao gồm ba mươi chuỗi hình ảnh ngã, ba mươi chuỗi hình ảnh hoạt động thường ngày điển hình như ngồi xuống, cúi xuống, nhấc một vật từ sàn nhà, và mười chuỗi với các hoạt động giống với ngã như nằm nhanh trên sàn nhà và nằm trên giường, đi văng. Số lượng hình ảnh trong chuỗi hoạt động ngã với mức giảm còn 3000, trong khi số lượng hình ảnh từ các chuỗi hoạt động thường ngày là bằng 10000. Hai loại ngã được thực hiện bởi năm người, cụ thể là từ vị trí đứng và ngồi trên ghế. Dữ liệu được thu thập ở tốc độ lấy mẫu là 30 Hz. Tất cả các hình ảnh RGB và hình ảnh độ sâu được đồng bộ hóa với dữ liệu chuyển động đều được thu lại bởi thiết bị cảm biến x-IMU. Dữ liệu chuyển động chứa gia tốc theo thời gian trong trục x−, y− và trục z − cùng với các giá trị được tính toán trước S Vtotal. Kết quả thực nghiệm được đánh giá bởi sự phân loại ngã và các hoạt động thường ngày (ADLs) giống ngã như: đang đứng rồi ngồi xuống, cúi xuống nhặt đồ trên sàn nhà, nằm trên ghế sofa bằng thuật toán k láng giềng gần nhất (k-NN) và so sánh nó với phân loại bằng thuật toán máy véc tơ hỗ trợ (SVM). Các bộ phân loại được đánh giá qua 10 lần kiểm chứng chéo nhau đã cho kết quả là tỷ lệ phát hiện ngã so với các hoạt động không phải là ngã sử dụng thuật toán k-nn cho độ chính xác 95.83% cao hơn so với sử dụng thuật toán SVM đạt 91.67%. Trong một nghiên cứu khác [4], tác giả đã trình bày cách cải thiện khả năng phát hiện ngã bằng cách bằng cách sử dụng dữ liệu của hình ảnh độ sâu và cảm biến gia tốc. Mô hình đề xuất bao gồm một cảm biến gia tốc được sử dụng để phát hiện 10 đoạn dữ liệu có khả năng chứa sự kiện ngã (fall event segment) và một cảm biến Kinect nhằm mục đích cung cấp các hình ảnh để xác nhận có sự kiện ngã đó. Nhóm tác giả đã chứng minh được rằng, thông qua những tín hiệu ngưỡng của cảm biến gia tốc, họ có thể lọc ra những trường hợp không phải là ngã. Đồng thời họ cũng chỉ ra rằng một cảm biến hình ảnh độ sâu có thể chắc chắn phân biệt giữa những trường hợp được lọc ra có cú ngã đã xảy ra hay không. Các tác giả cũng cho thấy rằng nhờ dữ liệu chuyển động, họ có thể tính toán để giảm đáng kể chi phí cho xử lý dữ liệu hình ảnh độ sâu. Trong đó, các bản đồ hình ảnh độ sâu không xử lý theo từng khung hình kế tiếp nhau (frame by frame), mà thay vào đó một bộ nhớ đệm được sử dụng để lưu trữ bản đồ hình ảnh độ sâu để xử lý chúng trong trường hợp có thể xảy ra ngã. Phương pháp nghiên cứu này đã đóng góp một phấn đáng kể cho hiệu quả tốt hơn về việc nghiên cứu phát hiện ngã trong tương lai. Ngoài ra còn có nghiên cứu [9] của Zhong Zhang và các cộng sự tập trung vào nghiên cứu dựa trên thị giác máy tính bằng camera chiều sâu. Cụ thể, các tác giả giới thiệu năm bộ dữ liệu phát hiện té ngã hiện có, ba bộ trong số năm bộ dữ liệu này được ghi lại bằng camera Kinect, một bộ được thu thập bởi camera RGB đơn và một bộ còn lại được tạo bằng nhiều camera RGB đơn đã được hiệu chuẩn. Bảng 1. 1: Năm bộ dữ liệu về ngã [9] OCCU two Kinects Dataset introduced in [10] one RGB camera Dataset introduced in [11] eight calibrated RGB cameras two eight fall fall type falls with direcdifferen direc t - tions tions number of falls 200 320 activities of daily Yes Yes Life two occluded falls NaN falls with different direc- 60 Yes 192 Yes eight forward, backward falls, falls from sitting down and loss of balance 200 Yes simulated scenar- 1 Ios 1 4 (home, coffee room, of24 fice, lecture room) camera type SDUF ALL one Kinect camera viewpoints one EDF two Kinects 1 tions
- Xem thêm -

Tài liệu liên quan