Đăng ký Đăng nhập
Trang chủ Phân tích dao động của dầm màng mỏng thổi phồng...

Tài liệu Phân tích dao động của dầm màng mỏng thổi phồng

.PDF
83
3
62

Mô tả:

MỤ LỤ TRANG BÌA LỜ AM OA MỤ LỤ TRA TÓM TẮT LUẬ VĂ DA MỤ Á TỪ V ẾT TẮT DA MỤ Á BẢ DA MỤ Á Ì MỞ ẦU ...................................................................................................................1 1. Lý do chọn đề tài ................................................................................................ 1 2. Mục tiêu nghiên cứu của đề tài ...........................................................................2 3. ối tượng nghiên cứu: ........................................................................................ 2 4. Phạm vi nghiên cứu: ........................................................................................... 2 5. Phương pháp nghiên cứu .................................................................................... 2 6. Bố cục đề tài: ......................................................................................................3 ƯƠ 1. TỔ QUA VỀ KẾT ẤU T Ổ P Ồ .........................................4 1.1. Tổng quan về cấu tạo và ứng dụng của kết cấu thổi phồng .................................4 1.1.1. ịnh nghĩa .....................................................................................................4 1.1.2. ng dụng của kết cấu màng m ng thổi phồng ..............................................4 1.1.3. h ng ưu đi m và nhược đi m của kết cấu màng m ng thổi phồng ..........10 1.2. Một số nghiên cứu về ứng xử của vật liệu ......................................................... 13 1.2.1. ấu tạo của vải kỹ thuật ..............................................................................13 1.2.2. ng xử cơ học của vải kỹ thuật ...................................................................14 1.2.3. Thí nghiệm đo các hệ số đàn hồi của vải kỹ thuật ......................................15 1.3. ghiên cứu về sự thổi phồng ống màng m ng................................................... 16 1.4. Một số công trình nghiên cứu về sự ứng xử của kết cấu màng m ng thổi phồng . ........................................................................................................................... 19 1.4.1. ghiên cứu của Apedo et al. (2014) ............................................................ 20 1.4.2. ghiên cứu của guyen et al. (2013) .......................................................... 23 1.5. Kết luận chương .................................................................................................31 ƯƠ 2. DAO Ộ ỦA KẾT ẤU ................................................................ 33 2.1. Khái niệm ...........................................................................................................33 2.2. ặc trưng cơ bản của bài toán động lực học ...................................................... 34 2.2.1. Lực cản ........................................................................................................34 2.2.2. ặc trưng động của hệ dao động tuyến tính ................................................35 2.3. Dao động tuần hoàn - Dao động điều hòa .......................................................... 35 2.3.1. Dao động tuần hoàn ..................................................................................... 36 2.3.2. Dao động điều hòa ....................................................................................... 36 2.4. Dao động của hệ h u hạn bậc tự do ...................................................................36 2.5. Dao động tự do của dầm cổ đi n ........................................................................39 2.6. Tần số và dạng dao động tự nhiên ......................................................................41 2.6.1. Áp dụng cho dầm đơn giản hai đầu khớp .................................................... 43 2.6.2. Áp dụng cho dầm công-xôn ........................................................................45 2.7. Kết luận chương .................................................................................................46 ƯƠ 3. DAO Ộ TỰ DO ỦA DẦM M MỎ T Ổ P Ồ .......47 3.1. ệ phương trình chuy n động ............................................................................47 3.2. Phương trình cân bằng phi tuyến ........................................................................49 3.3. Áp dụng cho bài toán dao động của dầm thổi phồng hai đầu khớp ................... 49 3.4. Mô ph ng số .......................................................................................................53 3.4.1. Số liệu đầu vào ............................................................................................ 53 3.4.2. Mô ph ng quá trình thổi phồng và dao động của dầm màng m ng thổi phồng bằng Abaqus/ AE 2016 .............................................................................54 3.4.3. Sự thay đổi hệ số đàn hồi của vật liệu ......................................................... 59 3.5. Xác minh lý thuyết ............................................................................................. 60 3.6. Kết luận...............................................................................................................63 KẾT LUẬ U ....................................................................................................64 T L ỆU T AM K ẢO ............................................................................................. 65 QUYẾT Ị AO Ề T LUẬ VĂ T SĨ (BẢ SAO) BẢ SAO KẾT LUẬ ỦA Ộ Ồ , BẢ SAO Ậ XÉT ỦA Á P Ả BỆ . TR NG TÓM TẮT LUẬN VĂN PHÂN TÍ D ĐỘNG Ủ DẦM MÀNG MỎNG T ỔI P ỒNG ọc viên: Nguyễn Văn Nguyên huyên ngành: Kỹ thuật công trình xây dựng Mã số: 60.58.02.08 - Khóa: K34 - Q Trường ại học Bách khoa – Tóm tắt – Luận văn này tập trung giải quyết bài toán dao động tự do của dầm màng m ng thổi phồng được cấu tạo từ màng m ng trực giao mà các phương trược giao được bố trí ngẫu nhiên, không nhất thiết phải song song với trục dầm. Dạng dầm Timoshenko được lựa chọn, bài toán được xây dựng trong khuôn khổ biến dạng lớn, cho phép k đến tất cả các yếu tố phi tuyến trong hệ phương trình cân bằng. Phép tuyến tính hóa được thực hiện xung quanh trạng thái thổi phồng của dầm, cho phép rút ra các phương trình tuyến tính, đơn giản hơn trong việc tính toán. ệ phương trình này sau đó được biến đổi về dạng phương trình đặc trưng của bài toán giá trị riêng, cho phép rút ra được các tần số dao động tự nhiên của dầm. Ảnh hưởng của áp suất thổi phồng và định hướng vật liệu đến tần số dao động tự nhiên của dầm đã được phân tích. ác kết quả mô ph ng số rất tiệm cận với kết quả thu được từ phương pháp phần tử h u hạn 3D và một mô hình lý thuyết khác. Từ khóa – dao động tự do, dầm màng m ng thổi phồng, vật liệu trực giao, thay đổi hệ số đàn hồi của vật liệu, định hướng vật liệu, biến dạng lớn. VIBRATION OF AN INFLATED MEMBRANE BEAM Abstract - This thesis report deals with the free vibration of the inflatable beam made of an orthotropic membrane, with the orthotropy directions oriented at an arbitrary angle, not necessarily parallel to the beam axis. The Timoshenko beam kinematics was selected and the problem was formulated in finite deformations to take into account all the nonlinear effects in the governing equations. The linearization was carried out around the inflated state of the beam, which resulted in a more tractable linear system. This was then reformulated to an equation of eigenvalue problem, which can be easily solved to get the natural frequencies of the beam. The influences of the internal pressure and the material orientation on the natural frequencies of the beams were analyzed. The numerical results were shown to match very well with those of a 3D thin-shell finite element model and an orthotropic material model found in the literature. Key words - free vibration, inflatable beam, orthotropic material, change of material properties, material orientation, finite deformation. D N MỤ Ữ VIẾT TẮT ệ tọa độ (en , e , et ) : ệ tọa độ địa phương, trực giao của màng m ng (er , e , e x ) : ệ tọa độ địa phương của ống ( R, , X ) : ác tọa độ trụ được gán với mô hình ống : Tọa độ cong được gán trên ống huyển vị U : Trường chuy n vị (U ,V ) : huy n vị dọc trục và chuy n vị vuông góc với trục ống : óc xoay của tiết diện ngang : Trường vận tốc ảo V* Trạng thái, hình dạng : Trạng thái quy chiếu 0 : Trạng thái biến dạng Đặc trưng hình học của ống L : hiều dài ống A : Bán kính ống H : hiều dày ống S0 : Diện tích tiết diện ngang của ống E I0 : ộ cứng chống uốn của ống kG t S0 : ộ cứng chống cắt của ống k x , k , kr : ệ số thay đổi kích thước ống Sự biến đổi Φ : àm biến đổi F : Ten-xơ gradient biến đổi E : Ten-xơ biến dạng Ứng suất, tải trọng Σ, σ : Ten-xơ ứng suất p : Áp suất thổi phồng P p R2 : Áp lực tác dụng lên tiết diện đầu ống F : Tải trọng tác dụng FX, FY, FZ : ác thành phần của tải trọng tập trung Fcr N, M, T, M(2) : Lực tới hạn : ác ứng lực màng N0, M0, T0, M0(2) : ác ứng lực màng ban đầu Đặc trưng của vật liệu : Ten-xơ độ mềm C E H , Et H : Module Young theo phương trực giao của màng m ng G tH : Module chống cắt của màng m ng t , t : ệ số Poisson ông suất ảo Wint* : ông suất ảo của nội lực * Wdead : ông suất ảo do tải trọng tĩnh W p* : ông suất ảo do áp suất D N MỤ ÌN Hình 1.1. Vệ tinh thổi phồng ECHO I .............................................................................. 5 Hình 1.2. Vệ tinh không gian ........................................................................................... 6 Hình 1.3. Trạm vũ trụ thổi phồng của dự án khám phá Mặt Trăng ................................. 7 Hình 1.4. Khinh khí cầu siêu áp của ASA ..................................................................... 7 Hình 1.5. Kết cấu thổi phồng được sử dụng tạm thời ...................................................... 8 Hình 1.6. Một số công trình thổi phồng được ứng dụng trong đời sống .......................... 8 Hình 1.7. Tác phẩm nghệ thuật bằng vải kỹ thuật ............................................................ 9 Hình 1.8. Mái vòm sử dụng kết cấu thổi phồng ............................................................... 9 Hình 1. . Kết cấu màng m ng thổi phồng được d ng đ trang trí ................................. 10 Hình 1.10. Kết cấu thổi phồng được d ng trong hàng hải ............................................. 10 Hình 1.11. Mặt cắt của 1 tấm panô bơm hơi .................................................................. 12 Hình 1.12. Kết cấu tensairity .......................................................................................... 13 Hình 1.13. ấu tạo vải kỹ thuật ...................................................................................... 14 Hình 1.14.Ký hiệu được sử dụng cho dầm màng m ng thổi phồng .............................. 21 Hình 1.15 ịnh hướng vật liệu ....................................................................................... 21 Hình 1.16. Mô hình chuy n động của ống màng m ng thổi phồng chịu uốn ................ 25 Hình 1.17. ệ tọa độ cong .............................................................................................. 27 Hình 2.1. Dầm có khối lượng và độ cứng phân bố đều .................................................. 39 Hình 2.2. ác trường hợp phân tích ............................................................................... 40 Hình 2.3. Lực hiệu dụng peff ( x, t ) ................................................................................. 41 Hình 2.4. ác dạng dao động và tần số dao động tương ứng của dầm đơn giản ........... 44 Hình 2.5. ác dạng dao động và tần số dao động tương ứng của dầm công-xôn .......... 46 Hình 3.1. Khởi tạo mô hình dầm màng m ng thổi phồng .............................................. 54 Hình 3.2. Khối lượng riêng của vật liệu ......................................................................... 55 Hình 3.3. ặc trưng cơ lý của vật liệu............................................................................ 55 Hình 3.4. Khai báo góc định hướng vật liệu .................................................................. 55 Hình 3.5. Khai báo giai đoạn thổi phồng........................................................................ 56 Hình 3.6. Khai báo giai đoạn dao động .......................................................................... 56 Hình 3.7. Khai báo giai đoạn thổi phồng........................................................................ 57 Hình 3.8. Khai báo giai đoạn dao động .......................................................................... 57 Hình 3. . Khai báo liên kết khớp.................................................................................... 57 Hình 3.10. Khai báo gối di động .................................................................................... 57 Hình 3.11. Khai báo loại phần tử được sử dụng cho mô hình ........................................ 58 Hình 3.12. Khai báo kích thước phần tử ........................................................................ 58 Hình 3.13. Mô hình dầm màng m ng thổi phồng .......................................................... 59 Hình 3.14 Sự thay đổi hệ số đàn hồi ( Ex H , Gx H ) của vật liệu ................................... 60 Hình 3.15. Biến thiên của tần số dao động f n ( Hz) - p(kPa) - Màng 3, 00 ........... 61 Hình 3.16. Sự thay đổi tần số dao động tự nhiên f n ( Hz) của hai dạng đầu tiên ............ 63 Hình 3.17. ai dạng dao động đầu tiên của dầm màng m ng thổi phồng ..................... 63 1 MỞ ĐẦU 1. Lý do chọn đề tài iện nay, phần lớn nh ng công trình xây dựng trên thế giới làm từ vật liệu cổ đi n là: gạch, đá, bê tông và đặc biệt là bê tông cốt thép và thép. Ưu đi m chung của các loại vật liệu này là khả năng chịu lực lớn, tuổi thọ công trình cao. Tuy nhiên, nhược đi m của nh ng vật liệu cổ đi n này là trọng lượng bản thân lớn, việc xây dựng và tháo dỡ khi không d ng đến tốn nhiều chi phí. Vì vậy, một loại vật liệu mới nhẹ hơn đang được nghiên cứu và đưa vào sử dụng là vật liệu vải kỹ thuật. Stadium Tennis Center - USA Allianz Arena - ức Pont de Val Cenis - Thụy Sỹ Tokyo Dome - hật Bản Hình 1.– Một số công trình có sử dụng kết cấu thổi phồng ác tấm vải kỹ thuật này thường được tạo hình thành nh ng ống kín, được thổi khí vào đ có th chịu được tải trọng bản thân cũng như chịu các tải trọng khác gọi là các ống thổi phồng. ác ống thổi phồng này được liên kết với nhau đ tạo nên khung chịu lực chính trong rất nhiều công trình xây dựng trên thế giới như mái vòm phục vụ sự kiện, nhà vòm phục vụ hội nghị, các kết cấu đỡ mái nhà dân dụng, các cầu tạm…. Ưu đi m của dạng kết cấu mới này là quá trình xây dựng nhanh, có th tháo dỡ và chuy n đến nơi khác một cách nhanh chóng, tiện lợi. Tải trọng bản thân của kết cấu nh nên sẽ giảm thi u trọng lượng bản thân công trình... goài ra, khi dầm thổi phồng này 2 được kết hợp với các vật liệu truyền thống một cách hiệu quả thì có th nâng cao rất nhiều khả năng chịu lực của kết cấu mà không làm tăng nhiều trọng lượng bản thân. Kết cấu liên hợp này hiện đang được sử dụng rất nhiều trên thế giới như một cấu kiện chịu lực cơ bản của công trình. Với tầm quan trọng như vậy, nhưng đến nay vẫn chưa có nhiều kết quả nghiên cứu được đưa ra, không có nhiều bài báo khoa học đề cập đến ứng xử của loại kết cấu này. a phần các nghiên cứu trên thế giới và trong nước đều tập trung nghiên cứu về ứng xử của vật liệu, cũng như ứng xử của dầm màng m ng thổi phồng khi chịu uốn chứ chưa đề cập nhiều đến dao động của dầm. Do đó, đề tài “Phân tích dao động của dầm màng mỏng thổi phồng” có ý nghĩa khoa học cao nhằm mục đích tiếp tục phát tri n, xây dựng các mô hình phân tích dao động của dầm màng m ng thổi phồng. 2. Mục tiêu nghiên cứu của đề tài a) Mục tiêu tổng quát: Xây dựng được các công thức giải tích tính dao động của dầm màng m ng thổi phồng được cấu tạo từ vật liệu trực giao mà định hướng vật liệu là bất kỳ b) Mục tiêu cụ thể: - Xây dựng được các công thức giải tích tính dao động của dầm màng m ng thổi phồng; - Xác định được ảnh hưởng của định hướng vật liệu đến dao động của dầm màng m ng thổi phồng; - Ki m chứng lý thuyết bằng mô hình phần tử h u hạn 3D. 3. Đối tượng nghiên cứu: Dầm màng m ng thổi phồng được cấu tạo từ vải kỹ thuật. 4. Phạm vi nghiên cứu: ác đặc trưng dao động của dầm màng m ng thổi phồng. 5. Phương pháp nghiên cứu ghiên cứu lý thuyết kết hợp mô ph ng ứng xử kết cấu bằng phương pháp phần tử h u hạn: - Sử dụng mô hình dầm Timoshenko và các biến số Lagrange đ xây dựng các phương trình cơ bản của dầm màng m ng thổi phồng; 3 iải bài toán giá trị riêng đ xác định các đặc trưng dao động của dầm; - - Mô hình dầm màng m ng bằng phương pháp phần tử h u hạn 3D đ xác minh tính đúng đắn của lý thuyết được đề xuất; - Phân tích ảnh hưởng của đặc trưng vật liệu, đặc trưng hình học của đầm đến dao động của dầm màng m ng thổi phồng. 6. Bố cục đề tài: hương 1. Tổng quan về kết cấu màng mỏng thổi phồng 1.1. Tổng quan về cấu tạo và ứng dụng của kết cấu màng m ng thổi phồng 1.2. Một số kết quả nghiên cứu về ứng xử của vật liệu vải kỹ thuật 1.3. Một số công trình nghiên cứu về sự làm việc của kết cấu màng m ng thổi phồng 1.4. Kết luận chương hương 2. Lý thuyết dao động của dầm màng mỏng thổi phồng 2.1. Kích thước ống màng m ng ở trạng thái thổi phồng 2.2. Sự thay đổi đặc trưng cơ lý của vải kỹ thuật ở trạng thái thổi phồng 2.3. Phương trình cân bằng của dầm màng m ng thổi phồng 2.4. Dao động riêng của dầm màng m ng thổi phồng 2.5. Kết luận chương hương 3. Phân tích dao động của dầm màng mỏng thổi phồng 3.1. Ki m chứng lý thuyết tính toán dao động dầm màng m ng thổi phồng 3.2. Phân tích các yếu tố ảnh hưởng đến đặc trưng dao động của dầm 3.2.1 Ảnh hưởng của sự thay đổi đặc trưng cơ lý của vải kỹ thuật đến dao động của dầm 3.2.2 Ảnh hưởng của định hướng vật liệu đến dao động của dầm 3.2.3 Ảnh hưởng của kích thước hình học đến dao động của dầm 3.3. Kết luận chương ết luận và kiến nghị 4 hương 1 TỔNG QU N VỀ ẾT ẤU T ỔI P ỒNG Trong chương này, tác giả đ cập đến các ứng dụng khác nhau của hệ kết cấu màng m ng thổi phồng được cấu tạo từ vải kỹ thuật. Bên cạnh đó, tác giả giới thiệu các ưu nhược đi m của loại kết cấu màng m ng này. hương này được kết thúc bằng việc tóm tắt lại các công trình nghiên cứu giải tích, mô ph ng số cũng như thực nghiệm đã được thực hiện trên thế giới. 1.1 Tổng quan về cấu tạo và ứng dụng của kết cấu thổi phồng 1.1.1 Định nghĩa Kết cấu màng m ng là nh ng kết cấu được làm bằng vải kỹ thuật và được ổn định bằng cách tạo ra một ứng suất trước trong vải. Dự ứng lực này được cung cấp trong màng m ng bằng cách: ặt vào một ngoại lực làm căng màng m ng. ây là trường hợp của các cấu trúc kéo căng. Tạo ra một áp lực từ bên trong đ chịu tải trọng bản thân và tải trọng bên ngoài. ây là lĩnh vực nghiên cứu của kết cấu màng m ng thổi phồng. Trong lĩnh vưc này, - có hai loại kết cấu khác nhau: + Kết cấu được gi v ng bằng máy thổi khí: các kết cấu này được cấu thành từ một lớp màng m ng, và khả năng chịu tải trọng bản thân và tải trọng bên ngoài phụ thuộc vào áp lực khí thổi vào. + Kết cấu thổi phồng: loại cấu trúc này được cấu tạo với hai lớp màng m ng. Kết cấu này tự chịu lực được, và tự tạo được hình dạng khi được thổi khí. Kết cấu này được bịt kín, một khi được thổi đầy khí rồi thì không cần phải cung cấp khí liên tục n a. Trong một vài trường hợp cụ th , kết cấu bị xì, nó sẽ được liên kết với máy đ gi nguyên áp suất thổi phồng cho kết cấu. Trong báo cáo này, chủ nhiệm đề tài ch xem xét kết cấu màng m ng thổi phồng. Loại kết cấu này có nh ng đặc tính rất thú vị và xuất hiện ngày càng nhiều trong các lĩnh vực cũng như các sự kiện khác nhau. 1.1.2  ng dụng của t c u màng mỏng thổi phồng Lĩnh vực không gian: Sự phát tri n trong lĩnh vực công nghệ vũ trụ đã tập trung vào việc giảm chi phí quá cao của các chuyến đi khảo sát không gian [VV02]. Thực vậy, với nh ng hạn chế về kích thước cũng như trọng lượng của các vật th được đưa lên không gian trong lĩnh vực này, 5 người ta phải tìm kiếm nh ng phương tiện phóng với kích thước nh hơn, nh ng dự án không gian hiện nay đang hướng đến việc phát tri n và nghiên cứu đ giảm thi u tối đa khối lượng và kích thước của các vật th , nguyên liệu trong ngành không gian. Ý tưởng được đưa ra ở đây là sử dụng nh ng vật liệu siêu nhẹ đ thay thế cho các vật liệu truyền thống. Và đ đạt được mục tiêu này, việc sử dụng công nghệ thổi phồng là 1 giải pháp rất hứa hẹn đ phát tri n và mở rộng nh ng hệ thống không gian trong tương lai. h ng vật th lớn sẽ được gấp và cuộn lại đ thuận tiện cho việc phóng vào không gian, sau đó nó sẽ được mở ra khi đã bay vào quỹ đạo. Dưới đây là một số ứng dụng của kết cấu thổi phồng trong ngành khoa học vũ trụ: a) tinh thổi phồng Trong nh ng năm 60 của thế kỷ trươc, ASA ( ơ quan hàng không vũ trụ quốc gia Mỹ) đã quan tâm đến kết cấu thổi phồng. Dự án nghiên cứu mang tên E O1 (xem Hình 1-1) đã được tri n khai đ tìm ra nh ng yếu đi m cũng như nh ng đi m mạnh của công nghệ này. hiếc vệ tinh thổi phồng trong ảnh đã được phát tri n vào năm 1 60 (VV02). Và tiếp sau sự thành công của dự án này thì nhiều vệ tinh khác đã được chế tạo trong nh ng năm sau đó, đơn cử như vệ tinh EXPLORER X (1 61), EXPLORER X X (1 64), ECHO II (1966)... [CT95]. Hình 1-1. Vệ tinh thổi phồng E O b) ng t n và ính ph n ạ thổi phồng Sau nh ng thử nghiệm đầu tiên về vệ tinh thổi phồng, do ảnh hưởng của cuộc chạy đua về công nghệ vũ trụ gi a Mỹ và ga đã làm gián đoạn sự phát tri n của kết cấu thổi phồng này bởi vì cả 2 phía đều quyết định và tập trung nguồn lực vào việc nghiên cứu nh ng kết cấu truyền thống hơn. Khi chiến tranh lạnh kết thúc, nh ng nghiên cứu về kết cấu thổi phồng được đưa trở lại trong nh ng chương trình của nh ng các dự án được phát tri n, ASA [Jia07]. Trong số ASA đã cho phát tri n các ăng ten thổi phồng trong 6 không gian (thí nghiệm .A.E, Hình 1-2). Ăng ten này đã được vận chuy n trên tàu con thoi phóng lên trạm vũ trụ SPARTA 207 và bơm hơi khi đã vào quỹ đạo. a. Mô hình tri n khai trong vũ trụ b. Vệ tinh đã được tri n khai Hình 1-2. Vệ tinh không gian h ng tấm kính phản xạ dạng parapol có đường kính 14m và chiều dài hình ống khoảng 28m. iều đó ch ra rằng: - h ng kết cấu không gian có kích thước lớn vẫn có th được chế tạo với kinh phí thấp nếu sử dụng công nghệ thổi phồng; - ác kết cấu thổi phồng này có th được gấp lại đ tiết ki m th tích lưu kho hoặc vận chuy n. c) Trạm hông gian thổi phồng Việc sử dụng trạm không gian bằng cấu trúc bơm hơi được dự kiến sử dụng làm đi m dừng chân trên nh ng quỹ đạo bay gi a các hành tinh. ác trạm này cũng được xem xét sử dụng trực tiếp trên bề mặt của các hành tinh. h ng kết cấu không gian theo dạng kết cấu thổi phồng dưới dạng hình vòm hoặc vòng xuyến đã được đề cập đến trong dự án thăm dò sao a [Jia07]. Trạm vũ trụ ngoài không gian đầu tiên theo dạng thổi phồng với tên gọi Trans ab đã được đề xuất cho trạm vũ trụ quốc tế [Ape10].Hình 1-3 giới thiệu minh họa về cấu trúc dạng bơm hơi trong không gian dành cho dự án thám hi m Mặt Trăng. 7 Hình 1-3. Trạm vũ trụ thổi phồng của dự án khám phá Mặt Trăng c. Khinh hí cầu hoa học bay ở độ cao lớn h ng quả khinh khí cầu này được thiết kế đ mang các thiết bị đo lên đến độ cao thích hợp đ làm nhiệm vụ. h ng chương trình phát tri n loại khinh khí cầu này được thực hiện trên khắp thế giới. hẳng hạn như ở Mỹ, một chương trình với tên gọi Super- Pressure Balloons (SPB) được tài trợ bởi ASA đ phát tri n nh ng quả bóng bay có th mang được một khối lượng lớn các thiết bị đo, nó sẽ được bơm hơi và cho bay đến một độ cao thích hợp đ thực hiện nh ng các phép đo cần thiết (nhiệt độ, tốc độ gió, …) hoặc đ giám sát liên tục các hoạt động khí tượng trên Trái ất. Tại châu phát tri n ở trung tâm điều hành không gian Kiruna ở Thụy u, loại bóng này được i n và ES ở Pháp. Trên thế giới, một số nước cũng đã và đang phát tri n nh ng dự án tương tự như: hật Bản, Ấn ộ, anada, auy, Brazin, Argentina và ndonesia, c ng hợp tác với Mỹ và Pháp. Hình 1-4. Khinh khí cầu siêu áp của ASA Hình 1-4 cho thấy một quả bóng khoa học có đường kính 120m dạng bí ngô có th mang khối lượng lên tới 3500kg có th bay 100 ngày ở độ cao 3800m.  Trong lĩnh vực kỹ thuật ây dựng ề xuất đầu tiên về 1 công trình thổi phồng được đưa ra bởi rederick illiam Lanchester, người được cấp bằng sáng chế vì đã thiết kế thành công một bệnh viện dã chiến (Hình 1-5a) vào năm 1 17. ó là một chiếc lều vải được thổi phồng với áp suất 8 thấp. a. Bệnh viện dã chiến b. Lều hội ch thập đ c. Lều tạm Hình 1-5. Kết cấu thổi phồng được sử dụng tạm thời Trong nh ng năm tiếp theo, mô hình kết cấu thổi phồng đã được sử dụng trong phạm vi các hoạt động ngắn hạn như tạm trú khẩn cấp sau khi thiên tai, lều của ội h thập đ .... ấy là nh ng trường hợp cần nh ng chỗ lưu trú khẩn cấp, nhanh chóng và dễ tháo lắp, xem Hình 1-5. ăm 1 70, ội nghị tri n lãm tại Osaka hật Bản được tổ chức với chủ đề “Sự phát tri n hài hòa của hân Loại “. Trong đó, chủ đề về cấu trúc vật liệu nhẹ trong xây dựng được nhắc đến rất nhiều, lý do là vì hật Bản là một nước thường xuyên xảy ra động đất. Từ thời đi m đó, mô hình kết cấu thổi phồng ngày càng phát tri n và được áp dụng vào nhiều lĩnh vực chứ không ch trong việc xây dựng nhà tạm, ở đây sẽ là nh ng công trình bền v ng hơn, lâu dài hơn. ó th ch ra một số ví dụ như: bục danh dự tại Tour de rance, nh ng nhà kho bơm hơi, nhà mái vòm, và cả nh ng nhà thờ bơm hơi… (xem Hình 1-6) Kết cấu thổi phồng cũng có th được lựa chọn vì lý do thẩm mỹ. ác kết cấu dạng cong, màu sắc rực r , kết cấu đẹp và mê hoặc có th được sử dụng đ gây ấn tượng với người xem. hính vì vậy, kết cầu thổi phồng có th được xem như là một cuộc cách mạng của tương lai. ai tác phẩm Leviathan và Air orest (xem Hình 1-7) chính là nh ng minh chứng r ràng nhất cho lập luận đó. a. Nhà mái vòm b. hà thờ Hình 1-6. Một số công trình thổi phồng được ứng dụng trong đời sống 9 a. Leviathan – Paris b. Air Forest - USA Hình 1-7. Tác phẩm nghệ thuật bằng vải kỹ thuật - Leviathan là một tác phẩm điêu khắc màng m ng được thiết kế bởi nghệ sĩ Anish Kapoor dành cho sự kiện Monumenta (xem Hình 1-7), tác phẩm này được trưng bày trong 5 tuần tại ung điện hoàng gia Paris vào năm 2011. Tác phẩm cao 35m với tổng diện tích bề mặt là 33x72 m2, bao gồm 3 bóng đ n lớn hình cầu được kết nối với nhau bởi một mái vòng khu trung tâm. Sự thành công của tác phẩm này chính là nhờ vào vẻ đẹp, kích thước to lớn, và độ tương phản của nó. - Air orest là một tòa kiến trúc công cộng tạm thời, được đặt tại Park city, Denver, Colorado, oa kỳ. Tọa lạc bên bờ rừng Denver. Kiến trúc của công trình này trông như chính là một phần của khu rừng. Tổng diện tích của nó là 56,3 × 25 m2 với độ cao 4m, được cấu thành bởi mái vòm hình lục giác kết nối với nhau. Tác phẩm này được thổi phồng lên bởi 14 máy quạt hơi khổng lồ đặt tại mỗi chân trụ của nó. Tác phẩm này trở thành một khu vực công cộng đ tổ chức nh ng buổi lễ, cả ngày lẫn đêm. Do trọng lượng nhẹ, các kết cấu màng m ng thổi phồng này còn được sử dụng đ làm nh ng mái che khổng lồ, ví dụ như mái che sân vận động Minesota Metrodome ở Mỹ hay sân vận đông Tokyo Dome ở hật Bản (xem Hình 1-8). Việc sử dụng nh ng mái che ki u màng m ng thổi phồng này giúp giảm đáng k chi phí xây dựng so với một công trình thông thường. a. Metrodome Minnesota - USA b. Tokyo Dome - hật Bản Hình 1-8. Mái vòm sử dụng kết cấu thổi phồng 10 Trong một số trường hợp, nh ng kết cấu màng m ng thổi phồng này còn được sử dụng như là nh ng yếu tố phụ được kết nối với nh ng kết cấu chịu lực chính nhằm mục đích làm mới công trình, cũng như tăng tính thẩm mỹ. Ví dụ như trường hợp Trung tâm vũ trụ quốc gia của Anh và sân Allianz Arena ở ức a. Trung tâm không gian quốc gia - Anh . b. Tokyo Dome - hật Bản Hình 1-9. Kết cấu màng m ng thổi phồng được d ng đ trang trí  Một số lĩnh vực khác Kết cấu màng m ng thổi phồng có th được sử dụng trong nhiều lĩnh vực khác. Trong lĩnh vực hàng hải và chế tạo tàu ngầm, người ta có th tìm thấy nh ng hệ thống m neo thổi phồng. ệ thống neo bơm hơi được cấu tạo bởi 1 ống thép hình trụ, xung quanh được cố định một lớp màng cao su. ác chất l ng hoặc khí sẽ được bơm vào các khoảng trống gi a ống và lớp màng đ thổi phồng lên. Sự kết hợp này giúp làm tăng khả năng chịu lực của hệ thống m neo [ S03]. Trong lĩnh vực nuôi trồng thủy hải sản, kết cấu thổi phồng được sử dụng cho việc thiết kế và chế tạo lồng thổi phồng sử dụng trên bi n. h ng chiếc lồng này bao gồm thanh cứng trung tâm và vòng thổi phồng d ng đ thay thế cho nh ng kết cấu chịu lực thông thường và có tác dụng giảm đáng k chi phí vận chuy n, tri n khai và lắp ráp. a. eo trong đất b. Lồng thổi phồng Hình 1-10. Kết cấu thổi phồng được d ng trong hàng hải 1.1.3 Nh ng ưu điểm và nhược điểm của t c u màng mỏng thổi phồng a Ưu điểm của cấu tr c màng mỏng thổi phồng 11 Việc sử dụng các kết cấu màng m ng thổi phồng có nhiều lợi thế hơn khi so sánh với nh ng cấu trúc thông thường tương đương. Sau đây là nh ng đi m nổi bật của cấu trúc màng m ng thổi phồng: - ó rất nhẹ và ch chiếm ít th tích lưu kho, cho phép giảm đến 50% tổng khối lượng và 25% th tích lưu kho so với một kết cấu thông thường khác. - hi phí sản xuất thấp. Thật vậy, việc sản xuất, chế tạo cấu trúc này không yêu cầu các công cụ tinh vi và vật liệu đắt tiền. Ví dụ, đối với nh ng ăng ten bơm hơi khổng lồ ngoài không gian, chi phí sản xuất ước tính ch bằng 10% chi phí sản xuất 1 ăng ten vũ trụ thông thường. òn trong lĩnh vực xây dựng, chi phí xây 1 tòa nhà bơm hơi thấp hơn 35% so với xây bằng gỗ. - Thiết kế và chế tạo đơn giản hơn so với nh ng cấu trúc thông thường tương đương. Khi công nghệ này được áp dụng rộng rãi thì nh ng ứng dụng mới sẽ trở nên đơn giản và dễ phát tri n hơn. - h ng dự án không gian thành công đã ch ra rằng cấu trúc màng m ng thổi phồng có độ tin cây cao và dễ tri n khai [SL 00]. b Một vài như c điểm của kết cấu màng mỏng thổi phồng Kết cấu màng m ng thổi phồng có rất nhiều ưu đi m, tuy nhiên nó cũng có vài nhược đi m cần phải khắc phục.  K t c u có thể bị ì hơi ác kết cấu thổi phồng thường được cấu tạo từ vải kỹ thuật. Loại vải này được đan từ các sợi ngang và sợi dọc và sau đó được phủ một lớp nhựa dẻo đ bảo vệ. h ng sợi vải tạo nên khả năng chịu lực cho tẩm vải kỹ thuật. Khả năng chống thấm loại vải này được bảo đảm bởi các lớp phủ và các công nghệ chế tạo khác nhau (hàn, dán…). Tuy nhiên sau vài ngày hoặc vài tuần, khả năng chống thấm của lớp màng sẽ bị suy giảm do áp suất bên trong. Bởi vậy phải có một hệ thống cung cấp khí đ gi ổn định và độ cứng của cấu trúc. Trong môi trường vũ trụ, đối với nh ng dự án không gian ngắn ngày, đ khắc phục trường hợp kết cấu bị xì hơi, người ta có th cung cấp một lượng khí ga vừa đủ đ gi áp suất bên trong. ối với nh ng sứ mệnh dài ngày, chúng ta có th d ng một số phương pháp sau đây: - Sử dụng tia cực tím, tia hồng ngoại đ làm cứng lớp màng bảo vệ [Sch6 ] - D ng công nghê phun bọt làm cứng 12 - Làm cứng bằng cơ khí: Sử dụng một lá nhôm được kẹp gi a bởi 2 tấm phim polymer gia cố bằng sợi carbon. iều này cho phép làm phẳng và uốn cong nó sao cho có th chiếm một không gian hạn chế nhất, sau đó người ta sẽ làm phồng nó đ phục hồi hình dạnh ban đầu, từ đó áp lực sẽ làm biến dạng các lá nhôm. Kỹ thuật này cho phép ta làm được nh ng ống đủ lớn và có khả năng chống thấm cao hơn [ K84]. - D ng hóa chất làm cứng: ác xi lanh sẽ được ngâm tẩm 1 loại nhựa giúp làm nước bay hơi vào trong không khí khiến cho cấu trúc trở nên cứng hơn và chống thấm cao. Kỹ thuật này có ưu đi m là ta có th đảo ngược nó, ch cần tạo 1 môi trường đủ ẩm ướt đ khôi phục lại sự linh hoạt, mềm dẻo ban đầu của cấu trúc. [ 8]  Nh ng hó hăn để có được hình dạng phẳng ó nh ng hạn chế nhất định về hình dáng của cấu trúc màng điều áp này. Bất kỳ màng bơm hơi nào (túi khí, ống, vòng hình xuyến) đều có xu hướng hình dáng theo đường cong. Tuy nhiên, vẫn có một giải pháp đ có th làm được dạng phẳng: đó là sử dụng nh ng tấm panô 2 lớp, 2 mặt của kết cấu sẽ được kết nối bởi nh ng sợi ch rất khít đan nhau gần như liên tục. iều này cho phép 2 lớp sẽ luôn song song với nhau (xem Hình 1-11). Kỹ thuật này khá phức tạp. Hình 1-11. Mặt cắt của 1 tấm panô bơm hơi  Kh năng vận hành còn nhiều hạn ch So với nh ng cấu trúc truyền thống (gỗ, kim loại) thì khả năng vận hành của cấu trúc màng điều áp có nh ng hạn chế nhất định. Khả năng chống thấm của nó phụ thuộc vào áp suất bên trong cấu trúc, cũng như độ căng và tính chất của chất liệu vải. ó th nói khả năng chịu lực của nó thấp hơn nh ng cấu trúc truyền thống khác. tăng hiệu suất sử dung của cấu trúc màng này, người ta có th sử dụng công nghệ Tensairity [LPSP04], [RMDLL13]. Tensairity là một công nghệ kết hợp cấu trúc khí động học và nh ng yếu tố của cấu trúc truyền thống chẳng hạn như dây cáp và thanh giằng. Trong hệ thống này, hiệu năng của dây cáp, thanh giằng và khí nén sẽ được hoàn thiện 13 hơn. Kết quả của nó cho phép chúng ta sỡ h u 1 hệ thống dẫn (xem Hình 1-12a) có cùng hiệu suất và khả năng chống thấm như ở cấu trúc truyền thống, nhưng khối lượng đã được giảm đi đáng k . ông nghệ này rất lý tưởng cho nh ng kết cấu, công trình lớn như là cầu hay nh ng khu lều lớn… [LPR04]. Một kết cấu dựa trên công nghệ Tensarity bao gồm 1 dầm thổi phồng, 1 thanh giằng kết nối với dầm thổi phồng theo toàn bộ chiều dài của dầm và có ít nhất một cặp dây cáp xoắn ở vị trí xung quanh dầm đó. h ng sợi cáp này được kết nối chặt chẽ với thanh giằng ở 2 đầu mút của thanh dầm [LPSP04]. a. ầu thổi phồng b. Lồng thổi phồng Hình 1-12. Kết cấu tensairity Kết cấu này được vận hành dựa trên dây cáp và thanh giằng. Sức căng của dây cáp sẽ được tải lên thanh giằng và tạo ra một lực nén (xem Hình 1-12). Ở đây, dầm màng m ng ứng xử như một nền đàn hồi liên tục đ đở thanh giằng. ộ cứng của kết cấu được xác định từ áp suất thổi phồng dầm màng m ng [LPR04]. Vải kỹ thuật ác kết cấu thổi phồng thường được cấu tạo từ các tấm vải kỹ thuật, được tạo hình thành các ống kín. Dưới tác dụng của áp suất thổi phồng, kết cấu này có độ cứng và có th chịu được tác dụng của tải trọng ngoài. có th mô hình cũng như đ nghiên cứu ứng xử của loại kết cấu này, trước tiên cần phải nghiên cứu ứng xử của loại vải kỹ thuật cấu tạo nên nó. Trong phần này, chúng sẽ tìm hi u sự cấu tạo cũng như tính chất cơ lý của các loại vải kỹ thuật cơ bản. 1.2 Một số nghiên cứu về ứng ử của vật liệu 1.2.1 C u tạo của v i ỹ thuật iện nay trên thị trường có rất nhiều loại vải kỹ thuật khác nhau. Trong phạm vi nghiên cứu của đề tài này, chúng ta ch xét các loại vải kỹ thuật mà các sợi vải được dệt theo hai phương vuông góc nhau. Loại vải này được cấu tạo từ hai nhóm sợi đan vào nhau đ tạo nên khả năng chịu lực chính cho tấm vải. Phía bên ngoài, các sợi vải này được bọc bởi một lớp PV (PolyVinyl hloride) đ đảm bảo khả năng chống thấm cũng như đ bảo vệ các sợi vải kh i các tác nhân gây hại từ môi trường.
- Xem thêm -

Tài liệu liên quan