Đăng ký Đăng nhập
Trang chủ Phân thức hữu tỷ và một số hệ phương trình...

Tài liệu Phân thức hữu tỷ và một số hệ phương trình

.PDF
59
5
51

Mô tả:

.. ®¹i häc th¸I nguyªn Tr­êng ®¹i häc khoa häc ----------------------------------- vò v¨n viÕt PH¢N THøC H÷U Tû Vµ MéT Sè HÖ PH¦¥NG TR×NH LuËn v¨n th¹c sÜ to¸n häc Th¸i Nguyªn – 2012 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn ®¹i häc th¸I nguyªn ®¹i häc th¸I nguyªn Tr­êng ®¹i häc khoa häc ----------------------------------- vò v¨n viÕt PH¢N THøC H÷U Tû Vµ MéT Sè HÖ PH¦¥NG TR×NH Chuyªn ngµnh : ph­¬ng ph¸p to¸n s¬ cÊp M· sè : 60.46.40 LuËn v¨n th¹c sÜ to¸n häc NG¦êI H¦íNG DÉN KHOA HäC: pgs.ts ®µm v¨n nhØ Thái Nguyên – 2012 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Mục lục Mục lục Trang LỜI NÓI ĐẦU 2 Chương 1 Số phức và vành đa thức 4 1.1 Tính đóng đại số của trường  4 1.2 Vành đa thức và nghiệm đa thức 8 Chương 2 Phân thức hữu tỷ và một số hệ phương trình 10 2.1 Phân thức hữu tỷ 10 2.2 Phân tích phân thức để tính một số tổng 15 2.3 Giải hệ phương trình và xây dựng đồng nhất thức 21 2.4 Tính tích phân của phân thức hữu tỷ 33 2.5 Một vài dãy số qua phân thức hữu tỷ 43 2.6 Bất đẳng thức hình học 49 KẾT LUẬN 56 TÀI LIỆU THAM KHẢO 57 1 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Lời nói đầu Phân thức hữu tỷ xuất hiện ở ba cấp học bậc phổ thông và cả bậc Đại học trong Đại Số, Giải Tích, Hình Học, Tổ Hợp.Vấn đề đặt ra là sử dụng phân thức hữu tỷ vào nghiên cứu Toán sơ cấp như thế nào? Đặc biệt sử dụng các kết quả về phân thức hữu tỷ để vào sáng tác các bài toán mới. Với những lí do trên, là một giáo viên giảng dạy môn Toán trong trường phổ thông, tôi đã chọn nghiên cứu đề tài: " Phân thức hữu tỷ và một số hệ phương trình". Đích cuối cùng mà luận văn muốn đạt được là: 1/ Phân tích phân thức hữu tỷ thành tổng các phân thức đơn giản 2/ Giải hệ phương trình tuyến tính nhiều ẩn có liên quan đến phân thức 3/ Tính tổng và xây dựng một số đồng nhất thức trong tổ hợp 4/ Tính tích phân các phân thức hữu tỷ 5/ Nghiên cứu dãy số qua phân thức hữu tỷ 6/ Xây dựng bất đẳng thức hình học Luận văn gồm hai chương: Chương I: Giới thiệu về vành đa thức, số phức và tính đóng đại số của trường  và việc nhúng  vào  để có thể coi  như một trường con của trường  . Từ tính đóng của trường  suy ra sự phân tích đa thức thành tích các nhân tử bất khả quy trong   x  . Chương II: Trình bày về phân thức hữu tỷ thành tổng các phân thức đơn giản và một số ứng dụng để: giải một số hệ phương trình, xây dựng các đồng nhất thức, tính các tổng, tính tích phân và một vài dãy số qua phân thức hữu tỷ. 2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Dù đã rất cố gắng, nhưng chắc chắn nội dung được trình bày trong luận văn không tránh khỏi những thiếu sót nhất định, em rất mong nhận được sự góp ý của các thầy cô giáo và các bạn. Luận văn được hoàn thành dưới sự hướng dẫn khoa học của PGS.TS. Đàm Văn Nhỉ . Em xin được tỏ lòng cảm ơn chân thành nhất tới thầy. Em xin cảm ơn chân thành tới Trường Đại học Khoa Học - Đại học Thái Nguyên, nơi em đã nhận được một học vấn sau đại học căn bản và cuối cùng, tác giả xin chân thành cảm ơn gia đình, bạn bè, đồng nghiệp đã cảm thông, ủng hộ và giúp đỡ trong suốt thời gian tác giả học Cao học và viết luận văn. Hải Phòng, tháng 08 năm 2012 Người viết luận văn Vũ Văn Viết 3 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chương I Số phức và vành đa thức Chương này giới thiệu vành đa thức, vành các chuỗi lũy thừa hình thức và tính đóng đại số của trường các số phức  . 1.1 Tính đóng đại số của trường Xét tích Descartes T        a, b  \   và định nghĩa phép toán:  a , b    c, d   a  c, b  d  a , b    c, d    a  c, b  d   a, b . c, d    ac  bd , ad  bc  Để đơn giản, viết  a, b  . c, d  qua  a, b  c, d  . Từ định nghĩa của phép nhân: (i) Với i   0,1  T có i 2  i.i   0,1 0,1   1,0  (ii)  a, b  0,1   0,1 a, b    a, b  (iii)  a, b    a,0    0, b    a,0    b,0  0,1 ,   a, b   T Bổ đề 1.1.1 Ánh xạ  :   T , a   a,0  là một đơn ánh và thỏa mãn   a  a '    a     a ' ,  aa '    a   a ' , a, a '   Đồng nhất  a,0   T với a   . Khi đó có thể viết  a, b    a,0    b,0  0,1  a  bi, i 2   1,0   1 . Ký hiệu  là tập T cùng với phép toán đã nêu ở trên. Như vậy     a  bi \ a, b  , i 2  1 và ta có 4 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn a  bi  c  di  a  c, b  d a  bi  c  di  a  c   b  d  i  a  bi  c  di   ac  bd   ad  bc  i. Mỗi phần tử z  a  bi   được gọi là một số phức với phần thực a, ký hiệu Re z , và phần ảo b, ký hiệu Im z , còn i gọi là đơn vị ảo. Số phức a  bi được gọi là số phức liên hợp của z  a  bi và ký hiệu là z  a  bi . Dễ dàng kiểm tra z z   a  bi  a  bi   a 2  b 2 và gọi z  z z là môđun của z . Số đối của z '  c  di là  z '  c  di và ký hiệu z  z '   a  bi    c  di   a  c   b  d  i. Xét mặt phẳng tọa độ (Oxy). Mỗi số phức z  a  bi ta cho tương ứng với điểm M  a, b  . Tương ứng này là một song ánh     , z  a  bi  M  a, b  . Khi đồng nhất  với  Oxy  qua việc đồng nhất z với M , thì mặt phẳng tọa độ với biểu diễn số phức như thế được gọi là mặt phẳng phức hay mặt phẳng Gauss. Mệnh đề 1.1.2 Tập  là một trường chứa trường  như một trường con. Chứng minh: Dễ dàng kiểm tra  là một vành giao hoán với đơn vị là 1. Giả sử z  a  bi  0 . Khi đó a 2  b 2  0 . Giả sử z '  x  yi  C : zz '  1 hay ax  by  1 a b . Giải hệ được x  2 . ,y 2  2 2 bx  ay  0 a  b a  b  Vậy z '  a b  2 i là nghịch đảo của z . Tóm lại  là một trường. 2 a b a  b2 2 5 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn vì đồng nhất a   với a  0i   nên có thể coi  là trường con của  . Chú ý rằng nghịch đảo của z  0 là z 1  z z 2 và z' z'z  z ' z 1  2 . z z Định nghĩa1.1.3 Cho số phức z  0 . Giả sử M là một điểm trong mặt phẳng biểu diễn số phức z . Số đo (radian) của mỗi góc lượng giác tia đầu Ox và tia cuối OM được gọi là argument của z và ký hiệu arg  z  . Góc xOM được gọi là Argument của z và ký hiệu là Arg z . Argument của số phức 0 là không định nghĩa Chú ý rằng, nếu  là một argument của z thì mọi argument của z đều có dạng   2k , k   . Với z  0 , ký hiệu   k 2 là Argument của z . Ký hiệu r  z z . Khi đó số phức z  a  bi, a  rcos , b  r sin  . Vậy khi z  0 thì có thể biểu diễn z  r  cos   i sin   và biểu diễn này được gọi là dạng lượng giác của z. Mệnh đề 1.1.4 Nếu z1  r1  cos1  i sin 1  , z2  r2  cos 2  i sin  2  , r1, r2  0 thì (i) z1z2  z1 z2 , z z1  1 z2 z2 (ii) z1z2  r1r2 cos 1   2   i sin 1   2   (iii) z1 r1  cos 1   2   i sin 1   2   , r  0. z2 r2  Mệnh đề 1.1.5(Moivre) Nếu z  r  cos  i sin   thì với mỗi số nguyên dương n ta có z n  r n cos  n   i sin  n   . 6 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hệ quả 1.1.6. Cho căn bậc n của một số phức z  r  cos   i sin   ta nhận được n giá trị khác nhau zk  1 rn   2 k   2 k    i sin  cos  , k  1,2,..., n . n n   Bây giờ ta chỉ ra rằng, mọi đa thức dương thuộc   x  đều có nghiệm trong  . Đó là nội dung của định lý cơ bản của đại số. Định nghĩa 1.1.7 Trường K được gọi là trường đóng đại số nếu mọi đa thức bậc dương thuộc K  x  đều có nghiệm trong K . Như vậy, trong K  x  mọi đa thức bậc dương đều phân tích được thành tích các nhân tử tuyến tính khi K là một trường đóng đại số. Định lý 1.1.8(d'Alembert - Gauus, Định lý cơ bản của đại số) Mọi đa thức bậc dương thuộc   x  đều có ít nhất một nghiệm thuộc  . Từ định lý 1.1.8 suy ra kết quả sau đây về đa thức bất khả quy trong   x  : Hệ quả 1.1.9 Mọi đa thức thuộc   x  với bậc n  0 đều có n nghiệm trong  và các đa thức bất khả quy trong   x  là các đa thức bậc nhất. Mệnh đề 1.1.10 Cho f  x     x  \ . f  x  là đa thức bất khả quy khi và chỉ khi f  x   ax  b, a  0 hoặc f  x   ax 2  bx  c, b 2  4ac  0 . 7 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Định lý 1.1.11 Mỗi đa thức f  x     x  \  đều có thể phân tích được một cách duy nhất thành dạng n f  x   a  x  a1  1 ... x  as  ns  x 2  b1x  c1   d1 ... x 2  br x  cr  dr với các bi 2  4ci  0, i  1,..., r ; r  1 1.2 Vành đa thức và nghiệm đa thức Nhắc lại một vài khái niệm và kết quả trong vành đa thức một biến trên một trường. Cho trường K và một biến x trên K . Với n   , Xét tập hợp: n  K  x   a0  a1x  a2 x  ...  an x \ ai  K   ai x i \ ai  K  . i  0   2 n  Mỗi phần tử f  x   K  x  được gọi là một đa thức của biến x với các hệ số ai  K . Hệ số an gọi là hệ số cao nhất, còn hệ số ao gọi là hệ số tự do của f  x  . Khi an  0 thì n được gọi là bậc của f  x  và được ký hiệu deg f  x  . Riêng đa thức 0 được quy định là có bậc là  hoặc -1. Định lý 1.2.1. Ta có K  x  là một vành giao hoán. Hơn nữa K  x  còn là một miền nguyên, có nghĩa: nếu f  x  , g  x   K  x  thỏa mãn f  x  g  x   0 thì f  x   0 hoặc g  x  0 . 8 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Định lý 1.2.2. Với các đa thức f  x  , g  x   K  x  và g  x   0 có hai đa thức duy nhất q  x  , r  x  sao cho f  x   q  x  g  x   r  x  với deg r  x   deg g  x  . Định lý 1.2.3. Vành K  x  là một vành nhân tử hóa, có nghĩa: Mỗi đa thức thuộc K  x  đều phân tích được một cách duy nhất thành tích các nhân tử bất khả quy nếu không kể thứ tự các nhân tử và các nhân tử thuộc K . Trong vành K  x  xét hai đa thức sau đây: f  x   a0  a1x  ...  am x m , g  x   b0  b1x  ...  bn x n , ambn  0 . Định lý 1.2.4. Hai đa thức f  x  , g  x  có ước chung khác hằng số khi và chỉ khi có hai đa thức thuộc K  x  là: p  x   c0  c1x  ...  cm 1x m 1 q  x   d0  d1x  ...  d n 1x n 1 không đồng thời bằng 0, thỏa mãn q  x  f  x   p  x  g  x  . Định lý 1.2.5. Giả sử f  x   K  x  với bậc n  1 . Khi đó có các kết quả sau: (i) Nếu   K là nghiệm của f  x  thì f  x    x    g  x  , g  x   K  x  . (ii) f  x  có không quá n nghiệm phân biệt trong K . 9 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Chương 2 Phân thức hữu tỷ và một số hệ phương trình Chương này tập trung nghiên cứu sự phân tích phân thức hữu tỷ thành tổng các phân thức đơn giản. Vận dụng các kết quả đạt được vào việc giải hệ phương trình tuyến tính, xây dựng các đồng nhất thức, tính một số tổng hữu hạn, tính tích phân hàm phân thức hữu tỷ , nghiên cứu dãy số qua phân thức hữu tỷ, và chứng minh một số bất đẳng thức hình học. 2.1 Phân thức hữu tỷ Xét hàm đa thức trên trường  . Mỗi phần tử thuộc   x  được gọi là một hàm hữu tỷ hay một phân thức hữu tỷ. Những phân thức hữu tỷ dạng hay b  x  a q x , với n  1 và p  x  là đa thức bất khả quy, được gọi là những pn  x  phân thức hữu tỷ đơn giản. Bây giờ ta biểu diễn mỗi phân thức hữu tỷ qua phân thức hữu tỷ đơn giản. Định lý 2.1.1. Nếu hai đa thức g  x  , h  x  nguyên tố cùng nhau trên K với m  deg g  x  , n  deg h  x  thì đa thức bất kỳ f  x  ,deg f  x   m  n đều có thể biểu diễn được dưới dạng f  x   r  x  g  x   s  x  h  x  , trong đó deg r  x   n,deg s  x   m . 10 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn n Chứng minh: Vì g  x  , h  x  nguyên tố cùng nhau, nên ta có đồng nhất thức 1  a  x  g  x   b  x  h  x  . Nhân hai vế hệ thức này với f  x  sẽ được f  x   f  x  a  x  g  x   f  x b  x  h  x  Biểu diễn f  x  a  x   q  x  h  x   r  x  ,deg r  x   n . Khi đó có f  x   f  x  a  x  g  x   f  x b  x  h  x   r  x  g  x    q  x  g  x   f  x  b  x   h  x  . Đặt s  x   q  x  g  x   f  x  b  x  . Do đó f  x   r  x  g  x   s  x  h  x  . Vì deg f  x   m  n,deg r  x  g  x   m  n nên deg s  x   m . Bổ đề 2.1.2. Nếu hai đa thức g  x  , h  x  nguyên tố cùng nhau trên K và đa thức f  x  ,deg f  x   deg g  x   deg h  x  thì ta có sự biểu diễn f  x r  x s x   , trong đó deg r  x   deg h  x  ,deg s  x   deg g  x  . g  xh x h x g  x Chứng minh: Theo định lý 2.1.1 ta có sự biểu diễn f  x   r  x  g  x   s  x  h  x  với deg r  x   deg h  x  ,deg s  x   deg g  x  . Chia hai vế hệ thức này cho g  x  h  x  ta nhận được f  x r  x s x   . g  xh x h x g  x Định lý 2.1.3. 11 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Mỗi phân thức hữu tỷ f  x ,deg f  x   deg g  x  đều phân tích được thành g  x tổng các phân thức hữu tỷ đơn giản. Hệ quả 2.1.4. Mỗi phân thức hữu tỷ f  x bất kỳ đều phân tích thành tổng một đa thức và g  x các phân thức hữu tỷ đơn giản. Chứng minh: Nếu deg f  x   deg g  x  thì ta có kết quả cần chứng minh theo định lý trên. Nếu deg f  x   deg g  x  thì ta biểu diễn f  x   q  x  g  x   r  x  ,deg r  x   g  x  Khi đó f  x r  x  q x  và kết quả cần chứng minh được suy ra từ nhận xét ban g  x g  x đầu. Vì mỗi đa thức bất khả quy trong   x  có dạng x 2  bx  c,   b 2  4ac  0 , nên mỗi đa thức g  x  đều có thể viết được thành dạng: s g  x     x  ai  i 1 ni r  x i 1 2  bi x  ci  . Từ đó ta có hệ quả sau: mi Hệ quả 2.1.5 Mỗi phân thức hữu tỷ f  x biểu diễn được thành dạng g  x s ni r mi bij bij x  cij f  x  q  x      j 2 g  x i 1 j 1  x  ai  i 1 j 1  x  b x  c j 12 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên j  j . http://www.lrc-tnu.edu.vn Mệnh đề 2.1.6. Xét phân thức f  x   p x    x  . Với mỗi x0 sao cho f  x0  có nghĩa, q x luôn có biểu diễn f  x   f  x0    x  x0  h x , trong đó q x h  x     x  ,deg h  x   max deg p  x  ,deg q  x   1. Chứng minh: Với phép chia với dư có thể biểu diễn p  x    x  x0  p1 x  p  x0  và q  x    x  x0  q1 x  q  x0  , p1  x  , q1  x     x  , theo định lý 1.2.2. Với F  x   f  x   f  x0  ta có biến đổi sau đây: F  x  p  x  p  x0  p  x  q  x0   p  x0  q  x    q  x  q  x0  q  x  q  x0   p  x  p  x0  q  x1     x  x0   1   q x q x q x       0   p  x   f  x0  q1  x    x  x0  1 . q x Do vậy ta có biểu diễn f  x   f  x0    x  x0  h x , trong đó q x h  x     x  ,deg h  x   max deg p  x  ,deg q  x   1. Hệ quả 2.1.7. Với mỗi phân thức f  x   p x    x  và x0 sao cho f  x0  có nghĩa, luôn q x n có biểu diễn f  x   f  x0   a x  x  k 1 k 0 q x 13 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên k , ak  . http://www.lrc-tnu.edu.vn Chứng minh: Suy ra từ mệnh đề 2.1.6. Trường hợp đặc biệt: Khi q  x    x  x1  x  x2  ... x  xn  và biểu diễn p  xk  p x n f  x   , xi  x j khi i  j và deg p  x   n , thì với q  x  k 1 q '  xk  x  xk  p  xk  có k  2 q '  xk  x  xk  n h  x    x  x1  f  x   a1   p  xk  ( x1  xk ) , xk   . k  2 q '  xk   xk  x  xk  n h  x   h     x     Ví dụ 2.1.8. n 1 xk x n1 Chứng minh rằng ta luôn có   , a  0 a  x k 0 a k 1 a k 1  a  x  và mọi số tự nhiên dương n . Bài giải: Theo Mệnh đề 2.1.6, với phân thức f  x   1 , x0  0, ta có ax n 1 xk x n1 1 1 x 1   .   . . lặp lại sau n lần được a  x k 0 a k 1 a k 1  a  x  ax a a ax Ví dụ 2.1.9. Giả sử a, a1 ,..., an  0. Ta luôn có đồng nhất thức sau: (i) a1  a2 an1  an an  a1  ...   0  an1  a  an  a   an  a   a1  a   a1  a  a2  a  (ii) Với hàm phân thức f  x, u   n   f  x, a   f  a k 1 k 1 xu . , an1  a1 luôn có đồng nhất thức u x xu n k 1 , ak     f ( x , a k ) k 1 14 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Bài giải: (i) Dễ dàng kiểm tra x  a1 a2  a1 a1  a x  a2   . . x  a a2  a a2  a x  a Như vậy ta luôn có hệ thức dưới đây: 1 x  a1 a2  a1 1 x  a2 .   . . a1  a x  a (a1  a )(a2  a ) a2  a x  a 1 x  a2 a3  a2 1 x  a3 .   . a2  a x  a (a2  a )(a3  a ) a3  a x  a ... = ... 1 x  an1 an  an1 1 x  an .   . an1  a x  a (an1  a )(an  a ) an  a x  a 1 x  an a1  an 1 x  a1 .   . an  a x  a (an  a )(a1  a ) a1  a x  a Cộng các vế theo hàng dọc ta có đồng nhất thức cần chứng minh. (ii) đươc suy ra qua việc nhân các vế theo hàng dọc. 2.2 Phân tích phân thức để tính một số tổng Ta áp dụng các kết quả đã đạt được để tính một số tổng, qua cách thức: Chọn một phân thức để tách ra thành tổng các phân thức đơn giản. Sau đó cho biến x một giá trị đặc biệt. Ví dụ 2.2.1 Với ba số a, b, c phân biệt và a, b, c  0, 1, 2, 3 , giả sử các số x, y, z thỏa mãn hệ phương trình: 15 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn y z  x   1  a 1  b 1  c  1  y z  x   1  2  a 2  b 2  c y z  x 3  a  3  b  3  c  1  Chứng minh rằng x y z 6   1 a b c abc Bài giải: Xét f  t   p t  x y z   1   với đa thức p  t  at bt ct  a  t  b  t  c  t  bậc 3. Vì f 1  f  2   f  3  0 nên p 1  p  2   p  3  0 và như vậy x y z  t  1 t  2  t  3   1   at bt ct  a  t  b  t  c  t  Với t  0 ta được x y z 6 .   1 a b c abc Ví dụ 2.2.2. Với hai số a, b phân biệt và a, b  0,1,2,3 , hãy giải hệ phương trình: y  x  1  a 1  b  1   x  y 1  2  a 2  b 2 Giả sử a, b là nghiệm của hệ phương trình đã cho. Hãy tính tổng dưới đây: T x y ab   . 3  a 3  b 3  3  a  3  b  16 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Bài giải: Xét f  t   p t  x y 1    với deg p  t   2 . t a t b t t  t  a  t  b  Vì f 1  f  2   0 nên p 1  p  2   0 và như vậy u  t  1 t  2  x y 1    . Quy đồng hai vế ta được t a t b t t  t  a  t  b  xt  t  b   yt  t  a    t  a  t  b   u  t  1 t  2  . Từ đây suy ra  u   ab : t  0 2   u  a  1 a  2  :t  a x  a a  b     u  b  1 b  2  y  :t  b b b  a   Từ ab  t  1 t  2  x y 1 1    . suy ra T  : t  3. t a t b t 2t  t  a  t  b  3 Ví dụ 2.2.3. Giả sử x1 , x2 , x3 là nghiệm của x3  ax  b  0, a  b  1. Tính 1 1  x1  2  1 1  x2  2  1 1  x3  và D   x1  x2   x2  x3   x3  x1  . 2 2 2 Bài giải: Vì x 3  ax  b   x  x1  x  x2   x  x3  nên 3 x 2  a   x  x1  x  x2    x  x2   x  x3    x  x3   x  x1  . D    a  3 x 21  a  3x2 2  a  3x32   4a 3  27b 2 . 17 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2 1 1 1 3x 2  a và được đồng nhất thức    3 x  x1 x  x2 x  x3 x  ax  b Ta lại có 1  x  x1   2 1  x  x2  2  1  x  x3  2  3 x 4  6bx  a 2  x3  ax  b  2 . Với x  1 sẽ có 1 1  x1   2 1 1  x2   2 1 1  x3  2  3  6b  a 2 1  a  b  2 . Ví dụ 2.2.4. Cho bốn số phức a, b, c, d . Giả sử x1 , x2 , x3 , x4 là bốn nghiệm của phương trình x x x    x  d  0 . Tính tổng sau đây: xa xb xc T a2  4 b2  4 c2 4   a  x   b  x   c  x  k 1 k k 1 k k 1 . k Bài giải: Phương trình x x x    x  d  0 được viết thành xa xb xc f  x    x  d  x  a  x  b  x  c   3x 3  2  a  b  c  x 2   ab  bc  ca  x 0 Mặt khác, ta còn có biểu diễn f  x    x  x1  x  x2   x  x3  x  x4.  Khi cho x  a ta có 3a 3  2a 2  a  b  c   a  ab  bc  ca    x  x1  x  x2   x  x3  x  x4.  hay a  a  b  a  c    a  x1  a  x2   a  x3  a  x4.  tương tự, khi cho x  b, x  c ta cũng có hai hệ thức khác. Từ đây suy ra 18 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn .
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất