Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu xây dựng mô hình cơ học và tính toán thiết kế thiết bị phát điện từ n...

Tài liệu Nghiên cứu xây dựng mô hình cơ học và tính toán thiết kế thiết bị phát điện từ năng lượng sóng biển

.PDF
130
405
56

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- Nguyễn Văn Hải NGHIÊN CỨU XÂY DỰNG MÔ HÌNH CƠ HỌC VÀ TÍNH TOÁN THIẾT KẾ THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG BIỂN LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ VÀ CƠ KỸ THUẬT Hà Nội – 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- Nguyễn Văn Hải NGHIÊN CỨU XÂY DỰNG MÔ HÌNH CƠ HỌC VÀ TÍNH TOÁN THIẾT KẾ THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG BIỂN Chuyên ngành: Cơ kỹ thuật Mã số: 9 52 01 01 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ VÀ CƠ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: GS. TSKH. Nguyễn Đông Anh Hà Nội – 2019 i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các kết quả nghiên cứu được trình bày trong luận án là trung thực, khách quan và chưa từng được công bố trong bất kỳ công trình nào khác. Tôi xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện luận án đã được cảm ơn, các thông tin trích dẫn trong luận án này đều được chỉ rõ nguồn gốc. Tác giả luận án Nguyễn Văn Hải ii LỜI CẢM ƠN Tôi xin gửi lời cảm ơn chân thành và sâu sắc nhất đến GS.TSKH. Nguyễn Đông Anh, người thầy đã tận tình hướng dẫn và chỉ bảo tôi trong suốt thời gian thực hiện luận án. Tôi xin chân thành cảm ơn các thầy, cô giáo đã tham gia giảng dạy và đào tạo trong quá trình học nghiên cứu sinh. Tôi xin cảm ơn Viện Cơ học, Học viện Khoa học và Công nghệ đã tạo điều kiện giúp tôi hoàn thành luận án. Tôi xin bày tỏ sự cảm ơn tới Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã hỗ trợ kinh phí thông qua đề tài khoa học công nghệ VAST 01.10/16-17 để có được các kết quả nghiên cứu của luận án. Xin cảm ơn các đồng nghiệp ThS. Lê Chí Công, ThS. Nguyễn Như Hiếu, cảm ơn gia đình và bạn bè đã động viên giúp đỡ cho tôi hoàn thành luận án này. iii MỤC LỤC Trang Lời cam đoan …………………………………………………………………. i Lời cảm ơn …………………………………………………………………… ii Mục lục ………………………………………………………………………. iii Danh mục các ký hiệu, các chữ viết tắt ………………………………………. vi Danh mục các bảng …………………………………………………………… viii Danh mục các hình vẽ, đồ thị ………………………………………………… ix MỞ ĐẦU …………………………………………………………………….. 1 CHƯƠNG 1. TỔNG QUAN CÁC CÔNG TRÌNH NGHIÊN CỨU VỀ 4 THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG BIỂN VÀ KHẢ NĂNG ỨNG DỤNG THIẾT BỊ TẠI VIỆT NAM ...…………………………………. 1.1. Tổng quan các công trình nghiên cứu về thiết bị phát điện từ năng lượng 4 sóng biển trên thế giới ………………………………………………………... 1.1.1. Các thiết bị phát điện lắp đặt trên bờ ………………………………….. 5 1.1.2. Các thiết bị phát điện hoạt động ngoài biển …………………………… 6 1.1.3. Nhận xét và đánh giá …………………………………………………... 11 1.2. Tổng quan các công trình nghiên cứu về thiết bị phát điện từ năng lượng sóng biển tại Việt Nam ……………………………………………………… 1.3. Nghiên cứu khả năng ứng dụng thiết bị phát điện từ năng lượng sóng biển tại Việt Nam và định hướng nghiên cứu của luận án ……………………. 13 17 1.3.1. Vị trí địa lý và tiềm năng năng lượng sóng biển Việt Nam ……………. 17 1.3.2. Phân tích nhu cầu thực tế và định hướng nghiên cứu của luận án ……... 22 Kết luận chương 1 ……………………………………………………….......... 25 CHƯƠNG 2. XÂY DỰNG MÔ HÌNH CƠ HỌC VÀ TỐI ƯU HÓA THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG BIỂN …………………………. 2.1. Xây dựng mô hình thiết bị phát điện từ năng lượng sóng biển ………….. 27 27 iv 2.1.1. Phân tích xây dựng mô hình thiết bị phát điện từ năng lượng sóng biển 27 2.1.2. Thiết lập phương trình chuyển động …………………………………… 29 2.2. Khảo sát dao động của hệ trong trường hợp phi tuyến ………………….. 31 2.2.1. Phương pháp trung bình hóa …………………………………………… 32 2.2.2. Khảo sát dao động của hệ trong trường hợp cộng hưởng ……………… 34 2.3. Tối ưu hóa mô hình thiết bị phát điện từ năng lượng sóng biển …………. 41 2.3.1. Tính toán tối ưu hóa mô hình thiết bị theo điều kiện sóng biển Việt Nam …………………………………………………………………………… 41 2.3.2. Khảo sát công suất cơ hệ theo kích thước phao ………………………... 49 2.4. Xây dựng chương trình mô phỏng số và khảo sát sự hoạt động của thiết bị chuyển đổi từ năng lượng sóng biển sang năng lượng cơ học …………….. 2.4.1. Xây dựng chương trình mô phỏng số ……………………….................. 2.4.2. Tính toán mô phỏng số sự hoạt động của thiết bị chuyển đổi từ năng lượng sóng biển sang năng lượng cơ học …………………………………….. 2.4.3. Khảo sát tính phi tuyến và chuyển động của mô hình theo biên độ sóng biển …..……………………………………………………………………….. 52 52 54 61 Kết luận chương 2 ……………………………………………………….......... 63 CHƯƠNG 3. TÍNH TOÁN THIẾT KẾ VÀ CHẾ TẠO THIẾT BỊ ………….. 65 3.1. Cấu trúc tổng thể của thiết bị phát điện từ năng lượng sóng biển ……….. 65 3.2. Tính toán thiết kế các bộ phận cơ học …………………………………… 67 3.2.1. Phân tích cấu trúc cơ hệ trong thiết bị …………………………………. 67 3.2.2. Tính toán thiết kế các cơ cấu bộ phận trong thiết bị …………………… 68 3.2.3. Tính toán thiết kế vỏ thiết bị …………………………………………… 71 3.3. Tính toán thiết kế phần điện ……………………………………………... 74 3.3.1. Tính toán thiết kế tối ưu bộ chuyển đổi DC-AC ……………………….. 75 3.3.2. Mạch bảo vệ ……………………………………………………………. 82 3.4. Chế tạo thiết bị …………………………………………………………… 83 3.4.1. Chế tạo các cơ cấu bộ phận của thiết bị ………………………………... 83 v 3.4.2. Lắp ghép hiệu chỉnh thiết bị …………………………………………… 85 3.4.3. Kiểm tra sự hoạt động của thiết bị tại phòng thí nghiệm ......................... 86 Kết luận chương 3 …………………………………………………………….. 87 CHƯƠNG 4. THỬ NGHIỆM VÀ ĐÁNH GIÁ HIỆU SUẤT THIẾT BỊ HOẠT ĐỘNG THỰC TẾ TẠI BIỂN ………………………………………… 88 4.1. Thử nghiệm thiết bị hoạt động thực tế tại biển …………………………... 88 4.1.1. Lắp ghép thiết bị và chuẩn bị thử nghiệm ……………………………... 88 4.1.2. Thử nghiệm thiết bị hoạt động thực tế tại biển ………………………… 89 4.2. Phân tích chất lượng điện áp của thiết bị phát ra ………………………… 95 4.3. Phân tích hiệu suất của thiết bị hoạt động thực tế tại biển ……………….. 97 Kết luận chương 4 …………………………………………………………….. 99 KẾT LUẬN VÀ KIẾN NGHỊ ........................................................................... 100 DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ ……………………………….. 102 TÀI LIỆU THAM KHẢO .…………………………………………………… 103 PHỤ LỤC ……………………………………………………………………. 109 Phụ lục A: Các số liệu về sóng biển ………………………………………….. 109 Phụ lục B: Các bản vẽ thiết kế ………………………………………………... 115 Phụ lục C: Thông số mô hình của mô tơ phát điện …………………………… 129 vi DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT A Biên độ sóng biển (m)  Tần số góc sóng biển ( rad/s)  Mật độ khối lượng nước biển ( kg/m3) T Chu kỳ sóng biển (s) L Bước sóng (m) z0 Độ sâu nước biển (m) z Chuyển động của phao theo phương thẳng đứng (m) zs Chuyển động của sóng biển (m) γ Hệ số cản (Ns/m) γf Hệ số cản nhớt (Ns/m) γem Hệ số cản điện (Ns/m) t, τ Thời gian (s) Pgm Công suất cơ hệ của thiết bị (W) kL hệ số đàn hồi tuyến tính của lò xo (N/m) kN hệ số phi tuyến của lò xo ( N/m3) m Khối lượng của mô hình thiết bị (kg) Sb Diện tích mặt đáy phao ( m2) g Gia tốc trọng trường ( m/s2) Scanh, Snap, Sday, Sđai Diện tích các mặt cạnh, nắp, đáy và vành đai ( m2) D Mật độ khối lượng ( kg/m3) W Chiều rộng (m) Rp Bán kính (m) Tr, Tk Chiều cao (m) l, Lr, Lp Chiều dài (m) Փ Đường kính (m) h1, h2, h3 Chiều cao (m) Pe Công suất điện của thiết bị phát ra khi thử nghiệm (W) UDC Điện áp một chiều (VDC) UAC Điện áp xoay chiều (VAC) vii IDC Cường độ dòng điện một chiều (A) IAC Cường độ dòng điện xoay chiều (A) f Tần số (Hz) R Điện trở ( Ω) C, Cf Điện dung tụ điện (F) Lf Độ tự cảm (H) J Mật độ dòng điện ( A/m2) B Cảm ứng từ (T) s Thiết diện dây ( m2) d Đường kính dây (m) η Hiệu suất chuyển đổi của thiết bị ηm Hiệu suất phần cơ hệ của quá trình truyền năng lượng từ phao nhận được đến mô tơ phát điện ηe Hiệu suất phần điện của thiết bị ηdc-ac Hiệu suất bộ chuyển đổi DC-AC ηg Hiệu suất của mô tơ phát điện và bộ chuyển đổi ổn định điện áp 12 VDC DC-AC Chuyển đổi từ điện áp một chiều sang điện áp xoay chiều DC-DC Chuyển đổi điện áp một chiều VDC Điện áp một chiều VAC Điện áp xoay chiều IGBT Insulated Gate Bipolar Transistor PIC Programmable Intelligent Computer IC Integrated circuit viii DANH MỤC CÁC BẢNG Trang Bảng 2.1. Công suất cơ hệ Pgm theo bán kính phao tại các chu kỳ sóng biển 50 Bảng 3.1. Các thông số chính trong mô hình ………………………………… 69 Bảng 4.1. Các kết quả thử nghiệm nhận được về công suất điện của thiết bị 93 phát ra tại biển ………………………………………………………………. Bảng 4.2. Giá trị công suất điện phát ra trung bình theo tải thử …………….. 94 ix DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Trang Hình 1.1. Mô hình thiết bị phát điện Hyperbaric, Brazil ……………………... 5 Hình 1.2. Mô hình thiết bị phát điện Oyster ………………………………….. 6 Hình 1.3. Thiết bị phát điện dạng rắn biển …………………………………… 7 Hình 1.4. Thiết bị phát điện dạng phao nổi …………………………………... 7 Hình 1.5. Cấu trúc mô hình thiết bị sử dụng bộ tăng tốc chuyển động quay … 8 Hình 1.6. Cấu trúc mô hình thiết bị thả nổi trên mặt biển ……………………. 8 Hình 1.7. Các thiết bị phát điện gắn cố định ở đáy biển ……………………… 9 Hình 1.8. Mô hình thiết bị phát điện chuyển động tịnh tiến lên xuống theo 10 phương thẳng đứng ………………………………………………………...…. Hình 1.9. Sơ đồ đo kiểm tra thiết bị hoạt động tại biển của L. Ulvgard ……… 11 Hình 1.10. Thiết bị phát điện kiểu rắn biển, Viện Nghiên cứu Cơ khí ……….. 13 Hình 1.11. Cấu trúc hệ thiết bị phát điện cố định trên mặt biển ……………… 14 Hình 1.12. Thiết bị phát điện dạng phao nổi, Đại học Quốc gia Hà Nội ……... 14 Hình 1.13. Thiết bị phát điện cố định trên mặt biển, Viện Khoa học Năng 15 lượng .…… …………………………………………………………………… Hình 1.14. Cấu trúc hệ thiết bị phát điện trực tiếp gắn cố định ở đáy biển …... 16 Hình 1.15. Sơ đồ các điểm khảo sát và tính thông lượng năng lượng sóng ….. 19 Hình 1.16. Độ cao sóng trung bình mùa gió mùa đông bắc tại Biển Đông …... 21 Hình 1.17. Thông lượng năng lượng sóng theo tháng của các vùng …………. 21 Hình 1.18. Thông lượng năng lượng sóng trung bình trong năm ven biển Việt 22 Nam ……..…………………………………………………………………..... Hình 1.19. Mô hình thiết bị phát điện từ sóng biển ........................................... 24 Hình 2.1. Cấu trúc mô hình thiết bị phát điện từ năng lượng sóng biển ……... 29 Hình 2.2. Đồ thị đường cong cộng hưởng biên độ theo tần số Ω2, với A=0,5 m 39 Hình 2.3. Đồ thị đường cong cộng hưởng biên độ theo tần số Ω2, với A=0,8 m 39 x Hình 2.4. Đồ thị công suất cơ hệ theo hệ số cản ……………………………… 46 Hình 2.5. Mô tơ phát điện và bộ chuyển đổi ổn định điện áp 12 VDC ………. 47 Hình 2.6. Đồ thị đặc trưng về điện áp và cường độ dòng điện của mô tơ phát 48 điện theo tốc độ chuyển động quay …………………………………………... Hình 2.7. Các đường đặc trưng công suất cơ hệ theo tần số góc ……………... 49 Hình 2.8. Đồ thị công suất cơ hệ theo bán kính phao ………………………… 51 Hình 2.9. Sơ đồ khối của chương trình ……….................................................. 53 Hình 2.10. Đồ thị công suất cơ hệ theo tần số góc ……………..…………….. 54 Hình 2.11. Chuyển động của phao và sóng biển theo thời gian với sóng bậc 55 nhất …………………………………………………………………………... Hình 2.12. Đồ thị đặc trưng công suất theo tần số với sóng bậc nhất ………... 56 Hình 2.13. Quỹ đạo pha của phao với sóng bậc nhất ………………………… 56 Hình 2.14. Chuyển động của phao và sóng biển theo thời gian với sóng bậc 58 hai Stockes …………………………………………………………………… Hình 2.15. Đồ thị đặc trưng công suất theo tần số với sóng bậc hai Stockes … 58 Hình 2.16. Quỹ đạo pha của phao với sóng bậc hai Stockes …………………. 59 Hình 2.17. Chuyển động của sóng biển theo hàm sóng bậc nhất và bậc hai …. 60 Hình 2.18. Đồ thị đặc trưng công suất theo biên độ sóng biển ………………. 60 Hình 2.19. Đồ thị công suất cơ hệ của thiết bị nhận được theo biên độ sóng 61 tại các chu kỳ sóng biển ………………………………………………………. Hình 2.20. Đồ thị đặc trưng công suất cơ hệ nhận được theo biên độ sóng 62 biển .…………………………………………………………………………... Hình 2.21. Chuyển động của phao theo biên độ sóng biển …………………... 63 Hình 3.1. Sơ đồ khối thiết bị phát điện từ năng lượng sóng biển ………..…… 66 Hình 3.2. Cấu trúc tổng thể phần cơ hệ của thiết bị ……..…………………… 67 Hình 3.3. Cấu trúc lõi thiết bị phát điện ……………………………………… 68 Hình 3.4. Tốc độ chuyển động quay của mô tơ theo biên độ sóng biển ……… 69 Hình 3.5. Tổng thể vỏ phần thiết bị phát điện ………………………………... 71 xi Hình 3.6. Cấu trúc phao thiết bị ......................................................................... 73 Hình 3.7. Sơ đồ khối phần điện trong thiết bị ………………………………… 74 Hình 3.8. Sơ đồ nguyên lý bộ chuyển đổi DC-AC và bảo vệ ………………… 75 Hình 3.9. Sơ đồ nguyên lý mạch tạo dao động IC TL494C ………………….. 76 Hình 3.10. Sơ đồ nguyên lý mạch tạo dao động sine tần số 50 Hz ………….. 77 Hình 3.11. Sơ đồ nguyên lý mạch khuếch đại DC-DC ……………………….. 80 Hình 3.12. Sơ đồ nguyên lý mạch công suất điện áp 220 VAC ……………… 81 Hình 3.13. Sơ đồ nguyên lý mạch bảo vệ …………………………………….. 83 Hình 3.14. Chế tạo vỏ thiết bị và phao tại xưởng …………………………….. 84 Hình 3.15: Chế tạo trục piston, thanh răng và các khớp nối ………………….. 84 Hình 3.16. Board mạch chuyển đổi DC-AC và bảo vệ ………...…………….. 85 Hình 3.17. Lõi thiết bị phát điện ........................................................................ 85 Hình 3.18. Lắp ghép toàn bộ thiết bị ................................................................. 86 Hình 3.19. Đo kiểm tra điện áp thiết bị phát ra tại phòng thí nghiệm bằng 87 thiết bị đo Picoscope USB Oscilloscope 2204A ghép nối máy tính của Anh sản xuất ……………………………………………………………………….. Hình 4.1. Vận chuyển thiết bị trên tàu HQ 1788 và tác nghiệp thử nghiệm …. 88 Hình 4.2. Thiết bị đo DASIM ghép nối máy tính để đo và phân tích dữ liệu về 89 sóng biển khi thử nghiệm thiết bị tại biển trên tàu HQ 1788 …………………. Hình 4.3. Dạng sóng đo thực nghiệm tại biển từ sensor Futek ……………….. 90 Hình 4.4. Đo dữ liệu, phân tích điện áp và kiểm tra công suất điện phát ra 92 bằng thiết bị đo Picoscope USB Oscilloscope 2204A ghép nối máy tính ……. Hình 4.5. Đồ thị đặc trưng điện áp và cường độ dòng điện theo tải thử ……… 94 Hình 4.6. Đồ thị dạng sóng điện áp do thiết bị chế tạo phát ra ……………….. 95 Hình 4.7. Dạng sóng điện áp 220 VAC tần số 50 Hz của các thiết bị sẵn có 96 trên thị trường ……………………………………………………………….. Hình 4.8. Cấu trúc sơ đồ khối hiệu suất hoạt động của thiết bị ……………… 97 1 MỞ ĐẦU 1. Lý do lựa chọn đề tài Theo tính toán của các nhà khoa học, với tốc độ sử dụng năng lượng như hiện nay, nhiên liệu hóa thạch sẽ cạn kiệt trong vòng 50 năm tới. Việc tìm kiếm nguồn năng lượng thay thế đang là nhu cầu thiết yếu. Đối với Việt Nam, định hướng chiến lược phát triển năng lượng quốc gia đến năm 2020 và tầm nhìn 2050 đã ghi rõ: “Phấn đấu tăng tỷ lệ nguồn năng lượng mới và tái tạo chiếm khoảng 5% tổng năng lượng vào năm 2020 và khoảng 11% vào năm 2050”. Về kinh tế, đến năm 2020 kinh tế biển sẽ chiếm trên 50% GDP. Do đó nhu cầu cần thiết về nguồn năng lượng để cung cấp cho nền kinh tế nói chung và kinh tế biển nói riêng là rất quan trọng, đặc biệt điện năng phục vụ an ninh quốc phòng trên biển (nguồn điện sử dụng trên các nhà dàn DKI, các ngọn đèn hải đăng v.v.) là nhiệm vụ cấp bách, trong khi điện lưới quốc gia chưa thể vươn tới. Do vậy, việc nghiên cứu, chế tạo thiết bị phát điện từ nguồn năng lượng sóng biển là lựa chọn tốt, góp phần trong việc giải quyết bài toán thiếu hụt về nguồn năng lượng điện sử dụng ngoài biển. Ngoài ra, Việt Nam với lợi thế là một quốc gia có bờ biển trải dài trên 3260 km, cùng với hơn 3000 đảo, quần đảo lớn nhỏ và trên 1 triệu km2 mặt biển cho thấy nguồn năng lượng từ biển là rất lớn. Nhằm khai thác nguồn năng lượng to lớn từ sóng biển, tác giả đề xuất hướng nghiên cứu của luận án về xây dựng mô hình thiết bị để chuyển đổi từ năng lượng sóng biển sang điện năng. Với mục tiêu đưa ra một mô hình thiết bị phát điện từ năng lượng sóng biển, thiết bị hoạt động hiệu quả và phù hợp với điều kiện thực tế biển Việt Nam. 2. Mục tiêu nghiên cứu của luận án - Xây dựng được mô hình thiết bị phát điện từ năng lượng sóng biển, thiết bị hoạt động hiệu quả và phù hợp với điều kiện thực tế biển Việt Nam. - Xác định tối ưu hệ số cản của mô tơ phát điện, các thông số mô hình để công suất điện thiết bị phát ra đạt lớn nhất. - Thiết kế, chế tạo được một mẫu thiết bị phát điện từ năng lượng sóng biển. Nguồn điện của thiết bị phát ra ở 2 mức điện áp 12 VDC, 220 VAC tần số 50 Hz 2 thực sine theo tiêu chuẩn điện lưới quốc gia Việt Nam. Thiết bị có khả năng ứng dụng trong việc làm phao báo dẫn đường biển hay làm nguồn cấp điện cho các đèn hải đăng ngoài biển. 3. Phương pháp nghiên cứu Luận án sử dụng các phương pháp giải tích, kết hợp phương pháp mô phỏng số và thực nghiệm, cụ thể được mô tả như sau: - Sử dụng phương pháp giải tích xác định tối ưu hệ số cản của mô tơ phát điện, hệ số đàn hồi của lò xo và kích thước phao của thiết bị theo mức công suất phát điện nhỏ nhất thiết bị cần đạt được. - Trong tính toán mô phỏng số sử dụng phương pháp Runge-Kutta bậc 4 giải số phương trình chuyển động phi tuyến của mô hình, phương pháp Simpson tính tích phân số. Xác định mức công suất cơ hệ của thiết bị nhận được từ năng lượng sóng biển, phân tích đánh giá sự phi tuyến của mô hình, quỹ đạo chuyển động và biên độ dao động của mô hình theo các điều kiện sóng biển. - Tính toán thiết kế và chế tạo thiết bị phát điện từ năng lượng sóng biển, thử nghiệm thiết bị hoạt động thực tế tại biển để kiểm chứng kết quả lý thuyết và phân tích hiệu suất hoạt động của thiết bị. 4. Ý nghĩa khoa học và thực tiễn - Đưa ra được một phương pháp nghiên cứu với cách tiếp cận từ việc khảo sát các điều kiện thực tế của sóng biển để thực hiện xây dựng mô hình cơ học, tính toán thiết kế, chế tạo và thử nghiệm thiết bị hoạt động thực tế tại biển. - Chế tạo được một mẫu thiết bị phát điện từ năng lượng sóng biển, thiết bị hoạt động hiệu quả và phù hợp với điều kiện thực tế biển Việt Nam. - Thiết bị có khả năng sử dụng trong việc làm phao báo dẫn đường biển hay làm nguồn cấp điện cho các đèn hải đăng. 5. Cấu trúc của luận án Cấu trúc của luận án gồm: phần mở đầu, bốn chương nội dung, phần kết luận và kiến nghị, phần danh mục công trình của tác giả, tài liệu tham khảo và phụ lục. 3 Chương 1: “Tổng quan các công trình nghiên cứu về thiết bị phát điện từ năng lượng sóng biển và khả năng ứng dụng thiết bị tại Việt Nam”. Trong chương này trình bày nghiên cứu tổng quan về các mô hình thiết bị phát điện từ năng lượng sóng biển trên thế giới và Việt Nam, phân tích ưu nhược điểm của các mô hình thiết bị. Nghiên cứu khả năng ứng dụng của thiết bị phát điện từ năng lượng sóng biển tại Việt Nam, phân tích nhu cầu thực tế và định hướng nghiên cứu của luận án, nhằm xây dựng được một mô hình thiết bị hoạt động hiệu quả và phù hợp với điều kiện thực tế biển Việt Nam. Chương 2: “Xây dựng mô hình cơ học và tối ưu hóa thiết bị phát điện từ năng lượng sóng biển”. Trong chương này thực hiện xây dựng mô hình thiết bị phát điện từ năng lượng sóng biển, thiết lập phương trình chuyển động. Khảo sát dao động phi tuyến của hệ, xác định vùng hoạt động ổn định và mất ổn định của mô hình. Xác định tối ưu hệ số cản của mô tơ phát điện theo các thông số mô hình, mức công suất cơ hệ thiết bị nhận được từ năng lượng sóng biển. Viết chương trình tính toán mô phỏng số sự hoạt động của thiết bị, tính toán mô phỏng số và khảo sát sự hoạt động của thiết bị. Chương 3: “Tính toán thiết kế và chế tạo thiết bị”. Trong chương này thực hiện các tính toán thiết kế về toàn bộ thiết bị, bao gồm các tính toán thiết kế phần cơ và các tính toán thiết kế phần điện. Thiết bị chế tạo đảm bảo nhỏ gọn và thuận lợi trong sử dụng. Nguồn điện của thiết bị phát ra được ổn định tại 2 mức điện áp 12 VDC, 220 VAC tần số 50 Hz thực sine theo tiêu chuẩn điện lưới quốc gia Việt Nam. Chế tạo, lắp ghép và hiệu chỉnh toàn bộ thiết bị. Chương 4: “Thử nghiệm và đánh giá hiệu suất thiết bị hoạt động thực tế tại biển”. Trong chương này thực hiện thử nghiệm thiết bị hoạt động thực tế tại biển, đo thử tải công suất điện của thiết bị phát ra và các thông số sóng biển thực tế khi thử nghiệm. Phân tích chất lượng điện áp của thiết bị phát ra và đánh giá hiệu suất hoạt động của thiết bị. Phần kết luận và kiến nghị trình bày các kết quả đã đạt được, những đóng góp mới của luận án và một số nhiệm vụ cần tiếp tục thực hiện trong tương lai. Danh sách các công trình đã công bố có liên quan đến nội dung luận án được trình bày trong phần danh mục công trình của tác giả. Các tài liệu trích dẫn trong luận án được trình bày trong phần tài liệu tham khảo. 4 CHƯƠNG 1. TỔNG QUAN CÁC CÔNG TRÌNH NGHIÊN CỨU VỀ THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG BIỂN VÀ KHẢ NĂNG ỨNG DỤNG THIẾT BỊ TẠI VIỆT NAM Chương 1 nghiên cứu tổng quan về các mô hình thiết bị phát điện từ năng lượng sóng biển trên thế giới và Việt Nam; Phân tích ưu nhược điểm của các mô hình thiết bị đang được nghiên cứu chế tạo ở trong nước và trên thế giới; Thu thập, phân tích các số liệu thực tế về điều kiện biển Việt Nam và nhu cầu sử dụng thiết bị phát điện từ năng lượng sóng biển trong thực tế, làm cơ sở để xác định phạm vi và định hướng nghiên cứu của luận án. Mục tiêu xây dựng được một mô hình thiết bị phát điện từ năng lượng sóng biển, hiệu quả và phù hợp với điều kiện thực tế biển Việt Nam, khả năng gia công chế tạo trong nước, cũng như đáp ứng nhu cầu cần thiết của xã hội. 1.1. Tổng quan các công trình nghiên cứu về thiết bị phát điện từ năng lượng sóng biển trên thế giới Trên thế giới, việc nghiêu cứu, chế tạo các thiết bị phát điện từ nguồn năng lượng sóng biển đang được quan tâm và phát triển mạnh. Đặc biệt ở các vùng đảo xa ngoài biển, các thiết bị phát điện từ nguồn năng lượng sóng biển đã đáp ứng được một phần trong nhu cầu sử dụng điện năng. Các mô hình thiết bị được nghiên cứu, chế tạo theo nhiều phương pháp và cách thức hoạt động khác nhau, với các thiết bị phát điện lắp đặt trên bờ, hay thiết bị phát điện hoạt động ngoài biển theo phương pháp thả nổi trên mặt biển hoặc gắn cố định ở đáy biển. Hiện nay, các mô hình thiết bị này đã, đang được khai thác sử dụng tại một số nước như: Anh, Bồ Đào Nha, Canada, Đan Mạch, Hàn Quốc, Mỹ, Na Uy, Nhật Bản, Pháp, Tây Ban Nha, Thụy Điển v.v. Ví dụ ở Tây Ban Nha, họ định hướng phát triển mạnh nguồn năng lượng tái tạo và đề ra đến năm 2020 đảm bảo 42,3% năng lượng điện tiêu thụ được sản xuất từ các nguồn năng lượng tái tạo, trong đó phát triển điện năng từ nguồn năng lượng sóng biển là mũi nhọn. Tại Anh, các chuyên gia ước tính trong tương lai việc phát triển điện sóng biển sẽ đáp ứng được 25% nhu cầu năng lượng điện sử dụng. Tại Mỹ đã có các tính toán về kế hoạch phát triển nguồn năng lượng 5 điện sóng biển dọc theo các bờ biển với ước tính có thể sản xuất khoảng 2100 TWh/năm [1-19]. 1.1.1. Các thiết bị phát điện lắp đặt trên bờ Các mô hình thiết bị phát điện lắp đặt trên bờ được xây dựng ở những vùng biển nước sâu gần bờ, địa hình hiểm trở và độ cao sóng biển lớn. Các mô hình được xây dựng với phần thiết bị phát điện được lắp đặt cố định ở trên bờ và bộ phận thu năng lượng sóng ở dưới biển. Tiêu biểu là các mô hình thiết bị phát điện sau: - Mô hình thiết bị phát điện Hyperbaric được lắp đặt trên bờ và sử dụng các cánh tay thủy lực kết nối với phao thả nổi trên mặt biển. Dưới tác dụng của sóng biển, phao chuyển động lên xuống theo phương thẳng đứng, hệ thống thủy lực hoạt động đẩy dầu nạp vào bình được tích áp. Dầu từ bình tích áp được điều chỉnh cấp ra với dòng năng lượng dầu có áp suất cao và lưu lượng ổn định được truyền dẫn đẩy quay các mô tơ phát điện lắp đặt trên bờ và phát ra điện năng. Công suất phát điện của thiết bị đạt khoảng 50 kW [1]. Hình 1.1. Mô hình thiết bị phát điện Hyperbaric, Brazil [1] - Ngoài ra, một mô hình thiết bị phát điện khác được chế tạo với kiểu dáng hình con hàu (Oyster), thiết bị được thiết kế gồm một hệ thống các thùng chứa nước và phao hứng sóng với bơm thuỷ lực. Khi sóng biển tác dụng đổ vào các thùng chứa, đồng thời tạo lực kích hoạt bơm thuỷ lực thực hiện đẩy nước từ thùng chứa qua một hệ thống đường ống dẫn nước áp suất cao theo một chiều lên bờ đẩy quay mô tơ phát điện. Hệ thống có ưu điểm là phần phát điện đặt trên bờ dễ vận hành, 6 thuận lợi trong bảo dưỡng và sửa chữa, nhược điểm là tổn hao năng lượng cao do dẫn nước theo đường ống chạy dài từ dưới biển lên bờ [1-5]. Hình 1.2. Mô hình thiết bị phát điện Oyster [4] 1.1.2. Các thiết bị phát điện hoạt động ngoài biển Hiện nay các mô hình thiết bị phát điện hoạt động ngoài biển đang được nghiên cứu chế tạo theo nhiều phương pháp, cách thức khác nhau và được phân thành hai loại chính: thiết bị phát điện thả nổi trên mặt biển và thiết bị phát điện gắn cố định ở đáy biển. * Thiết bị phát điện thả nổi trên mặt biển: loại mô hình thiết bị này đang được nghiên cứu chế tạo ở nhiều nước trên thế giới, tiêu biểu như: thiết bị phát điện dạng rắn biển (Pelamis), thiết bị phát điện dạng phao nổi (Buoy). Chúng được chế tạo để sử dụng trong các hoạt động ngoài khơi xa và ở vùng nước sâu, với công suất phát điện từ vài chục đến vài trăm kW [1,4-8]: - Thiết bị phát điện dạng rắn biển: được thiết kế chế tạo gồm bốn boong phao thả nổi trên mặt biển, thiết bị có dạng ống hình trụ nửa chìm nửa nổi trên mặt biển và được kết nối với nhau bằng các khớp thủy lực. Thiết bị có chiều dài khoảng 140÷150 m, đường kính ống 3÷3,5 m, sử dụng ba mô tơ phát điện với tổng công suất phát điện vào khoảng 750 MW. Dưới tác dụng của sóng biển, hệ thống phao chuyển động uốn theo sóng và truyền chuyển động kích bơm thủy lực hoạt động để đẩy quay các mô tơ phát điện được lắp đặt bên trong các boong phao. Hiện nay, dạng mô hình thiết bị này đã, đang được chế tạo và khai thác sử dụng tại các nước: Anh, Bồ Đào Nha, Na Uy v.v. [1,3-5]. 7 Hình 1.3. Thiết bị phát điện dạng rắn biển [4] - Thiết bị phát điện dạng phao nổi: được thiết kế chế tạo dạng trụ đứng và hoạt động tịnh tiến lên xuống theo phương thẳng đứng. Thiết bị gồm hai phần, phần tĩnh đứng yên lơ lửng trong môi trường biển chứa các cuộn dây của máy phát, phần chuyển động chứa các nam châm máy phát được gắn cố định trong thân phao và thả nổi trên mặt biển. Khi sóng biển tác dụng, các nam châm máy phát chuyển động lên xuống theo phương thẳng đứng với cảm ứng từ biến thiên trên các cuộn dây. Trên các cuộn dây ở phần tĩnh sẽ xuất hiện dòng điện cảm ứng và phát ra điện năng. Công suất phát điện định mức của thiết bị được chế tạo vào khoảng 10÷40 kW [1,38]. Hình 1.4. Thiết bị phát điện dạng phao nổi [1] - Ngoài ra một mô hình thiết bị phát điện khác được thiết kế như hình 1.5, hệ thiết bị được lắp đặt ở trên mặt biển sử dụng mô tơ phát điện loại chuyển động quay tròn (loại mô tơ phát phát điện công nghiệp truyền thống). Cấu trúc của thiết bị gồm phao chuyển động lên xuống theo phương thẳng đứng dưới tác dụng của sóng biển, thông qua dây cáp kéo hệ trục thiết bị chuyển động quay tròn được sử dụng bởi cơ cấu ròng rọc [2], hay cơ cấu chuyển động sử dụng bánh cóc tạo chuyển động quay một chiều (ratchet) kết nối đồng trục với một ròng rọc chính được gắn trên hệ trục thiết bị và hai ròng rọc phụ nhận lực từ phao truyền đến [8,9]. Bộ phận tăng tốc
- Xem thêm -

Tài liệu liên quan