Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu tổng hợp và hoạt tính xúc tác quang của composit sno2g c3n4...

Tài liệu Nghiên cứu tổng hợp và hoạt tính xúc tác quang của composit sno2g c3n4

.PDF
54
233
64

Mô tả:

MỤC LỤC TRANG BÌA TRANG BÌA PHỤ LỜI CẢM ƠN MỤC LỤC DANH MỤC BẢNG BIỂU, DANH MỤC CÁC CHỮ VIẾT TẮT DANH MỤC HÌNH ẢNH THÔNG TIN KẾT QUẢ NGHIÊN CỨU CỦA ĐỀ TÀI THÔNG TIN VỀ SINH VIÊNCHỊUTRÁCH NHIỆM CHÍNH THỰC HIỆN ĐỀ TÀI MỞ ĐẦU ........................................................................................................... 1 1. Tổng quan tình hình nghiên cứu thuộc lĩnh vực đề tài .............................. 1 2. Lý do chọn đề tài .......................................................................................... 1 3. Mục tiêu đề tài .............................................................................................. 3 4. Đối tượng và phạm vi nghiên cứu................................................................ 3 5. Cách tiếp cận và phương pháp nghiên cứu ................................................. 3 6. Nội dung nghiên cứu .................................................................................... 3 CHƯƠNG 1. TỔNG QUAN VỀ LÝ THUYẾT .............................................. 4 1.1. Tổng quan về g-C3N4 ................................................................................. 4 1.1.1.Vật liệu g-C3N4....................................................................................... 4 1.1.2. Vật liệu tổng hợp g-C3N4: melamin ...................................................... 9 1.1.2.1. Giới thiệu melamin .......................................................................... 9 1.1.2.2. Tổng hợp ......................................................................................... 9 1.1.2.3. Ứng dụng ...................................................................................... 10 1.2. Tổng quan về thiếc (IV) oxit ................................................................... 10 1.2.1. Thiếc (Sn)............................................................................................ 10 1.2.2. Thiếc (IV) oxit.................................................................................... 11 1.2.2.1 Cấu trúc tinh thể thiếc (IV) oxit ...................................................... 11 1.2.2.2. Tính chất ....................................................................................... 13 1.2.2.3. Ứng dụng của SnO2 ....................................................................... 14 1.3. Giới thiệu về rhodamin B ........................................................................ 14 1.4. Giới thiệu về vật liệu xúc tác quang và tiềm năng của chúng ............... 15 CHƯƠNG 2. PHƯƠNG PHÁP THỰC NGHIỆM ....................................... 23 2.1. TỔNG HỢP VẬT LIỆU XÚC TÁC QUANG...................................... 23 2.1.1. Hóa chất: ............................................................................................. 23 2.1.2.Dụng cụ ................................................................................................ 23 2.1.3. Tổng hợp vật liệu xúc tác quang .......................................................... 23 2.1.3.1. Các bước tiến hành tổng hợp g-C3N4 ............................................. 23 2.1.3.2. Các bước tiến hành tổng hợp thiếc (IV) oxit .................................. 24 2.1.3.3. Các bước tiến hành tổng hợp vật liệu composit SnO2/g-C3N4 ........ 24 2.2. CÁC PHƯƠNG PHÁP ĐẶC TRƯNG VẬT LIỆU ............................... 25 2.2.1. Phương pháp nhiễu xạ tia X (X-ray Diffraction)................................. 25 2.2.2. Phương pháp hiển vi điện tử quét (SEM) ............................................. 26 Nguyên lí hoạt động và sự tạo ảnh trong SEM như sau: ............................. 26 2.2.3. Phổ hồng ngoại (IR) ............................................................................ 27 2.2.4. Phương pháp phân tích nhiệt (TGA) .................................................... 28 2.3. Khảo sát hoạt tính xúc tác quang .......................................................... 29 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ................................................ 30 3.1. ĐẶC TRƯNG VẬT LIỆU ...................................................................... 30 3.2. KHẢO SÁT HOẠT TÍNH XÚC TÁC QUANG CỦA VẬT LIỆU TỔNG HỢP .................................................................................................... 37 3.2.1. Phương pháp xây dựng đường chuẩn xác định nồng độ rhodamin B ... 37 3.2.2. Xây dựng đường chuẩn ....................................................................... 38 3.2.3. Khảo sát hoạt tính xúc tác quang ......................................................... 38 ......................................................................................................................... 41 KẾT LUẬN ..................................................................................................... 43 TÀI LIỆU THAM KHẢO DANH MỤC CÁC BẢNG Bảng 2.1. Danh mục hóa chất dùng đề tài .................................................. 23 Bảng 3.1 Đồ thị hấp thụ của dung dịch RhB có nồng độ từ 0,5 đến 10 mg/l ... 38 Bảng 3.2 Tổng hợp hiệu suất xúc tác quang của vật liệu .............................. 40 Bảng 3.3 Bảng tổng kết số liệu hằng số tốc độ theo mô hình LangmuirHinshewood ........................................................................................... 42 DANH MỤC CÁC HÌNH Hình 1.1 Cấu tạo một lớp g-C3N4 hoàn hảo ........................................................ 2 Hình 1.2 Mặt phẳng Graphitic(a)hexagonalvà(b)orthorhombic g-C3N4 .............. 4 Hình 1.3 Triazine (trái) và mô hình kết nối trên nền tảng tri-s-triazine (phải) của những dạng thù hình g-C3N4 tiềm năng [1]......................................................... 7 Hình 1.4 Con đường phản ứng hình thành g-C3N4 từ dicyandiamide (c), (a) mạng lưới g-C3N4, (b) hình ảnh khối bột g-C3N4 (màu vàng) [10] ...................... 8 Hình 1.5 Phân tử melamin .................................................................................. 9 Hình 1.6 (a) Mô hình tinh thể của SnO2 với các bề mặt có chỉ số Miller thấp. Tế bào đơn vị rutile được trình bày ở hình (b), (c), (d) tương ứng với các mặt (110), (100), (101) [28] ............................................................................................... 12 Hình 1.7 Cơ chế phản ứng xúc tác quang ......................................................... 19 Hình 1.8 Sơ đồ cơ chế Langmuir- Hinshelwood ............................................... 20 Hình 2.1 Sơ đồ mô tả quá trình đánh giá hoạt tính xúc tác quang và hấp phụ của vật liệu ............................................................................................................. 29 Hình 3.1 Hình ảnh các mẫu vật liệu g-C3N4 (a), SnO2 (b), MSC-1:5 (c), MSC1:6 (d) và MSC-1:7 (e) ..................................................................................... 30 Hình 3.2 Giản đồ nhiễu xạ tia X của g-C3N4.................................................... 31 Hình 3.3 Giản đồ nhiễu xạ tia X của SnO2 ....................................................... 32 Hình 3.4 Giản đồ nhiễu xạ tia X của các mẫu vật liệu MSC ............................. 33 Hình 3.5 Hình ảnh SEM mẫu SnO2 (a), MSC-1:5 (b), MSC-1:6 (c),MSC-1:7 (d) ......................................................................................................................... 34 Hình 3.6 Phổhồng ngoại của g-C3N4 (hình trên) và SnO2 (hình dưới) .............. 35 Hình 3.7 Phổhồng ngoại của các mẫu vật liệu composit SnO2/g-C3N4.............. 36 Hình 3.8 Giản đồ phân tích nhiệt của MSC-1:6 ................................................ 37 Hình 3.9 Đồ thị đường chuẩn rhodamin B có nồng độ 0,5 – 10 mg/l ................ 38 Hình 3.10 Đồ thị biểu diễn sự phụ thuộc C/C0 của Rhodamin B theo thời gian phản ứng t trên các vật liệu............................................................................... 39 Hình 3.11. Đồ thị mô phỏng mô hình Langmuir-Hinshelwood của các mẫu vật liệu ở 5200C ..................................................................................................... 41 THÔNG TIN KẾT QUẢ NGHIÊN CỨU CỦA ĐỀ TÀI 1.Thông tin chung: − Tên đề tài: NGHIÊN CỨU TỔNG HỢP VÀ HOẠT TÍNH XÚC TÁC QUANG CỦA COMPOSIT SnO2/g-C3N4. − Mã số đề tài: S2016.389.83 − Sinh viên thực hiện: STT Tên sinh viên Lớp Khóa Khoa 1 Huỳnh Thị Phụ Sư phạm hóa 37 Hóa 2 Phạm Văn Nhanh Sư phạm hóa 37 Hóa 3 Nguyễn Ngọc Phi Sư phạm hóa 37 Hóa 4 Đào Thị Kim Thoa Sư phạm hóa 37 Hóa 5 Nguyễn Thị Kim Thoa Sư phạm hóa 37 Hóa − Người hướng dẫn: PGS.TS.Võ Viễn 2. Mục tiêu đề tài: Điều chế vật liệu composit SnO2/g-C3N4 có hoạt tính xúc tác quang tốt trong vùng ánh sáng khả kiến. 3. Tính mới và sáng tạo: − Là công trình đầu tiên tiến hành biến tính oxit SnO2 bằng vật liệu g-C3N4 bằng một phương pháp mới. − Các vật liệu thu được có hoạt tính xúc tác quang tốt. Đây là phản ứng sử dụng nguồn năng lượng dồi dào là ánh sáng mặt trời. Chất xúc tác được điều chế từ các tiền chất và vật liệu có giá thành thấp. 4. Kết quả nghiên cứu: − Tổng hợp được 1 mẫu vật liệu g-C3N4 tinh khiết từ melamin, 1 mẫu vật liệu SnO2 tinh khiết và 3 mẫu vật liệu composit: MSC-1:5, MSC-1:6, MSC-1:7. − Đã tìm ra điều kiện tối ưu của mẫu có tính xúc tác quang tốt. 5. Đóng góp về mặt kinh tế - xã hội, giáo dục và đào tạo, an ninh, quốc phòng và khả năng áp dụng của đề tài: − Kết quả đề tài có thể làm tài liệu tham khảo cho các nghiên cứu về xúc tác quang. − Có thể ứng dụng làm chất xúc tác quang có hiệu quả trong việc xử lý chất hữu cơ làm ô nhiễm nguồn nước. Ngày 12 tháng 04 năm 2017 Sinh viên chịu trách nhiệm chính thực hiện đề tài (ký, họ và tên) Huỳnh Thị Phụ Nhận xét của người hướng dẫn về những đóng góp khoa học của sinh viên thực hiện đề tài : Đây là công trình được nhóm sinh viên đạt được lần đầu tiên. Nhóm sinh viên đã thu được các kết quả mới, đáng tin cậy. Vì thế, kết quả này là một tài liệu tham khảo tốt cho các sinh viên muốn nghiên vứu về xúc tác quang. Ngày 12 tháng 04 năm 2017 Xác nhận của Khoa (ký, họ và tên) Người hướng dẫn (ký, họ và tên) THÔNG TIN VỀ SINH VIÊN CHỊU TRÁCH NHIỆM CHÍNH THỰC HIỆN ĐỀ TÀI I. SƠ LƯỢC VỀ SINH VIÊN: Ảnh 4x6 Họ và tên : Huỳnh Thị Phụ Sinh ngày : 22/01/1996 Nơi sinh : Thị xã Sông Cầu, tỉnh Phú Yên Lớp : Khoa : Sư Phạm Hóa Khóa: 37 Hóa Địa chỉ liên hệ :Kí túc xá C5, Trường Đại học Quy Nhơn Điện thoại : 0968 984 174Email:[email protected] II. QUÁ TRÌNH HỌC TẬP : * Năm thứ 1: Ngành học: Sư phạm Hóa Khoa: Hóa Kết quả xếp loại học tập:loại Giỏi * Năm thứ 2: Ngành học: Sư phạm HóaKhoa: Hóa Kết quả xếp loại học tập: loại Giỏi * Năm thứ 3: Ngành học: Sư phạm HóaKhoa: Hóa Kết quả xếp loại học tập (Học Kì I): loại Khá Ngày 12 tháng 04 năm2017 Xác nhận của Khoa (ký, họ và tên) Sinh viên chịu trách nhiệm chính thực hiện đề tài Huỳnh Thị Phụ LỜI CẢM ƠN Thay mặt các thành viên trong nhóm nghiên cứu, em xin dành những lời cảm ơn đầu tiên và sâu sắc nhất gửi đến Thầy PGS.TS.Võ Viễn - người Thầy đã tận tình quan tâm, hướng dẫn, giúp đỡ và tạo mọi điều kiện tốt nhất để đề tài của chúng em được hoàn thành. Em xin chân thành cảm ơn Ban giám hiệu Trường Đại học Quy Nhơn, Ban chủ nhiệm khoa Hóa và các thầy cô trong khoa, trong trường đã tạo mọi điều kiện thuận lợi nhất để chúng em hoàn thành đề tài nghiên cứu. Bên cạnh đó, em xin tỏ lòng biết ơn của mình đến các thầy cô trong Trung tâm thí nghiệm thực hành A6 đã nhiệt tình chỉ bảo, dạy dỗ chúng em trong suốt quá trình thực hiện đề tài. Hơn nữa, em xin cảm ơn đến các anh chị cao học, anh chị khóa trên và bạn bè trong khoa, lòng biết ơn sâu sắc vì sự quan tâm, giúp đỡ và động viên cũng như những ý kiến đóng góp, các thảo luận trong suốt thời gian thực hiện đề tài. Đặc biệt, em vô cùng cảm ơn đến các bạn cùng nhóm nghiên cứu với em. Những người đã luôn sát cánh, miệt mài, cố gắng hết mình và chung tay góp sức để có được kết quả như ngày hôm nay. Cuối cùng,em xin dành tình cảm đặc biệt đến gia đình, người thân và những người bạn của em. Những người đã luôn luôn mong mỏi, động viên, cổ vũ tinh thần và tiếp sức cho em thêm nghị lực trong suốt quá trình thực hiện đề tài này. Mặc dù đã rất cố gắng nhưng những hạn chế về thời gian, kinh nghiệm cũng như kiến thức, trình độ nên không thể tránh khỏi những thiếu sót. Em rất mong nhận được sự thông cảm và sự góp ý của quý thầy cô để đề tài có hướng tiến bộ vươn xa hơn. Em xin chân thành cảm ơn. Quy Nhơn, tháng 4 năm 2017 Sinh viên Huỳnh Thị Phụ MỞ ĐẦU 1. Tổng quan tình hình nghiên cứu thuộc lĩnh vực đề tài Công nghệ nano phát triển cùng với sự ra đời của vật liệu mới và ứng dụng cao đã mang đến thành tựu trong nhiều lĩnh vực khác nhau, đặc biệt là môi trường. Các vật liệu bán dẫn làm xúc tác quang đã được nghiên cứu rộng rãi trong lĩnh vực xử lý ô nhiễm môi trường và tạo nguồn năng lượng sạch, có khả năng tái sinh từ việc tách nước tinh khiết thành H2 và O2. Một số chất bán dẫn đã được sử dụng làm chất xúc tác quang cho hiệu quả như ZnO, TiO2, Zn2TiO2, CdS, WO3, các muối tungstate, trong số đó, TiO2 và ZnO được nghiên cứu nhiều nhất [12, 18]. Mặc dầu vậy, do có vùng cấm rộng nên chúng chỉ hấp thụ ánh sáng tử ngoại, vùng mà chỉ chiếm khoảng 5% tổng lượng photon ánh sáng mặt trời. Để sử dụng ánh sáng mặt trời hiệu quả hơn, nhiều nghiên cứu đã được thực hiện để các vật liệu có khả năng xúc tác trong vùng khả kiến và cải thiện hoạt tính xúc tác quang của chúng. 2. Lý do chọn đề tài Ô nhiễm môi trường là vấn đề hiện đang đặt ra rất bức thiết không những đối với nước ta mà còn đối với hầu hết các quốc gia trên thế giới. Việc gia tăng dân số và phát triển công nghiệp đã dẫn đến việc ngày càng nhiều các chất độc hại được thải vào môi trường. Các chất độc hại này có thể gây nên các bệnh tật liên quan đến ô nhiễm và làm ấm lên khí hậu toàn cầu. Trong số các chất độc hại thải ra môi trường, đáng chú ý là những chất hữu cơ độc hại, nhóm các chất tương đối bền vững, khó bị phân hủy sinh học, lan truyền và tồn lưu một thời gian dài trong môi trường. Do vậy, việc nghiên cứu xử lý triệt để các hợp chất hữu cơ độc hại trong môi trường bị ô nhiễm luôn là mối quan tâm hàng đầu của mỗi quốc gia và đặc biệt có ý nghĩa quan trọng đối với cuộc sống hiện tại và tương lai của con người. Để xử lý môi trường, có rất nhiều phương pháp khác nhau như vật lý, sinh học hay hóa học hoặc là sự kết hợp giữa các phương pháp đó. Trong số các phương pháp nêu trên, hóa học có rất nhiều lợi thế, đặc biệt đối với chất ô nhiễm hữu cơ bền. Một trong những phương pháp đang hấp dẫn các 1 nhà khoa học là xử lý các hợp chất trong nước sử dụng phản ứng phân hủy bởi xúc tác quang dưới điều kiện ánh sáng khả kiến, bởi chúng sử dụng được nguồn năng lượng có sẵn đó là ánh sáng mặt trời và tác nhân oxy không khí. Tuy nhiên, điều quyết định ở đây là chất xúc tác. Thông thường người ta sử dụng chất bán dẫn để làm chất xúc tác quang, trong đó các oxit kim loại được quan tâm nhiều nhất. Tuy nhiên, các oxit kim loại thường chỉ hoạt động trong vùng ánh sáng tử ngoại. Vì thế nhiều nhà khoa học đã quan tâm đến việc biến tính các oxit này để có thể sử dụng trong vùng ánh sáng nhìn thấy. Thời gian gần đây, một loại vật liệu bán dẫn không kim loại, dạng polyme của carbon nitride có cấu trúc lớp như graphit (g-C3N4 ) (hình 1) rất được quan tâm. Vật liệu này ưu điểm là có năng lượng vùng cấm bé, khoảng 2,7 eV có thể hoạt động dưới vùng ánh sáng mặt trời, có thể tổng hợp lượng lớn, bền hóa [1]. Tuy nhiên ở dạng nguyên chất, g-C3N4 có nhược điểm là dễ tái tổ hợp electron và lỗ trống quang sinh, dẫn đến hiệu suất xúc tác kém [3]. Một số công trình nghiên cứu chỉ ra rằng pha tạp g-C3N4 với các nguyên tố phi kim như O, S, B, P hay gắn với một chất bán dẫn khác có thể làm giảm tốc độ tái kết hợp electron lỗ trống quang sinh, và dẫn đến cải thiện hoạt tính xúc tác quang [25]. Hình 1.1 Cấu tạo một lớp g-C3N4 hoàn hảo Xuất phát từ thực tiễn và trên cơ sở phân tích ở trên, chúng tôi chọn đề tài: “NGHIÊN CỨU TỔNG HỢP VÀ HOẠT TÍNH XÚC TÁC QUANG CỦA COMPOSIT SnO2/g-C3N4”. Trong đề tài này, chúng tôi khắc phục nhược 2 điểm trên bằng cách biến tính g-C3N4 bởi gắn với một chất bán dẫn khác SnO2 nhằm tăng hoạt động trong vùng ánh sáng khả kiến và giảm hiện tượng tái kết hợp electron-lỗ trống quang sinh.Đặc biệt hệ xúc tác này được điều chế bằng một phương pháp mới chưa được công bố. 3. Mục tiêu đề tài Điều chế vật liệu composit SnO2/g-C3N4 có hoạt tính xúc tác quang tốt trong vùng ánh sáng khảkiến. 4. Đối tượng và phạm vi nghiên cứu Tổng hợp composit SnO2/g-C3N4 dùng làm chất xúc tác quang phân hủy rhodamin B trong phòng thí nghiệm. 5. Cách tiếp cận và phương pháp nghiên cứu Tiếp cận bởi các tài liệu trong và ngoài nước, điều kiện và kinh nghiệm có sẵn của nhóm nghiên cứu. Vật liệu được tổng hợp và biến tính theo phương pháp phản ứng pha rắn.Tính chất vật liệu được đặc trưng bởi các phương pháp hiện đại như nhiễu xạ tia X, phổ hồng ngoại IR, SEM, TGA. Xúc tác quang được đánh giá bởi phản ứng phân hủy các hợp chất hữu cơ trong môi trường nước. 6. Nội dung nghiên cứu Trong đề tài này, chúng tôi nghiên cứu các nội dung sau: − Tổng hợp g-C3N4 − Tổng hợp SnO2 − Tổng hợp composit bằng hai phương pháp: trực tiếp và gián tiếp − Đánh giá hoạt tính xúc tác quang phân hủy rhodamin B của các vật liệu tổng hợp dưới điều kiện ánh sáng khả kiến. 3 CHƯƠNG 1. TỔNG QUAN VỀ LÝ THUYẾT 1.1. Tổng quan về g-C3N4 1.1.1.Vật liệu g-C3N4 Carbon nitride dạng graphit (g-C3N4) đang trở nên ngày càng quan trọng do những dựđoán lý thuyết về tính chất khác thường của chúng và các ứng dụng đầy hứa hẹn khác nhau, từ xúc tác quang, chất xúc tác dị thể, đến các chất nền. Gần đây, một loạt các cấu trúc nano và vật liệu g-C3N4 mao quản nano đã được phát triển cho một loạt các ứng dụng mới. Vật liệu g-C3N4 là những ứng cử viên đầy hứa hẹn bổ sung những ứng dụng của cacbon trong các vật liệu. Ở điều kiện thường, g-C3N4 được coi là dạng thù hình ổn định nhất, đã có một số lượng lớn các báo cáo tiếp cận sự tổng hợp và biến tính khác nhau về vật liệu này[2, 4, 5, 6, 7, 8]. g-C3N4 bao gồm các khối xếp chồng lên nhau dọc theo trục tạo thành những mặt graphit. Những mặt graphit này được cấu tạo bởi những vòng lục giác của những đơn vị cấu trúc triazin (C3N3) (hình 2). Trong cấu trúc này, sự liên kết giữa các vòngđược gắn chặt bởi nguyên tử nitơ [9]. Hình 1.2 Mặt phẳng Graphitic(a)hexagonalvà(b)orthorhombicg-C3N4 Trên cơ sở ảnh được khảo sát bằng kính hiển vi điện tử truyền qua của gC3N4 tổng hợp dưới áp suất cao, Alves và cộng sự [9] đã đề xuất các liên kết (C3N3) khác vào trong mặt phẳng (Hình 1.2b). Ở đây, các vòng (C3N3) có thể được liên kết với nhau bằng hai cách khác nhau: (i) liên kết trực tiếp Nsp2 – Nsp3 giữa hai nguyên tử nitơ thuộc hai vòng lân cận và (ii) liên kết thông qua N lai hóa sp2 mà không thuộc về các vòng. 4 Hơn nữa, nhiều cách xếp chồng đã được xem xét. Các kiểu xếp chồng ABCABC đã được đề xuất bởi Liu và Wentzcovitch và tương thích với nhóm không gian R3m. Teter và Hemley đã đề nghị kiểu xếp chồng AB, kiểu xếp phù hợp với nhóm không gian P6m2. Kiểu xếp chồng AA cũng đã được đề xuất. Khoảng cách mặt phẳng bên trong dự kiến sẽ thay đổi như 3,45 Å, 3.36 Å và 3.06 Å theo thứ tự các kiểu xếp AA, AB và ABC tương ứng[9]. Những hiểu biết gần đây về các cấu trúc của các hợp chất này được mô tả bởi Franklin vào đầu năm 1922. Ông thấy rằng các thành phần thực nghiệm của các dẫn xuất melon có nguồn gốc từ thiocyanate thủy ngân khác nhau theo phương pháp điều chế và lượng hydro thay đổi từ 1,1-2,0% khối lượng. Dựa trên những phát hiện này, người ta cho rằng có lẽ không phải chỉ một cấu trúc đơn nhất được ấn định cho melon vì nó có nhiều khả năng một hỗn hợp của polyme có kích thước và cấu trúc khác nhau [1]. g-C3N4 có thể được tổng hợp bằng phản ứng ngưng tụ xianamit, dicyandiamide hoặc melamin. Tùy thuộc vào điều kiện phản ứng, vật liệu khác nhau với mức độ ngưng tụ và tính chất khác nhau có thể thu được. Cấu trúc được hình thành đầu tiên là polyme C3N4 (melon) với các nhóm amino vòng là một polyme có độ trật tự cao. Phản ứng tiếp tục dẫn đến những loại C3N4 đặc khít hơn và ít khiếm khuyết, dựa trên các đơn vị tri-s-triazine (C6N7) như các khối kiến trúc cơ bản. Kính hiển vi điện tử truyền qua có độ phân giải cao chứng tỏ đặc tính của những loại ngưng tụ có không gian hai chiều rộng hơn. Do sự tổng hợp kiểu trùng hợp từ một tiền chất lỏng, một loạt các cấu trúc nano của vật liệu như hạt nano hoặc bột mao quản có thể được hình thành. Những cấu trúc nano cũng cho phép tinh chỉnh các thuộc tính, khả năng cho đan xen, cũng như tiềm năng làm phong phú bề mặt vật liệu cho các phản ứng dị thể. Do tính chất bán dẫn đặc biệt của g-C3N4, chúng có thể cho thấy hoạt tính xúc tác tuyệt vời cho nhiều phản ứng khác nhau. Chẳng hạn như đối với sự kích hoạt của benzen, phản ứng ngưng tụ ba phân tử (trimerization) và cũng như kích hoạt của khí carbon dioxide. Kết quả tính toán hiện đại cũng đã giải thích cho các trường hợp bất thường này về chất xúc tác không kim loại dị thể này. g5 C3N4cũng đóng vai trò như một chất xúc tác dị thể và có thể được biến tính bởi nano kim loại. Phương pháp tổng hợp khác nhau g-C3N4 bao gồm ngưng tụ các hợp chất ban đầu giàu cacbon và nitơ khác nhau. Kouvetakis và cộng sự đã phân hủy tiền chất là dẫn xuất melamin ở nhiệt độ 400-5000C để thu được một carbon nitride vô định hình với các thành phần cấu tạo chính xác và các đỉnh graphitic được xếp rõ ràng. Nhiều công trình nghiên cứu khác về phương pháp tổng hợp g-C3N4 từ các chất giàu nitơ khác nhau cũng đã được công bố [1]. Komatsu đã công bố về một mô hình carbon nitride có độ trật tự cao, C91H14N124. Nhóm này cũng đã đưa ra những dạng kết tinh cao được gọi là melon ''khối lượng phân tử cao''. Một bước tiến mới trong việc tiếp cận theo hướng hệ thống C3N4 graphitic có độ xác định và trật tự tốt hơn được công bố bởi Schnick và cộng sự, người đã phân tách và giải thích được các cấu trúc tinh thể của chất trung gian 2,5,8-triamino-tri-s-triazine hoặc melem (C6N10H6). Melem đã được tìm thấy là một chất trung gian nhưng tiếp tục duy trì nhiệt độ thì khá ổn định, trái ngược với các thí nghiệm của Komatsu đã công bố. Trong một bài báo gần đây, nhóm này đã làm sáng tỏ cấu trúc của polyme melon có độ xác định cao, do đó đã cung cấp thêm bằng chứng rằng dạng polyme này đã có thể cho thấy độ xếp chặt tinh thể cục bộ cao. Những chất được mô tả này được xem là mô hình gần như lý tưởng cho trường hợp cấu trúc melon polyme [1]. Triazine và tri-s-triazine đã được thảo luận như đơn vị kiến trúc để tạo nên dạng thù hình tiềm năng khác nhau của g-C3N4. Sự ổn định của g-C3N4 do môi trường điện tử khác nhau của nguyên tử N và kích thước của các lỗ trống của nitrua. 6 Hình 1.3 Triazine (trái) và mô hình kết nối trên nền tảng tri-s-triazine (phải) của những dạng thù hình g-C3N4 tiềm năng [1] Sự tổng hợp và cấu trúc khối của các carbon nitride ngưng tụ khác nhau được thảo luận như sau: Phương pháp phân tích nhiệt (TGA, DSC) kết hợp với nhiễu xạ tia X được sử dụng để mô tả các giai đoạn trung gian theo sự ngưng tụ của phân tử chất ban đầu. Phản ứng là sự kết hợp và đa trùng ngưng khi mà chất ban đầu được ngưng tụ hình thành melamin. Giai đoạn thứ hai là sự ngưng tụ, ở đó amoniac được tách ra, do đó sản phẩm khác nhau khi thực hiện trong bình phản ứng mở hay đóng. Tăng nhiệt độ đến 3500C về cơ bản các sản phẩm trên nền tảng melamin được tìm thấy, trong khi tris-s-triazine hình thành qua sự sắp xếp lại melamin ở nhiệt độ khoảng 3900C. Sự trùng ngưng các đơn vị này tạo các polyme, mạng lưới và có khả năng hoàn thành C3N4 polyme xảy ra ở nhiệt độ khoảng 5200C. Vật liệu trở nên không bền ở nhiệt độ trên 6000C. Nung nóng đến 7000C kết quả dẫn đến biến mất phần tự do còn lại của vật liệu theo con đường sinh ra nitơ và những đoạn cyanua (CN). Một trở ngại lớn trong tổng hợp đó là sự thăng hoa dễ dàng của melamin ở nhiệt độ cao. Điều này có thể hạn chế đến sự phát triển rộng lớn do melamin sinh ra ở thời gian ngắn và cùng tồn tại với các dạng khác, trong đó liên kết H hiển nhiên làm chậm sự melamin hóa. Vì thế, điều đó khuyến cáo việc sử dụng dicyandiamide như là chất nguồn và thúc đẩy sự chuyển qua giai đoạn melamin hóa nhanh chóng hơn để tăng hiệu quả khối lượng trong quá trình trùng hợp [1]. Trình tự này được thể hiện dưới dạng sơ đồ ởhình 1.4[10]. 7 Hình 1.4 Con đường phản ứng hình thành g-C3N4 từ dicyandiamide (c), (a) mạng lưới g-C3N4, (b) hình ảnh khối bột g-C3N4 (màu vàng) [10] Ở nhiệt độ 3900C các trung tâm cyameluric được hình thành qua sự sắp xếp lại các đơn vị melamin như công bố trước đây bởi Schnick và cộng sự về sự tổng hợp melem. Sản phẩm ngưng tụ này là chất trung gian ổn định và có thể tách ra một cách an toàn bằng cách dừng phản ứng ở nhiệt độ 4000C trong ống thủy tinh kín dưới áp suất riêng phần cao của NH3. Cân bằng chuyển sang dạng oligome hoặcpolyme khi quá trình phản ứng xảy ra trong nồi hở ít NH3, có thể chứng minh bởi sự mất khối lượng hơn và tương ứng với tỉ lệ C:N cao hơn trong phép phân tích nguyên tố. Việc nung sản phẩm ngưng tụ trên 5000C dẫn đến loại bỏ thêm lượng đáng kể NH3 và hình thành polyme C3N4 ngưng tụ lớn hơn [1]. Gần đây, g-C3N4 đã thu hút nhiều sự chú ý về ứng dụng xúc tác quang tách nước tinh khiết và phân hủy chất hữu cơ gây ô nhiễm dưới ánh sáng khả kiến. Vật liệu này có nhiều lợi thế như có vùng cấm khoảng 2,7 eV, khả năng sản xuất với quy mô lớn, không độc hại. Tuy nhiên, g-C3N4 tinh khiết thể hiện tốc độ tái kết hợp cặp lỗ trống và điện tử quang sinh [3]. Để khắc phục nhược điểm này nhiều phương pháp đã được áp dụng để biến tính g-C3N4 như điều chế g8 C3N4dưới dạng cấu trúc mao quản [11] và sự kết hợp của g-C3N4 với các vật liệu khác bằng cách pha tạp hoặc kĩ thuật ghép [13, 14]. Những vật liệu thu được cho thấy sự cải thiện trong hiệu suất xúc tác quang. Vật liệu composit g-C3N4 làm tăng hoạt tính xúc tác quang đã được công bố [15, 16, 17]. 1.1.2.Vật liệu tổng hợp g-C3N4:melamin 1.1.2.1.Giới thiệu melamin Melamin là một bazơ hữu cơ ít tan trong nước có công thức hóa học là C3H6N6, danh pháp theo IUPAC là 1,3,5-triazine-2,4,6-riamine. Hình 1.5Phân tử melamin Về thuật ngữ, theo tiếng Đức từ melamin xuất phát từ hai thuật ngữ hóa học kết hợp lại đó là melamin (là một sản phẩm dẫn xuất sau khi chưng cất amoni hiocyanat) và amin. Melamin là trime của cyanamid. Giống như cyanamid, phân tử của chúng chứa 66% nitơ theo khối lượng được chuyển hóa từ cyromazine trong cơ thể của động thực vật. Melamin kết hợp với axit cyanuric tạo thành melamin cyanurat. 1.1.2.2.Tổng hợp Melamin được Liebig tổng hợp lần đầu tiên vào năm 1834. Đầu tiên, canxi cyanamid được chuyển thành dicyandiamid sau đó đun nóng đến trên nhiệt độ nóng chảy để tạo thành melamin. Tuy nhiên, hiện nay các quy trình sản xuất melamin trong công nghiệp đều dùng urea theo phương trình phản ứng sau: 6 (NH2)2CO → C3H6N6 + 6 NH3 + 3 CO2 Phản ứng được diễn giải theo hai bước sau: 9 Đầu tiên urê phân hủy tạo thành axit cyanic và ammoni. Đây là phản ứng thu nhiệt: 6 (NH2)2CO → 6 HCNO + 6 NH3 Sau đó axit cyanic polyme hóa tạo thành melamin và khí cacbon dioxit: 6 HCNO → C3H6N6 + 3 CO2 Phản ứng sau là tỏa nhiệt nhưng xét toàn bộ quá trình là phản ứng thu nhiệt. 1.1.2.3. Ứng dụng Melamin khi phản ứng với fomandehit tạo thành keo melamin. Melamin cũng được sử dụng trong ngành công nghiệp phân bón. Khi trộn lẫn với một số nhựa, chúng tạo thành hỗn hợp có khả năng chống cháy do khi cháy chúng giải phóng ra một lượng khí nitơ. Melamin và muối của nó được sử dụng như chất phụ gia chống cháy trong các loại sơn, nhựa và giấy. Melamin chỉ được phép dùng trong sản xuất công nghiệp (đồ chơi, đồ nội thất, gia dụng…) với nhiều đặc tính ưu việt như tính kết dính cao, kháng nhiệt tốt, không bị ăn mòn, không mùi vị. Ngoài ra, melamin còn được dùng để sản xuất phân bón. 1.2. Tổng quan về thiếc (IV) oxit 1.2.1.Thiếc (Sn) Thiếc là kim loại chuyển tiếp thuộc nhóm IV trong bảng hệ thống tuần hoàn Mendeleep. Với các đặc điểm sau: STT Cấu hình Bán kính Bán kính Bán kính Năng lượng electron nguyên tử Sn2+ (Å) Sn4+ (Å) ion (eV) 1,02 0,67 7,432 (Å) 50 [Kr]4d105s25p5 1,40 Khoáng vật cơ bản của thiếc là SnO2 (Cassiterite “thiếc đá”). Thiếc có nhiều dạng thù hình: − Thù hình Beta thông thường (thiếc “trắng”) bền ở trên 13,2oC là kim loại trắng bạc có cấu trúc tứ phương với sắp xếp theo hình bát diện đều. 10 − Khi làm lạnh thiếc trắng chuyển về dạng thù hình anpha (thiếc “xám”) có cấu trúc kiểu kim cương và thiếc nát vụn ra thành bột. Một số hằng số vật lý của Sn: Nhiệt độ nóng Nhiệt độ sôi Độ dẫn điện Tỉ khối chảy ( °C ) ( Ω-1.m-1 ) ( g/cm3 ) 2200 8 7,3 ( °C ) 231,9 − Ở điều kiện thường thiếc bền với nước và không khí. Khi nhiệt độ tăng, thiếc tác dụng với phần lớn các á kim tạo thành các hợp chất Sn (IV): SnO2, SnCl4. − Sn phản ứng với HNO3 đặc tạo thành Stanic H2SnO3 (xSnO2.yH2O), với HNO3 loãng thiếc phản ứng như một kim loại tạo thành thiếc(II) Nitrat. 3Sn + 8HNO3→ 3Sn(NO3)2 +2NO +4H2O − Sn tác dụng với dung dịch nước kiềm khi đun nóng: Sn + KOH + H2O → K2Sn(OH)4 + H2 Điều chế: Sn được điều chế bằng cách dùng cacbon khử Cassiterite C + SnO2→ CO2 + Sn Ứng dụng: thiếc được dùng chủ yếu trong công nghệ đồ hộp (dạng sắt tây), lá thiếc dùng đểgói thực phẩm dùng trong công nghiệp kĩ thuật điện. 1.2.2. Thiếc (IV) oxit 1.2.2.1 Cấu trúc tinh thể thiếc (IV) oxit Oxit thiếc có hai dạng chủ yếu: thiếc (IV) oxit (SnO2) và oxit thiếc (SnO), trong đó SnO2 tồn tại phổ biến hơn dạng SnO. SnO2 có màu trắng, khó nóng chảy(nhiệt độ nóng chảy: 1127°C), khối lượng riêng 6,95g/cm3. SnO2là tinh thể phân cực bất đẳng hướng, có cấu trúc tinh thể kiểu Rutile (cấu trúc Rutile kiểu tứ diện thuộc nhóm đối xứng P42/mm) giống như các oxit 11 khác nhưTiO2, GeO2, CeO2, MnO2, RuO2 (hình 1.6). Cấu trúc một đơn vị tinh thể của SnO2 chứa 6 nguyên tử, trong đó có 2 nguyên tử Sn và 4 nguyên tử O. Các hằng số mạng lưới là a = b = 4,7374 Åvà c = 3,1864 Å (theo JCPDS: 0411445). Hình 1.6 (a) Mô hình tinh thể của SnO2 với các bề mặt có chỉ số Miller thấp. Tế bào đơn vị rutile được trình bày ở hình (b), (c), (d) tương ứng với các mặt (110), (100),(101) [28] Hình 1.6 trình bày cấu trúc một đơn vị tinh thể của SnO2 và các mặt có chỉ số Miller thấp. Năng lượng tương ứng của các mặt (110), (100) hoặc (010), (101) hoặc (011) và (001) lần lượt là 1,20; 1,27; 1,43; 1,84 J/m2. Như vậy, mặt (110) có năng lượng bé nhất tiếp theo là mặt (100), đến (101) và cuối cùng là (001). 12
- Xem thêm -

Tài liệu liên quan