Đăng ký Đăng nhập
Trang chủ Phân tích chuyển vị và ứng suất của đập bê tông trọng lực khi xảy ra động đất ...

Tài liệu Phân tích chuyển vị và ứng suất của đập bê tông trọng lực khi xảy ra động đất

.PDF
112
5
73

Mô tả:

ĐẠI HỌC QUỐC GIA TP. HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA -------------------- TĂNG ĐÔNG CHINH PHÂN TÍCH CHUYỂN VỊ VÀ ỨNG SUẤT CỦA ĐẬP BÊ TÔNG TRỌNG LỰC KHI XẢY RA ĐỘNG ĐẤT Chuyên ngành : Kỹ thuật xây dựng công trình thủy Mã số: 60 58 02 02 LUẬN VĂN THẠC SĨ TP. HỒ CHÍ MINH, năm 2018 CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI TRƯỜNG ĐẠI HỌC BÁCH KHOA –ĐHQG -HCM Cán bộ hướng dẫn khoa học : TS Lê Đình Hồng ...................................... Cán bộ chấm nhận xét 1 : TS. Nguyễn Quang Trưởng .................................. Cán bộ chấm nhận xét 2 : TS. Trà Thanh Phương.................... Luận văn thạc sĩ được bảo vệ tại Trường Đại học Bách Khoa, ĐHQG Tp. HCM ngày 26 tháng 01 năm 2018. Thành phần Hội đồng đánh giá luận văn thạc sĩ gồm: (Ghi rõ họ, tên, học hàm, học vị của Hội đồng chấm bảo vệ luận văn thạc sĩ) 1.PGS.TS. Nguyễn Thống ........................ 2 TS. Nguyễn Quang Trưởng. .................. 3.TS. Trà Thanh Phương .......................... 4.TS. Trần Thu Tâm ................................ 5.TS. Hồ Tuấn Đức .................................. Xác nhận của Chủ tịch Hội đồng đánh giá LV và Trưởng Khoa quản lý chuyên ngành sau khi luận văn đã được sửa chữa (nếu có). CHỦ TỊCH HỘI ĐỒNG TRƯỞNG KHOA ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc NHIỆM VỤ LUẬN VĂN THẠC SĨ Họ tên học viên: TĂNG ĐÔNG CHINH ..................................MSHV:1670602 .............. Ngày, tháng, năm sinh: 25/10/1984 ...........................................Nơi sinh: Trà Vinh .......... Chuyên ngành: Kỹ thuật xây dựng công trình thủy ..................Mã số : 60 58 02 02 I. TÊN ĐỀ TÀI: PHÂN TÍCH CHUYỂN VỊ VÀ ỨNG SUẤT ĐẬP BÊ TÔNG TRỌNG LỰC KHI XẢY RA ĐỘNG ĐẤT ................................................................................... ............................................................................................................................................. ............................................................................................................................................. II. NHIỆM VỤ VÀ NỘI DUNG: .................................................................................... ............................................................................................................................................. ............................................................................................................................................. III. NGÀY GIAO NHIỆM VỤ : 10/07/2017 ................................................................. IV. NGÀY HOÀN THÀNH NHIỆM VỤ: 03/12/2017 .................................................. V. CÁN BỘ HƯỚNG DẪN : TS : Lê Đình Hồng .......................................................... ............................................................................................................................................. Tp. HCM, ngày . . . . tháng .. . . năm 20.... CÁN BỘ HƯỚNG DẪN (Họ tên và chữ ký) CHỦ NHIỆM BỘ MÔN ĐÀO TẠO (Họ tên và chữ ký) TRƯỞNG KHOA….……… (Họ tên và chữ ký) LỜI CẢM ƠN  Để hoàn thành luận văn này, tôi đã nhận được sự giúp đỡ rất nhiều từ bạn bè, đồng nghiệp và quý thầy cô. Tôi xin bày tỏ lòng biết ơn sâu sắc tới TS. Lê Đình Hồng đã tận tình chỉ bảo và hướng dẫn trong suốt quá trình làm luận văn. Xin chân thành cảm ơn quý thầy cô, bạn bè và đồng nghiệp đã cho tôi những ý kiến đóng góp quí báu để luận văn hoàn thiện hơn. Xin chân thành cảm ơn Cty CP TVXD Thủy Lợi 2 đã tạo mọi điều kiện tốt nhất giúp đỡ tôi trong quá trình học tập và hoàn thành luận văn này. Đồng thời xin cảm ơn Phòng đào tạo Sau đại học trường Đại học Bách Khoa TPHCM, quí thầy cô trong bộ môn Tài nguyên nước đã tạo điều kiện để tôi học tập và hoàn thành tốt khóa học. Trong quá trình làm luận văn không thể tránh khỏi những thiếu sót, sai lầm rất mong nhận được các ý kiến đóng góp quý báu của quí thầy cô và các bạn để luận văn hoàn thiên hơn. TPHCM, ngày …. tháng 3 năm 2018 Học viên Tăng Đông Chinh BẢN TÓM TẮT Trong thiết kế đập bê tông chịu tác động của động đất, phương pháp Westergaad thường được dùng để xác định áp lực thủy động tác dụng lên mặt đập dâng. Phương pháp này đã bỏ qua tác động tương hỗ của chất lỏng trong hồ chứa với thân đập và nền công trình. Trong bài luận văn này tác động tương hỗ của nước trong hồ chứa, đập dâng và nền được nghiên cứu trong cùng một bài toán trong đó khối nước trước đập được mô phỏng bằng phần tử chất lỏng trong Ansys. Dưới tác động của động đất, dao động của đập và khối nước phía thượng lưu có tác động tương hỗ lẫn nhau và sản sinh ra áp lực thủy động tác dụng lên mặt thượng lưu đập cũng như làm thay đổi phản ứng động lực học của hệ thống. ABSTRACT In designing concrete gravity dams subjected to seismic action, the Westergaad method is often used to determine the hydrodynamic force acting on the upstream face of dams. This method neglects the fluid-structure-foundation interaction. In this paper such an interaction is investigated in which the upstream water mass is modeled by fluid elements in Ansys. During the seismic period the oscillation of dam and upstream water mass has an interaction, creates a hydrodynamic force acting on the upstream face of dams and changes the dynamic behavior the dam-reservoir-foundation system. LỜI CAM ĐOAN  Tôi xin cam đoan các số liệu, thông tin được sử dụng trong luận văn là trung thực. Các kết quả trình bày chưa từng được công bố trong các công trình nghiên cứu khác. TPHCM, ngày….. tháng…….năm 2018 Tăng Đông Chinh Mục lục MỤC LỤC CHƯƠNG 1: TỔNG QUAN ........................................................................................ 1 3.3. ĐẶT VẤN ĐỀ ................................................................................................ 1 3.4. MỤC TIÊU NGHIÊN CỨU ........................................................................... 4 3.5. PHẠM VI NGHIÊN CỨU ............................................................................. 5 3.6. CÁC NGHIÊN CỨU TRONG VÀ NGOÀI NƯỚC ...................................... 5 1.1.1. Nghiên cứu trong nước ........................................................................... 6 1.1.2. Nghiên cứu ngoài nước: .......................................................................... 8 CHƯƠNG 2: CƠ SỞ LÝ THUYẾT ...........................................................................11 2.1. GIỚI THIỆU VỀ TIẾP XÚC........................................................................11 2.1.1. Mô hình tiếp xúc ...................................................................................11 2.1.2. Tiếp xúc trượt .......................................................................................12 2.2. PHƯƠNG TRÌNH CHUYỂN ĐỘNG CỦA HỆ THỐNG CHUYỂN VỊ 1 BẬC TỰ DO ...........................................................................................................13 2.3. PHƯƠNG TRÌNH CHUYỂN ĐỘNG CỦA HỆ THỐNG CHUYỂN VỊ NHIỀU BẬC TỰ DO .............................................................................................14 2.4. PHƯƠNG TRÌNH HỆ CHUYỂN ĐỘNG NHIỀU BẬC TỰ DO DAO ĐỘNG TRONG HỆ TOẠ ĐỘ MODE DAO ĐỘNG .............................................16 2.5. HỆ TOẠ ĐỘ MODE ....................................................................................17 2.6. PHƯƠNG TRÌNH CHUYỂN ĐỘNG TRONG HỆ TỌA ĐỘ MODE ........18 2.7. LÝ THUYẾT VÀ PHƯƠNG PHÁP TÍNH ĐỘNG ĐẤT ............................20 2.7.1. Phân tích động đất theo lịch sử thời gian tuyến tính trong hệ nhiều bậc tự do ..............................................................................................................20 2.7.2. Phân tích động đất theo lịch sử thời gian trong động đất .....................22 2.7.3. Tích phân từng bước với tải thay đổi tuyến tính ...................................22 CHƯƠNG 3: ÁP DỤNG VÀ PHÂN TÍCH KẾT QUẢ ............................................24 3.1. THÔNG SỐ ĐẦU VÀO .....................................................................................24 3.2. PHÂN TÍCH BẰNG CHƯƠNG TRÌNH ANSYS VÀ SAP2000 TRONG KẾT QUẢ CHẠY BÀI TOÁN TĨNH .................................................................................26 3.2.1. Mô phỏng mô hình trong chương trình Ansys .............................................26 3.2.2. Mô phỏng tính toán bằng phần mềm Sap 2000 ............................................29 3.2.3. Phân tích đập khi chịu áp lực thủy tĩnh ........................................................30 3.2.3.1. Phân tích chuyển vị ..................................................................................30 a. b. Chuyển vị do áp lực thủy tĩnh bằng Ansys ...........................................30 Chuyển vị do áp lực thủy tĩnh bằng Sap 2000 ......................................31 -i- Mục lục 3.2.3.2. Phân tích ứng suất ....................................................................................33 3.3. PHÂN TÍCH ĐẬP CHỊU ẢNH HƯỞNG CỦA ĐỘNG ĐẤT BẰNG PHẦN MỀM ANSYS .............................................................................................................37 3.3.1. Phân tích chuyển vị.......................................................................................37 3.3.2. Phân tích ứng suất của đập bằng Ansys........................................................41 3.4. PHÂN TÍCH BẰNG CHƯƠNG TRÌNH SAP 2000 ...........................................51 3.4.1. Mô phỏng theo Sap 2000 ..............................................................................51 3.4.2. Kết quả chuyển vị theo SAP2000 .................................................................53 3.4.3. Kết quả ứng suất theo SAP 2000 ..................................................................57 3.5. SO SÁNH KẾT QUẢ: ........................................................................................67 3.5.1. So sánh chuyển vị .........................................................................................67 3.5.2. So sánh về ứng suất ......................................................................................71 3.6. ĐÁNH GIÁ THÊM ẢNH HƯỞNG CỦA ĐỘNG ĐẤT VỚI MÔ HÌNH ĐẬP CÓ KÍCH THƯỚC KHÁC NHAU: ..................................................................................77 3.6.1. Mô hình phân tích: ........................................................................................78 3.6.2. Kết quả áp lục thủy tĩnh ................................................................................79 3.6.3. Kết quả chuyển vị do động đất: ....................................................................83 3.6.4. Kết quả ứng suất do động đất: ......................................................................84 CHƯƠNG 4: KẾT LUẬN VÀ KIẾN NGHỊ ..............................................................92 TÀI LIỆU THAM KHẢO ..........................................................................................93 -ii- Mục lục DANH SÁCH HÌNH Hình 1.1: Bản đồ phân bố tâm động đất ở Việt Nam và các vùng lân cận ................... 2 Hình 1.2: Chấn tâm các trận động đất mạnh đã ghi nhận được dọc theo đứt gẫy sinh chấn Lai Châu – Điện Biên và vị trí dự kiến xây dựng nhà máy thủy điện Xayabury . 3 Hình 3.2: Biểu đồ gia tốc theo phương ngang của nền ...............................................25 Hình 3.3: Mô hình mô phỏng của bài toán trong ansys ..............................................28 Hình 3.4 : Mô hình lưới phần tử trong chương trình Ansys .......................................29 Hình 3.5 : Áp lực nước thủy tĩnh của phần tử nước ...................................................29 Hình 3.7: Kết quả chuyển vị do áp lực thủy tĩnh mô hình Ansys ...............................30 Hình 4.6: Kết quả chuyển vị do áp lực thủy tĩnh mô hình Sap 2000 ..........................31 Hình 3.9: Chi tiết so sánh chuyển vị 2 mô hình ..........................................................31 Hình 3.10: Chi tiết chuyển vị tương đối của đập và nền của mô hình Ansys .............32 Bảng 1: Kết quả chuyển vị phương ngang Ux ............................................................33 Hình 3.11: Phân bố ứng suất ngang Sx trong thân đập-Ansys ...................................34 Hình 3.12: Phân bố ứng suất đứng Sy trong thân đập-Ansys .....................................34 Hình 3.14: Phân bố ứng suất đứng SY trong thân đập-Sap 2000 ...............................35 Bảng 2: So sánh giá trị ứng suất SX (KN/m²) ............................................................36 Bảng 3: So sánh giá trị ứng suất SY (KN/m²) ............................................................36 Hình 3.15: Đồ thị chuyển vị các nút xem xét theo thời gian 1000 điểm ....................37 Hình 3.17: Đồ thị chuyển vị các nút thượng lưu theo thời gian 2s đến 5s .................38 Hình 3.18: Đồ thị chuyển vị các nút phía hạ lưu theo thời gian 2s đến 5s .................39 Hình 3.19: Đồ thị chuyển vị chân đập và nền đập theo thời gian 2s đến 5s ...............40 Hình 3.20: Các điểm cần xem xét ứng suất ................................................................41 Hình 3.21: Ứng suất SX vị trí đỉnh đập từ 2s đến 5s ..................................................42 Hình 3.22: Ứng suất SY vị trí đỉnh đập từ 2s đến 5s ..................................................42 Hình 3.23: Ứng suất SX các vị trí thay đổi tiết diện từ 2s đến 5s...............................43 Hình 3.24: Ứng suất SY các vị trí thay đổi tiết diện từ 2s đến 5s...............................43 Hình 3.25: Ứng suất SX tại cao trình giữa vị trí đập thay đổi tiết diện và chân đập (thân đập) 44 Hình 3.26: Ứng suất SY tại cao trình giữa vị trí đập thay đổi tiết diện và chân đập ..44 Hình 3.27: Ứng suất SX các vị trí tại chân đập ..........................................................45 Hình 3.28: Ứng suất SY các vị trí tại chân đập ..........................................................46 -iii- Mục lục Hình 3.29: Ứng suất SX các phần tử dọc biên thượng lưu đập ..................................47 Hình 3.40: Ứng sất SY các phần tử dọc biên thượng lưu đập ....................................47 Hình 3.31: Ứng suất SX các nút biên dọc theo hạ lưu................................................48 Hình 3.32: Ứng suất SY các nút biên dọc theo hạ lưu................................................48 Hình 3.33: Ứng suất SX tại 2.7 s ................................................................................49 Hình 3.34: Ứng suất SY tại 2.7s .................................................................................49 Hình 3.35: Ứng suất SX tại 3.30s ...............................................................................50 Hình 3.36: Ứng suất SY tại 3.30s ...............................................................................50 Hình 3.37: Mô hình mô phỏng và lực tác dụng của chương trình Sap 2000 ..............52 Hình 3.39: Chia lưới và điều kiện biên mô hình.........................................................52 Hình 3.39: Chi tiết các nút xem xét ............................................................................53 Hình 3.40: Đồ thị chuyển vị các nút xem xét trong 20s .............................................53 Hình 3.41: Đổ thị chuyển vị các nút thượng lưu từ 2s ÷5s .........................................54 Hình 3.42: Đổ thị chuyển vị các nút hạ lưu từ 2s ÷5s ................................................54 Hình 3.43: Đổ thị chuyển vị các nút từ đỉnh đập từ 2s ÷5s ........................................55 Hình 3.44: Đổ thị chuyển vị các nút đập thay đổi tiết diện theo phương ngang 2s ÷5s 55 Hình 3.45: Đổ thị chuyển vị các nút thân đập theo phương ngang 2s ÷5s .................56 Hình 3.46: Đổ thị chuyển vị các nút chân đập theo phương ngang 2s ÷5s.................56 Hình 3.47: Các phần tử xem xét ứng suất ...................................................................57 Hình 3.48: Ứng suất SX các phần tử đỉnh đập từ 2s÷5s .............................................58 Hình 3.49: Ứng suất SY các nút đỉnh đập từ 2s ÷5s ...................................................58 Hình 3.50: Ứng suất SX các phần tử 3 và 7 từ 2s ÷5s ................................................59 Hình 3.51: Ứng suất SY các phần tử 3 và 7 từ 2s ÷5s ................................................59 Hình 3.52: Ứng suất SX các phần tử 2-10-6 từ 2s ÷5s ...............................................60 Hình 3.53: Ứng suất SY các phần tử 2-10-6 từ 2s ÷5s ...............................................60 Hình 3.54: Ứng suất SX các phần tử 1, 5, 9 từ 2s ÷5s ................................................61 Hình 3.55: Ứng suất SY các phần tử 1, 5, 9 từ 2s ÷5s ................................................62 Hình 3.56: Ứng suất SX các phần tử dọc biên thượng lưu từ 2s ÷5s .........................63 Hình 3.57: Ứng suất SY các phần tử dọc biên thượng lưu từ 2s ÷5s .........................63 Hình 3.58: Ứng suất SX các phần tử dọc biên hạ lưu từ 2s ÷5s .................................64 Hình 3.59: Ứng suất SY các phần tử dọc biên hạ lưu từ 2s ÷5s .................................64 -iv- Mục lục Hình 3.60: Phân bố ứng suất SX tại 2.6 s ...................................................................65 Hình 3.61: Phân bố ứng suất SY tại 2.6s ....................................................................65 Hình 3.62: phân bố ứng suất SX tại 3.07s ..................................................................66 Hình 3.63: Phân bố ứng suất SY tại 3.07s ..................................................................66 Hình 3.64: Mô hình Ansys không tiếp xúc nền ..........................................................67 Hình 3.65: Chuyển vị chân đập phía thượng lưu 3 mô hình .......................................68 Hình 3.66: chuyển vị thân đập phía thượng lưu 3 mô hình ........................................68 Hình 3.67: Chuyển vị vị trí thay đổi tiết diện phía thượng lưu 3 mô hình .................69 Hình 3.68: Chuyển vị vị trí đỉnh đập phía thượng lưu 3 mô hình ..............................69 Hình 3.69: Chuyển vị vị trí chân đập phía hạ lưu 3 mô hình......................................70 Hình 3.70: Chuyển vị vị trí thân đập phía hạ lưu 3 mô hình ......................................70 Hình 3.71: Chuyển vị vị trí thay đổi tiết diện phía hạ lưu 3 mô hình .........................70 Hình 3.72: Chuyển vị vị trí đỉnh đập hạ lưu 3 mô hình ..............................................71 Hình 3.73: Ứng suất SX vị trí chân đập phía thượng lưu 3 mô hình ..........................71 Hình 3.74: Ứng suất SY vị trí chân đập phía thượng lưu 3 mô hình ..........................72 Hình 3.75: Ứng suất SX vị trí chân đập phía hạ lưu 3 mô hình..................................72 Hình 3.76: Ứng suất SY vị trí chân đập phía hạ lưu 3 mô hình..................................73 Hình 3.77: Ứng suất SX vị trí thân đập thượng lưu 3 mô hình ..................................73 Hình 3.78: Ứng suất SY vị trí thân đập thượng lưu 3 mô hình ..................................74 Hình 3.79: Ứng suất SX vị trí thân đập phía hạ lưu 3 mô hình ..................................74 Hình 3.80: Ứng suất SY vị trí thân đập phía hạ lưu 3 mô hình .................................74 Hình 3.81: Ứng suất SX vị trí đập thay đổi tiết diện phía thượng lưu 3 mô hình ......75 Hình 3.82: Ứng suất SY vị trí đập thay đổi tiết diện phía thượng lưu 3 mô hình ......75 Hình 3.83: Ứng suất SX vị trí thân thay đổi tiết diện hạ lưu 3 mô hình .....................75 Hình 3.84: Ứng suất SY vị trí thay đổi tiết diện hạ lưu 3 mô hình .............................76 Hình 3.85: Mô hình đập bê tông Đồng Nai 5 .............................................................78 Hình 3.86: Mô hình mô phỏng đập bê tông Đồng Nai 5 ............................................78 Hình 3.87: Điểm xem xét chuyển vị và ứng suất ........................................................79 Hình 3.88: Áp lực thủy tĩnh mô hình ..........................................................................79 Hình 3.89: Chuyển vị ngang đập do áp lực thủy tĩnh .................................................80 Bảng 4: Kết quả chuyển vị phương ngang Ux ............................................................80 Hình 3.90: Ứng suất theo phương ngang Sx do áp lực thủy tĩnh ...............................81 -v- Mục lục Bảng 5: Kết quả ứng suất phương ngang Sx ..............................................................81 Hình 3.91: Ứng suất theo phương đứng Sy do áp lực thủy tĩnh .................................82 Bảng 6: Kết quả ứng suất phương đứng Sy ................................................................82 Hình 3.92: Chuyển vị các nút thượng lưu và hạ lưu khi có động đất .........................83 Hình 3.93: Chuyển vị các nút thượng lưu khi có động đất từ 2s÷5s ..........................83 Hình 3.94: Chuyển vị các nút thượng lưu khi có động đất từ 2s÷5s ..........................84 Hình 3.95: Ứng suất Sx theo phương ngang các nút theo thời gian ...........................84 Hình 3.96: Ứng suất Sx theo phương ngang các nút đỉnh đập từ 2s÷5s .....................85 Hình 3.97: Ứng suất Sx theo phương ngang các nút cao trình +50m từ 2s÷5s ..........85 Hình 3.98: Ứng suất Sx theo phương ngang các nút cao trình +25m từ 2s÷5s ..........86 Hình 3.99: Ứng suất Sx theo phương ngang các nút chân đập từ 2s÷5s ....................86 Hình 3.100: Ứng suất Sx theo phương ngang các nút biên thượng lưu từ 2s÷5s .......87 Hình 3.101: Ứng suất Sx theo phương ngang các nút biên hạ lưu từ 2s÷5s ...............87 Hình 3.102: Ứng suất Sx theo phương ngang các nút giữa đập từ 2s÷5s ...................88 Hình 3.103: Ứng suất theo phương đứng Sy ..............................................................88 Hình 3.104: Ứng suất theo phương đứng Sy đỉnh đập từ 2s÷5s .................................89 Hình 3.105: Ứng suất theo phương đứng Sy các nút ở cao độ +50m từ 2s÷5s ..........89 Hình 3.106: Ứng suất theo phương đứng Sy các nút ở cao độ +25m từ 2s÷5s ..........89 Hình 3.107: Ứng suất theo phương đứng Sy các nút ở chân đập từ 2s÷5s .................90 Hình 3.108: Ứng suất theo phương đứng Sy các nút dọc theo biên thượng lưu.........90 Hình 3.109: Ứng suất theo phương đứng Sy các nút dọc theo biên hạ lưu ................90 Phụ lục A: thông số nhập vào ..................................................................................94 -vi- Chương 1: Tổng quan CHƯƠNG 1: TỔNG QUAN 3.3. ĐẶT VẤN ĐỀ Công trình Hồ chứa nước được xây dựng ngày càng nhiều, càng có quy mô lớn, một trong những kết cấu xây dựng để tạo hồ chứa là đập. Ở một số vùng, do vật liệu địa phương không thoả mãn điều kiện đắp đập, bên cạnh đó với sự ưu việt của bê tông nên đã dùng hình thức đập bê tông trọng lực. Để đảm bảo an toàn cho đập bê tông trọng lực, ngoài tính toán ổn định trượt lật thì cần tính ứng suất và biến dạng để kiểm tra độ bền của đập, tính toán cốt thép cũng như phân vùng vật liệu trong đập một cách hợp lí, tránh lãng phí vật liệu và giảm giá thành xây dựng. Trên thế giới, động đất xảy ra nhiều ở vành đai Thái Bình Dương (chiếm 75%), một phần ít hơn xảy ra ở vành đai Địa Trung Hải, biển Đông (chiếm (23%) và chỉ có 2% xảy ra trên đất liền. Việt Nam từng ghi nhận 2 trận động đất rất lớn là động đất Điện Biên (năm 1935) với cường độ 6,75 độ Richter xảy ra trên đới đứt gẫy sông Mã. Trận lớn thứ hai là động đất Tuần Giáo (năm 1983), với cường độ 6,8 độ Richter, xảy ra trên đới đứt gẫy Sơn La. Ngoài ra, vùng ngoài khơi Nam Trung Bộ, năm 1923 cũng có 1 trận động đất 6,1 độ Richter (thuộc ở vùng biển vũng Tàu, Phan Thiết). Trận động đất này này đi cùng hiện tượng phun trào núi lửa Hòn Choi, trên đới đứt gãy kinh tuyến 109110. Năm 2010, có rất nhiều trận động đất xảy ra ở Việt Nam. Trong đó, trận lớn nhất đạt 5 độ Richter. Còn những trận nhỏ hơn thì xảy ra trên hàng loạt đứt gãy như Mường Lay - Bắc Yên, Cao Bằng-Tiên Yên, đứt gãy sông Mã, Sông Cả… Hiện trạng tại Việt Nam nhiều đập bê tông trọng lực được xây dựng ở những vùng chịu tác động của động đất, do đó việc xác định được ảnh hưởng của động đất đến biến dạng, ứng suất và chuyển vị của đập là rất quan trọng trong việc đánh giá mức độ an toàn của đập dâng. -1- Chương 1: Tổng quan Hình 1.1: Bản đồ phân bố tâm động đất ở Việt Nam và các vùng lân cận -2- Chương 1: Tổng quan Hình 1.2: Chấn tâm các trận động đất mạnh đã ghi nhận được dọc theo đứt gẫy sinh chấn Lai Châu – Điện Biên và vị trí dự kiến xây dựng nhà máy thủy điện Xayabury -3- Chương 1: Tổng quan 3.4. MỤC TIÊU NGHIÊN CỨU Khi công trình chịu lực động đất, tải trọng tác dụng là thành phần lực quán tính, lực quán tính này phát sinh do bản thân công trình và áp lực thuỷ động đối với công trình chịu ảnh hưởng của nước. Ứng suất, biến dạng công trình ảnh hưởng rất lớn đến độ bền công trình. Khi ứng suất, biến dạng vượt qua giới hạn cho phép, kết cấu có thể xảy ra nứt, gây hư hỏng công trình. Đặc biệt khi động đất, thành phần lực tác dụng vào công trình tăng nhanh, tăng đột ngột sẽ xuất hiện vị trí nguy hiểm là các điểm có ứng suất và chuyển vị lớn so với các điểm còn lại và sẽ hư hại các điểm này trước. Khi xảy ra sự cố về đập sẽ gây rất nhiều hậu quả nghiêm trọng về mặt vật chất lẫn tinh thần. Do đó vấn đề an toàn trong thiết kế và vận hành đập là vấn đề được đặt lên hàng đầu, bảo đảm tránh mọi thiệt hại có thể xảy ra. Trong thiết kế đập bê tông chịu tác động của động đất phương pháp Westergaad thường được dùng để xác định áp lực thủy động tác dụng lên đập dâng và kết quả của phương pháp này cũng được dùng để quy thành khối lượng bổ sung gắn vào mặt thượng lưu của đập dâng trong khi tính toán dao động của đập dâng. Hiển nhiên là chất lỏng trong hồ chứa và nền công trình có ảnh hưởng đến ứng xử của đập khi xảy ra động đất. Do đó trong đề tài này tác động tương hỗ của đập dâng, hồ chứa và nền được nghiên cứu trong cùng một bài toán, qua đó kết quả tính toán có thể sẽ thể hiện chính xác hơn sự làm việc thực sự của hệ thống đập – hồ chứa – nền công trình. Ngoài ra ứng với các kích thước đập khác nhau sẽ có các ảnh hưởng lớn nhỏ khác nhau, nên mô phỏng hình dạng đập khác nhau sẽ có cách nhìn tổng quan hơn về ảnh hưởng của động đất lên đập. Nội dung nghiên cứu cơ sở lý thuyết gồm: lý thuyết về động lực học công trình, vận dụng lý thuyết vào tính toán động đất, từ đó tiến hành phân tích ứng suất biến dạng công trình bằng phương pháp phần tử hữu hạn. Nghiên cứu sử dụng đặc tính đặc trưng của 2 chương trình để cùng mô phỏng 1 bài toán ngoài thực tế từ đó đề ra ưu, khuyết điểm trong cách mô phỏng khi áp dụng vào thiết kế công trình. -4- Chương 1: Tổng quan 3.5. PHẠM VI NGHIÊN CỨU Cùng với sự phát triển của kỹ thuật máy tính cho cho phép giải hệ phương trình với nhiều biến hơn, đồng thời cũng phát triển ra nhiều phần mềm giải bằng phương pháp phần tử hữu hạn như: HN-BUILDING, ETAB, SAP, ANSYS, MATLAB. Mỗi phần mềm đều có ưu và nhược điểm riêng nhưng có cách giải chung là sử phương pháp phần tử hữu hạn. Trong đề tài này sẽ đi nghiên cứu về 2 phần mềm là ANSYS và Sap2000. Phần đầu sẽ nghiên cứu bài toán cơ bản đập chịu áp lực thủy tĩnh của mực nước dâng bình thường trong hồ, để xét về chuyển vị và ứng suất cơ bản trong trạng thái đập làm việc bình thường. Trong mô hình Sap2000 đập và nền sẽ được mô phỏng bằng phần tử plane 4 nút, các phần tử liên kết nhau bằng nút cứng, áp lực nước sẽ được mô phỏng bằng lực phân bố tuyến tính. Trong mô hình Ansys, phần tử nước, đập và nền sẽ được liên kết qua phần tử thứ 3 là phần tử tiếp xúc, áp lực nước sẽ được mô phỏng bằng phần tử nước để tăng đa dạng mô hình tính toán. Phần hai đề tài nghiên cứu đập khi có ảnh hưởng của động đất, khi đó đập sẽ chịu tác động của gia tốc ngang biến đổi theo thời gian. Khi đó sự ảnh hưởng của áp lực nước lên mô hình sẽ được biểu diễn bằng lực trong Sap, và phần tử nước trong Ansys Phần ba đề tài đánh giá ảnh hưởng của động đất lên mô hình đập khác nhau để có cách nhìn tổng quan hơn về ảnh hưởng của động đất lên đập. 3.6. CÁC NGHIÊN CỨU TRONG VÀ NGOÀI NƯỚC Các bài báo nghiên cứu về ảnh hưởng của động đất lên công trình đập bê tông trọng lực, nghiên cứu dùng nhiều phương pháp khác nhau để mô tả lực động đất và mô tả áp lực thuỷ động của hồ chứa khi chịu ảnh hưởng của động đất. Các phần mềm để mô tả cũng khác nhau nhưng đều dùng phương pháp phần tử hữu hạn để giải hệ phương trình. -5- Chương 1: Tổng quan 1.1.1. Nghiên cứu trong nước a. Nghiên cứu trạng thái ứng suất và biến dạng của đập bê tông trọng lực có xét đến tác dụng động đất [1] Tác giả: Nguyễn Trọng Quân (Công ty cổ phần tư vấn Sông Đà - Tập đoàn Sông Đà) giới thiệu trên trang web http://www.vncold.vn. Trước đây, phương pháp tính toán cho đập bê tông trọng lực thường đưa về bài toán phẳng để tính nên chưa phản ánh đúng trạng thái chịu lực của công trình khi làm việc. Trong đề tài này, tác giả tính theo bài toán không gian tức là đập tràn, trụ pin, đập bê tông trọng lực và nền cùng làm việc đồng thời có xét đến tải trọng động đất, do đó nó phản ánh được đầy đủ hơn, chính xác hơn trạng thái làm việc của công trình trong thực tế. Trong nghiên cứu này, tác giả đã thiết lập các mô hình 3D tính toán sử dụng phần mềm Autocad và ANSYS để mô hình hóa đập dâng, đập tràn và nền cùng làm việc đồng thời và được mô hình hoá bằng phần tử solid concret 65. b. Ứng dụng phần mềm Cadam để tính toán đập bê tông trọng lực [2] Tác giả: KS. Trần Huy Thanh. Khoa Công trình thủy, Trường ĐH Hàng Hải, giới thiệu trên trang web http://khcn.vimaru.edu.vn Cadam là một chương trình máy tính mà chức năng đầu tiên của nó là cung cấp hỗ trợ cho việc hiểu thêm các nguyên tắc về đánh giá ổn định của đập bê tông trọng lực. Cadam cũng dùng để hỗ trợ việc nghiên cứu và phát triển về các tác động kết cấu và sự an toàn của đập bê tông trọng lực. Cadam dựa trên phương pháp trọng lực (sự cân bằng của khối cứng và lý thuyết dầm). Nó thực hiện sự phân tích ổn định dưới tác dụng của lực thủy tĩnh và lực động đất. Phần mềm Cadam được xây dựng dựa trên các giả thiết sau: + Phân tích ứng suất để xác định chiều dài vết nứt có thể xảy ra và các ứng suất nén. -6- Chương 1: Tổng quan + Phân tích ổn định để xác định các dự trữ an toàn chống trượt dọc theo các nút quy ước và vị trí của các hợp lực tác dụng lên các nút. Phần mềm này sử dụng phương pháp trọng lực để tính toán với các giả thiết đơn giản hóa sau: + Thân đập được chia thành các nút với các đặc tính đồng nhất dọc theo chiều dài của chúng, khối bê tông và các nút là các vật liệu đàn hồi đồng nhất. + Toàn bộ các lực tác dụng lên được truyền lên móng của đập mà không tương tác với các khối đá bên cạnh. + Không có sự tương tác giữa các nút, mà mỗi nút được phân tích không phụ thuộc vào các nút khác. + Ứng suất được phân bố tuyến tính dọc theo mặt phẳng nằm ngang. + Ứng suất cắt phân bố theo quy luật parabol dọc theo mặt phẳng nằm ngang trong các điều kiện không có vết nứt. c. Phân tích ứng suất đập bê tông trọng lực khi có xét đến tính phi tuyến của vật liệu [3] Tác giả: Ts. Vũ Hoàng Hưng và Ts. Nguyễn Quang Hùng, Trường đại học Thủy Lợi. http://lib.wru.edu.vn Phương pháp tính toán thiết kế đập bê tông trọng lực ra đời tương đối sớm, vì vậy có những tính toán thiết kế chưa phù hợp với điều kiện phát triển khoa học kỹ thuật ngày nay. Thông thường, tính toán phân tích ứng suất thân đập mới chỉ xét đến quá trình làm việc của vật liệu trong giai đoạn đàn hồi, chưa phản ánh đúng điều kiện làm việc của vật liệu làm đập. Bài báo này tiến hành phân tích ứng suất đập bê tông trọng lực bằng phương pháp phần tử hữu hạn có ứng xử vật liệu phi tuyến là một phát triển mới trong thiết kế đập. Những kết quả đạt được trong phân tích ứng suất đập bê tông trọng lực khi có xét đến tính phi tuyến của vật liệu cho thấy rõ sự khác nhau cơ bản trong hai loại quan niệm vật liệu khác nhau để từ đó có những ứng xử công trình cho -7- Chương 1: Tổng quan thích hợp. Các kết quả nghiên cứu trình bày trong bài báo là những tham khảo tốt cho người thiết kế. Bài báo đã đưa ra được kết quả của bài toán phân tích ứng suất - biến dạng đập bê tông trọng lực bằng phương pháp phần tử hữu hạn sử dụng mô hình vật liệu bê tông làm việc trong giai đoạn phi tuyến. Các giá trị ứng suất SX, S3 tại mép biên thượng hạ lưu tính theo hai loại mô hình vật liệu tuyến tính và phi tuyến. 1.1.2. Nghiên cứu ngoài nước: a. Phân tích đập bê tông trọng lực khi có động đất [4] Các tác giả: Manzori Iman Kamanbedast, Amir Abbas, Erfanian Azmoudeh và Mohammad Hossein. Đại học Islamic Azad, Ahwaz, Iran, Tạp chí: World Applied Sciences Journal số 17 năm 2012. www.semanticscholar.org/ Bài báo nghiên cứu điều tra và phân tích ứng xử của một đập bê tông trọng lực trong chuyển động mặt đất mạnh ngang do một trận động đất được mô phỏng bằng chương trình ANSYS. Trong mô hình phân tích tác giả đưa vào áp lực nước biểu đồ gia tốc động đất cũng như kích thước đập, tác giả chỉ ra rẳng ở trung tâm động đất tần số cao hơn thì mạnh hơn, xa hơn thì tần số yếu đi, ứng suất kéo lớn nhất trong thân đập lớn hơn ứng suất cho phép sẽ gây các vết nứt trong thân đập. Kết quả trong mô hình phân tích ra ứng suất và chuyển vị các nút trong thân đập theo phương X và Y. b. Ảnh hưởng của môđun đàn hồi của nền đến ứng xử của đập bê tông trọng lực [5] Các tác giả Z. Heirany và M. Ghaemian, chuyên ngành xây dựng dân dụng, nghiên cứu khoa học, đại học Candidate Islamic Azad (IAU), Tehran, Iran. www.cwejournal.org Bài báo nghiên cứu ứng xử của đập bê tông trọng lực khi có động đất, tác động đồng thời của hồ chứa và nền trong trong mô hình 2 chiều. Phương pháp sử dụng -8-
- Xem thêm -

Tài liệu liên quan