Đăng ký Đăng nhập
Trang chủ Nghiên cứu tổng hợp rod coil diblock copolymer trên cơ sở poly (3 hexylthiophene...

Tài liệu Nghiên cứu tổng hợp rod coil diblock copolymer trên cơ sở poly (3 hexylthiophene) bằng phương pháp trùng hợp chuyển đổi gốc tự do nguyên tử sử dụng xúc tác quang hữu cơ

.PDF
142
3
81

Mô tả:

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA -------------------o0o------------------- NGUYỄN HỮU TÂM NGHIÊN CỨU TỔNG HỢP ROD-COIL DIBLOCK COPOLYMER TRÊN CƠ SỞ POLY(3-HEXYLTHIOPHENE) BẰNG PHƯƠNG PHÁP TRÙNG HỢP CHUYỂN ĐỔI GỐC TỰ DO NGUYÊN TỬ SỬ DỤNG XÚC TÁC QUANG HỮU CƠ Chuyên ngành: Kỹ Thuật Vật Liệu Mã số: 60520309 LUẬN VĂN THẠC SĨ Tp. Hồ Chí Minh, Tháng 06/2018 Công trình được hoàn thành tại: Trường Đại học Bách Khoa – ĐHQG - HCM Cán bộ hướng dẫn khoa học 1: PGS.TS. Nguyễn Trần Hà Cán bộ hướng dẫn khoa học 2: PGS.TS. Nguyễn Thị Lệ Thu Cán bộ chấm nhận xét 1: PGS.TS. Nguyễn Đình Thành Cán bộ chấm nhận xét 2: PGS.TS. Phạm Thành Quân Luận văn thạc sĩ được bảo vệ tại Trường Đại học Bách Khoa, ĐHQG Tp. HCM ngày 22 tháng 06 năm 2018 Thành phần Hội đồng đánh giá luận văn thạc sĩ gồm: 1. Chủ tịch: PGS. TS Huỳnh Đại Phú 2. Phản biện 1: PGS. TS Nguyễn Đình Thành 3. Phản biện 2: PGS. TS Phạm Thành Quân 4. Uỷ viên: TS. La Thị Thái Hà 5. Thư ký: TS. Nguyễn Thị Lê Thanh Xác nhận của Chủ tịch Hội đồng đánh giá luận văn và Trưởng Khoa quản lý chuyên ngành sau khi luận văn đã được sửa chữa (nếu có). CHỦ TỊCH HỘI ĐỒNG KHOA CÔNG NGHỆ VẬT LIỆU PGS. TS Huỳnh Đại Phú i ĐẠI HỌC QUỐC GIA TP. HCM CỘNG HÒA Xà HỘI CHỦ NGHĨA VIỆT NAM TRƯỜNG ĐẠI HỌC BÁCH KHOA Độc lập - Tự do - Hạnh phúc NHIỆM VỤ LUẬN VĂN THẠC SĨ Họ tên học viên: NGUYỄN HỮU TÂM MSHV: 1670743 Ngày, tháng, năm sinh: 21/09/1991 Nơi sinh: Đồng Nai Chuyên ngành: Kỹ Thuật Vật Liệu Mã số: 60520309 I. TÊN ĐỀ TÀI: Nghiên cứu tổng hợp rod-coil diblock copolymer trên cơ sở poly(3hexylthiophene) bằng phương pháp trùng hợp chuyển đổi gốc tự do nguyên tử sử dụng xúc tác quang hữu cơ. NHIỆM VỤ VÀ NỘI DUNG: Nội dung 1: Tổng hợp P3HT-Macroinitiator từ P3HT cấu trúc điều hòa làm chất khơi mào cao phân tử trong ATRP. Nội dung 2: Tổng hợp rod-coil diblock copolymer từ P3HT macroinitiator bằng phương pháp metal-free ATRP khi sử dụng xúc tác quang hữu cơ thương mại pyrene. Nội dung 3: Tổng hợp rod-coil diblock copolymer từ P3HT macroinitiator theo phương pháp metal-free ATRP khi sử dụng xúc tác quang hữu cơ mới 10-(pyren-1-yl)10H-phenothiazine (PPTh). II. NGÀY GIAO NHIỆM VỤ: 15/1/2018 III. NGÀY HOÀN NHIỆM VỤ: 22/06/2018 IV. CÁN BỘ HƯỚNG DẪN 1: PGS.TS. Nguyễn Trần Hà CÁN BỘ HƯỚNG DẪN 2: PGS.TS. Nguyễn Thị Lệ Thu Tp. HCM, ngày … tháng … năm 2018 CÁN BỘ HƯỚNG DẪN CÁN BỘ HƯỚNG DẪN CHỦ NHIỆM BỘ MÔN PGS.TS. Nguyễn Trần Hà PGS.TS. Nguyễn Thị Lệ Thu TS. La Thị Thái Hà KHOA CÔNG NGHỆ VẬT LIỆU ii LỜI CÁM ƠN Với lòng biết ơn sâu sắc nhất, tôi xin chân thành cám ơn Thầy Nguyễn Trần Hà và Cô Nguyễn Thị Lệ Thu - người Thầy, Cô đã hướng dẫn, đóng góp ý kiến và định hướng nghiên cứu cũng như hỗ trợ cơ sở vật chất trong suốt quá trình thực hiện luận văn. Tôi trân trọng gửi lời cám ơn đến quý Thầy Cô Trường Đại học Bách Khoa Tp.Hồ Chí Minh, đặc biệt Bộ môn Vật Liệu Polymer – Khoa Công Nghệ Vật Liệu đã cùng với tri thức và tâm huyết của mình để truyền đạt vốn kiến thức quý báu cho tôi trong suốt thời gian học tập tại trường. Tôi cũng xin gửi lời cám ơn đến các Thầy, Cô, anh, chị và bạn bè ở phòng thí nghiệm Bộ môn Vật Liệu Năng Lượng và Ứng Dụng – Khoa Công Nghệ Vật Liệu, đã nhiệt tình giúp đỡ và tạo điều kiện thuận lợi để tôi hoàn thành nội dung luận văn. Cuối cùng, tôi xin được bày tỏ lòng biết ơn tới gia đình, bạn bè, những người đã động viên và khuyết khích tôi trong quá trình thực hiện luận văn. Một lần nữa tôi xin chân thành cảm ơn tất cả những người giúp đỡ tôi trong suốt thời gian thực hiện luận văn. Tp. Hồ Chí Minh, ngày … tháng … năm 2018 NGUYỄN HỮU TÂM iii TÓM TẮT Vượt qua những thách thức về vấn đề tồn dư kim loại trong hệ thống ATRP truyền thống, quá trình trùng hợp ATRP không sử dụng xúc tác kim loại đã được chứng minh là phương pháp hiệu quả khi dùng xúc tác quang hữu cơ và được hỗ trợ bởi ánh sáng. Tuy nhiên, trên thế giới phương pháp này vẫn chưa được ứng dụng để tổng hợp block copolymer của polymer liên hợp (conjugated polymer) có poly(3hexylthiophene). Vì vậy, trong luận văn này chúng tôi đã ứng dụng thành công phương pháp trùng hợp ATRP không xúc tác kim loại để trùng hợp kiểm soát nhiều loại rodcoil conjugated diblock copolymer từ chất khơi mào cao phân tử poly(3hexylthiophene) macroinitiator với các monomer họ methacrylate: methyl methacrylate, N,N-dimethylamino-2-ethyl methacrylate, 2-([4,6-dichlorotriazin-2yl]oxy)ethyl methacrylate và comonomer của methyl methacrylate và 1-pyrenemethyl methacrylate bằng xúc tác quang hữu cơ. Điều này đã đạt được khi sử dụng xúc tác hữu cơ pyrene và PPTh dưới sự hỗ trợ của ánh sáng UV. Kết quả phổ 1H NMR và sắc ký gel GPC cho thấy phương pháp ATRP sử dụng xúc tác quang hữu cơ đã tạo ra nhiều diblock copolymer từ chất khơi mào P3HT có sự kiểm soát tốt cấu trúc phân tử và độ đa phân tán nhỏ hơn 1.3. Từ sự so sánh hiệu quả các xúc tác quang hữu cơ, xúc tác PPTh đã cho thấy sự hiệu quả vượt trội so với pyrene, bao gồm hàm lượng xúc tác thấp và độ chuyển hóa cao. Chúng tôi tin tưởng rằng chất xúc tác quang hữu cơ mới PPTh này sẽ có nhiều ứng dụng tiềm năng trong trùng hợp chuyển đổi gốc tự do nguyên tử có kiểm soát và cũng như có giá trị hơn nữa trong tổng hợp các hợp chất thấp phân tử và hóa học polymer. iv ABSTRACT Overcoming the challenge of metal contamination in traditional atom transfer radical polymerization (ATRP) systems, a “metal-free” ATRP process has successfully demonstrated using an organic-based photo-redox catalyst and mediated by light. However, the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene) has not been explored via metal-free ATRP. The photomediated metal-free ATRP approach has been investigated for the first time to polymerize methyl methacrylate, N,N-dimethylamino-2-ethyl methacrylate, 2-([4,6dichlorotriazin-2-yl]oxy)ethyl methacrylate and a mixture of methyl methacrylate and 1-pyrenemethyl methacrylate from a regioregular poly(3-hexylthiophene) (P3HT) macroinitiator to produce well-defined rod-coil conjugated diblock copolymers, highly relevant for use as organic electronic materials without metal catalyst contamination. This was achieved using pyrene and a pyrenyl N-substituted phenothiazine (PPTh) as UV light photoredox catalysts. Spectral and chromatographic results revealed that the applied synthetic approach generated P3HT-based diblock copolymers in a controlled manner and with narrow molecular weight distributions (Đ ≤ 1.3). From a comparison of the efficiency of the photocatalysts, PPTh has shown advantages over pyrene, including much lower catalyst content and higher polymerization conversions. We take the view that these new PPTh as organic-based photoredox catalysts will enable new applications for controlled radical polymerizations and also be of further value in both small molecule and polymer chemistry. v LỜI CAM ĐOAN CỦA TÁC GIẢ Tôi xin cam đoan những nội dung trong luận văn này do tôi thực hiện dưới sự hướng dẫn của người hướng dẫn khoa học. Một số nhiệm vụ nghiên cứu là thành quả của tập thể và đã được các đồng sự cho phép sử dụng. Các số liệu, kết quả trình bày trong luận văn là trung thực và chưa được công bố trong luận văn khác. Tp. Hồ Chí Minh, ngày … tháng … năm 2018 Tác giả luận văn NGUYỄN HỮU TÂM vi MỤC LỤC DANH SÁCH HÌNH ẢNH ............................................................................................ x DANH SÁCH BẢNG BIỂU ....................................................................................... xiv DANH MỤC SƠ ĐỒ .................................................................................................. xiv DANH MỤC TỪ VIẾT TẮT ...................................................................................... xv LỜI MỞ ĐẦU ................................................................................................................ 1 1. CHƯƠNG 1 TỔNG QUAN ROD-COIL DIBLOCK COPOLYMER ................. 3 1.1. Giới thiệu chung về rod-coil diblock copolymer ....................................................3 1.2. Rod-coil diblock copolymer trên cơ sở polymer liên hợp regioregular poly(3hexylthiophene) và các ứng dụng của copolymer ...........................................................7 1.3. Các phương pháp tổng hợp rod-coil diblock copolymer ......................................10 1.3.1. Phương pháp grafting-onto ........................................................................11 1.3.2. Phương pháp grafting-from .......................................................................12 1.4. Tổng hợp rod-coil diblock copolymer dựa trên P3HT-macroinitiator theo phương pháp ATRP sử dụng xúc tác kim loại ............................................................................14 1.5. Tình hình nghiên cứu ............................................................................................17 1.6. Tính cấp thiết và ý nghĩa của đề tài ......................................................................18 1.7. Mục tiêu và nội dung nghiên cứu .........................................................................20 1.7.1. Mục tiêu nghiên cứu ..................................................................................20 1.7.2. Nội dung nghiên cứu ..................................................................................20 2. CHƯƠNG 2 CƠ SỞ LÝ THUYẾT ........................................................................ 21 2.1. Tổng hợp chất khơi mào cao phân tử P3HT-Macroinitiator trong ATRP từ quá trình biến tính nhóm chức cuối mạch rr-P3HT .............................................................21 2.1.1. Biến tính hóa học nhóm cuối mạch của P3HT từ Br/H thành nhóm Br/CHO (Br-P3HT-CHO) qua phản ứng Vilsmeier–Haack .................................23 2.1.2. Biến tính hóa học nhóm cuối mạch của P3HT từ Br/CHO thành nhóm Br/CH2OH (Br-P3HT-CH2OH) qua phản ứng khử. .............................................24 2.1.3. Biến tính hóa học nhóm cuối mạch của P3HT từ Br/CH2OH thành nhóm Br/CH2OOC(CH3)2Br (P3HT-Macroinitiator) qua phản ứng ester hóa ...............25 2.2. Tổng hợp polymer theo cơ chế trùng hợp chuyển đổi gốc tự do nguyên tử sử dụng xúc tác quang hữu cơ ............................................................................................26 3. CHƯƠNG 3 THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU.............. 31 3.1. Nguyên liệu ...........................................................................................................31 3.2. Thiết bị và dụng cụ ...............................................................................................31 3.2.1. Dụng cụ thí nghiệm cơ bản ........................................................................31 3.2.2. Thiết bị .......................................................................................................32 vii 3.3. Phương pháp phân tích .........................................................................................32 3.3.1. Phương pháp phổ hồng ngoại chuyển đổi Fourier (FT-IR) .......................32 3.3.2. Phương pháp phân tích sắc ký gel (GPC) ..................................................33 3.3.3. Phương pháp phổ cộng hưởng từ hạt nhân proton (1H NMR)...................33 3.4. Quy trình thực nghiệm ..........................................................................................34 3.4.1. Tổng hợp P3HT-Macroinitiator .................................................................34 3.4.2. Tổng hợp monomer 1-pyrenemethyl methacrylate (PMA) và 2-([4,6dichlorotriazin-2-yl]oxy)ethyl methacrylate (DCTMA) ......................................39 3.4.3. Tổng hợp xúc tác quang hữu cơ 10-(pyren-1-yl)-10H-phenothiazine (PPTh) ...................................................................................................................41 3.4.4. Tổng hợp homopolymer PMMA, PDMAEMA, PDCTMA bằng metal-free ATRP sử dụng xúc tác quang hữu cơ pyrene hoặc PPTh .....................................42 3.4.5.Tổng hợp rod-coil diblock copolymer từ P3HT macroinitiator theo phương pháp metal-free ATRP sử dụng xúc tác quang hữu cơ pyrene hoặc PPTh .............. ............................................................................................................................44 4. CHƯƠNG 4 KẾT QUẢ VÀ BÀN LUẬN ............................................................. 48 4.1. Tổng hợp chất khơi mào cao phân tử P3HT-Macroinitiator ................................48 4.1.1. Kết quả FT-IR ............................................................................................48 4.1.2. Kết quả 1H NMR của P3HT-Macroinitiator ..............................................50 4.1.3. Kết quả GPC của P3HT-Macroinitiator ....................................................52 4.2. Tổng hợp monomer 1-pyrenemethyl methacrylate (PMA) và 2-([4,6dichlorotriazin-2-yl]oxy)ethyl methacrylate (DCTMA) ...............................................53 4.2.1. Tổng hợp monomer huỳnh quang PMA ....................................................53 4.2.2. Tổng hợp monomer DCTMA ....................................................................55 4.3. Tổng hợp polymer theo cơ chế ATRP sử dụng xúc tác quang hữu cơ thương mại pyrene ............................................................................................................................57 4.3.1. Tổng hợp homopolymer từ chất khơi mào thấp phân tử theo cơ chế ATRP sử dụng xúc tác quang hữu cơ thương mại pyrene ...............................................57 4.3.2. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-bpoly(methyl methacrylate) (P3HT-b-PMMA) ......................................................61 4.3.3. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-bpoly(N,N-dimethylamino-2-ethyl methacrylate) (P3HT-b-PDMAEMA) ...........68 4.3.4. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-b-poly(2(dichlorotriazinyl)oxyethyl methacrylate) (P3HT-b-PDCTMA) .........................72 4.3.5. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-bpoly(methyl methacrylate-random-1-pyrenemethyl methacrylate) P3HT-bP(MMA-r-PMA) ...................................................................................................75 4.4. Tổng hợp polymer theo phương pháp ATRP sử dụng xúc tác hoạt quang hữu cơ PPTh ..............................................................................................................................77 viii 4.4.1. Tổng hợp homopolymer từ chất khơi mào thấp phân tử theo phương pháp ATRP sử dụng xúc tác quang hữu cơ PPTh .........................................................77 4.4.2. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-bpoly(methyl methacrylate) (P3HT-b-PMMA) ......................................................80 4.4.3. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-b-poly(N,Ndimethylamino-2-ethyl methacrylate) (P3HT-b-PDMAEMA) ............................84 4.4.4. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-b-poly(2(dichlorotriazinyl)oxyethyl methacrylate) (P3HT-b-PDCTMA) .........................85 4.4.5. Tổng hợp rod-coil diblock copolymer poly(3-hexylthiophene)-bpoly(methyl methacrylate-random-1-pyrenemethyl methacrylate) P3HT-bP(MMA-r-PMA) ...................................................................................................87 4.5. Ảnh hưởng của cường độ nguồn ánh sáng đến quá trình tổng hợp diblock copolymer P3HT-b-PDMAEMA ..................................................................................88 KẾT LUẬN VÀ KIẾN NGHỊ ..................................................................................... 90 DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC..................................................... 91 TÀI LIỆU KHAM KHẢO .......................................................................................... 93 PHỤ LỤC ................................................................................................................... A-1 LÝ LỊCH TRÍCH NGANG ....................................................................................... xvi ix DANH SÁCH HÌNH ẢNH Hình 1.1. Độ dẫn điện của một số loại vật liệu tiêu biểu. ...............................................4 Hình 1.2. Các ứng dụng tiềm năng của polymer dẫn điện. .............................................5 Hình 1.3. Cấu trúc hóa học của một số conjugated rod-coil diblock copolymer. ...........6 Hình 1.4. Các phương pháp tổng hợp, hình thái học và ứng dụng của rod-coil block copolymer. ......................................................................................................8 Hình 1.5. Các ứng dụng nổi bật của rod-coil diblock copolymer trên cơ sở polymer liên hợp regioregular poly(3-hexylthiophene). ..............................................9 Hình 1.6. Các phương pháp tổng hợp rod-coil diblock copolymer. ............................10 Hình 1.7. Tổng hợp rod-coil diblock copolymer dẫn điện theo phương pháp graftingonto: (a) anionic polymerization, (b) click reaction, (c) coupling reaction. 11 Hình 1.8. Tổng hợp diblock copolymers P3HT-b-PS bằng phương pháp click chemistry. .....................................................................................................12 Hình 1.9. Những phương pháp tổng hợp rod-coil diblock copolymers với P3HT như là rod block. (b) NMP, (c) RAFT, (d) Living anionic polymerization và (e) Ring opening polymerization (ROP). ..........................................................13 Hình 1.10. Tổng hợp rod-coil diblock copolymer dẫn điện theo phương pháp ATRP. 14 Hình 1.11. Quy trình tổng hợp diblock copolymers P3HT-b-PS và P3HT-b-PMA bằng phương pháp McCullogh và phương pháp ATRP. ......................................14 Hình 1.12. Quy trình tổng hợp PS-b-P3HT-b-PS và PMA-b-P3HT-b-PMA triblock copolymers bằng phương pháp McCullough. ..............................................15 Hình 1.13.Quy trình tổng hợp nhạy nhiệt P3HT-b- PDMAEMA và polymer nhạy quang P3HT-b-P(MMA-r-MSp) theo phương pháp GRIM và ATRP. .......16 Hình 1.14. Quy trình tổng hợp P3HT-b-C60, P3HT-b-P(DMAEMA-r-HEMA)-Cationic và P3HT-b-P(DMAEMA-r-HEMA)-Anionic theo phương pháp GRIM và ATRP............................................................................................................17 Hình 1.15. Tổng hợp rod-coil diblock copolymer trên cơ sở poly(3-hexylthiophene) bằng xúc tác quang hữu cơ pyrene và PPTh theo cơ chế “metal-free”ATRP. ......................................................................................................................20 Hình 2.1. Cơ chế tổng hợp polymer rr-P3HT với nhóm cuối mạch gồm một H và một Br tổng hợp theo phương pháp “quasi-living” Grignard (GRIM). ..............21 Hình 2.2. Quy trình tổng hợp P3HT-macroinitiator từ rr-P3HT ...................................23 Hình 2.3. Sơ đồ hóa học biến tính nhóm chức cuối mạch Br/H của P3HT thành Br/CHO qua phản ứng Vilsmeier–Haack. ...................................................23 x Hình 2.4. Cơ chế phản ứng Vilsmeier–Haack dùng biến tính nhóm cuối mạch Br/H của P3HT thành nhóm Br/CHO. ..................................................................24 Hình 2.5. Sơ đồ hóa học biến tính nhóm chức cuối mạch Br/CHO của P3HT thành Br/CH2OH qua phản ứng khử. .....................................................................24 Hình 2.6. Cơ chế phản ứng khử biến tính nhóm chức cuối mạch Br/CHO của P3HT thành Br/CH2OH. .........................................................................................25 Hình 2.7. Sơ đồ hóa học biến tính nhóm chức cuối mạch Br/CH2OH của P3HT thành P3HT-Macroinitiator. ...................................................................................25 Hình 2.8. Cơ chế phản ứng khử biến tính nhóm chức cuối mạch Br/CH2OH của P3HT thành Br/CH2OCO(CH3)2Br.........................................................................26 Hình 2.9. Các thế hệ xúc tác được dùng trong O-ATRP. ..............................................28 Hình 2.10. Giả thuyết tổng hợp diblock copolymer từ chất khơi mào cao phân tử P3HT-Macrointiator bằng phương pháp metal-free ATRP dưới ánh sáng UV. ...............................................................................................................29 Hình 2.11. Cơ chế đề xuất cho xúc tác quang hữu cơ ATRP trùng hợp các monomer họ methacrylate với P3HT-macroinitiator dưới ánh sáng UV. .........................30 Hình 3.1. Sơ đồ hóa học biến tính nhóm chức cuối mạch Br/H của P3HT thành Br/CHO qua phản ứng Vilsmeier–Haack. ...................................................34 Hình 3.2. Sơ đồ hóa học biến tính nhóm chức cuối mạch Br/CHO của P3HT thành Br/CH2OH qua phản ứng khử. .....................................................................36 Hình 3.3. Sơ đồ hóa học biến tính nhóm chức cuối mạch Br/CH2OH của P3HT thành P3HT-Macroinitiator. ...................................................................................38 Hình 3.4. Phản ứng tổng hợp monomer PMA. ..............................................................40 Hình 3.5. Phản ứng tổng hợp monomer DCTMA. ........................................................41 Hình 3.6. Phản ứng tổng hợp xúc tác quang hữu cơ PPTh. ..........................................42 Hình 3.7. Tổng hợp PMMA, PDMAEMA, PDCTMA với xúc tác quang hữu cơ. .....43 Hình 3.8. Phản ứng tổng hợp rod-coil diblock copolymer dẫn điện. ............................45 Hình 4.1. Phổ FT-IR của P3HT-Macroinitiator (a), P3HT-CH2OH (b), P3HT-CHO (c), và P3HT-H (d). ............................................................................................50 Hình 4.2. Kết quả 1H NMR của P3HT-Macroinitiator (a) và P3HT-H (b) trong CDCl3. ......................................................................................................................51 Hình 4.3. Giản đồ GPC của P3HT-Macroinitiator và P3HT-H. ...................................53 Hình 4.4. Kết quả TLC của phản ứng tổng hợp monomer PMA ..................................54 Hình 4.5. Phổ FT-IR nguyên liệu 1-pyrenemethanol và sản phẩm monomer PMA. ....54 Hình 4.6. Phổ 1H NMR monomer PMA (CDCl3, 25 0C, 500 MHz). ............................55 xi Hình 4.7. Phổ FT-IR nguyên liệu HEMA (a) và sản phẩm monomer DCTMA (b). ....56 Hình 4.8. Phổ 1H NMR monomer DCTMA (CDCl3, 25 0C, 500 MHz). ......................57 Hình 4.9. Phổ 1H NMR của polymer PMMA (a), PDMAEMA (b), PDCTMA (c) ở tỷ lệ [Monomer]: EBMP]:[Pyrene] = 60:1:1 trong CDCl3, 25 0C. ..................60 Hình 4.10. Giản đồ GPC của các homopolymer PMMA, PDMAEMA, và PDCTMA ở tỷ lệ [Monomer]:[EBMP]:[Pyrene] = 60:1:1. ..............................................61 Hình 4.11. Phổ FT-IR của P3HT-macroinitiator và P3HT-b-PMMA ([MMA]0/[P3HTiBuBr]/[Pyrene] = 120/1/1). .........................................................................63 Hình 4.12. Phổ 1H NMR của các copolymer P3HT-b-PMMA sau 0, 4 và 18 giờ phản ứng dưới ánh sáng UVA 365 nm. ................................................................64 Hình 4.13. Giản đồ GPC các copolymer P3HT-b-PMMA sau 0, 4 và 18 giờ phản ứng. ......................................................................................................................64 Hình 4.14. Giản đồ GPC của P3HT-b-PMMA sử dụng xúc tác pyrene với chu kỳ “mởtắt”ánh sáng theo thời gian phản ứng. ..........................................................67 Hình 4.15. Biểu đồ chuyển hóa monomer MMA của P3HT-b-PMMA sử dụng xúc tác pyrene với chu kỳ “mở-tắt”ánh sáng theo thời gian phản ứng. ...................67 Hình 4.16. Trọng lượng phân tử Mn và độ đa phân tán của P3HT-b-PMMA sử dụng xúc tác pyrene với chu kỳ “mở-tắt”ánh sáng theo thời gian phản ứng. .......68 Hình 4.17. Phổ FT-IR của P3HT-macroinitiator và P3HT-b-PDMAEMA ([DMAEMA]0/[P3HT-iBuBr]/[Pyrene] = 40/1/1). ......................................69 Hình 4.18. Giản đồ GPC của P3HT-Macroinitiator, P3HT-b-PDMAEMA40 và P3HTb-PDMAEMA60. ..........................................................................................70 Hình 4.19. Phổ 1H NMR của copolymer P3HT-b-PDMAEMA40 (a) và P3HT-bPDMAEMA60 (b). ........................................................................................71 Hình 4.20. Phổ FT-IR của P3HT-macroinitiator và P3HT-b-PDCTMA ([DCTMA]0/[P3HT-iBuBr]/[Pyrene] = 40/1/1). ..........................................73 Hình 4.21. Giản đồ GPC của P3HT-Macroinitiator, P3HT-b-PDCTMA40 và P3HT-bPDCTMA60. .................................................................................................73 Hình 4.22. Phổ 1H NMR của copolymer P3HT-b-PDCTMA40 (a) và P3HT-bPDCTMA60 (b). ............................................................................................74 Hình 4.23. Giản đồ GPC của P3HT-Macroinitiator, P3HT-b-P(MMA100-r-PMA20) và P3HT-b-P(MMA100-r-PMA50). ....................................................................76 Hình 4.24. Phổ 1H NMR của copolymer P3HT-b-P(MMA100-r-PMA50). ....................77 Hình 4.25. Phổ 1H NMR của xúc tác quang hữu cơ PPTh trong CDCl3. ......................78 xii Hình 4.26. Biểu đồ chuyển hóa monomer MMA của P3HT-b-PMMA sử dụng xúc tác PPTh với chu kỳ “mở-tắt”ánh sáng theo thời gian phản ứng ......................82 Hình 4.27. Trọng lượng phân tử Mn và độ đa phân tán của P3HT-b-PMMA sử dụng xúc tác PPTh với chu kỳ “mở-tắt”ánh sáng theo thời gian phản ứng. .........82 Hình 4.28. Phổ 1H NMR của copolymer P3HT-b-PMMA120 .......................................83 Hình 4.29. Giản đồ GPC của P3HT-b-PMMA sử dụng xúc tác PPTh với chu kỳ “mởtắt”ánh sáng theo thời gian phản ứng. ..........................................................83 Hình 4.30. Giản đồ GPC của P3HT-Macroinitiator, P3HT-b-PDMAEMA40 và P3HTb-PDMAEMA60. ..........................................................................................84 Hình 4.31. Phổ 1H NMR của copolymer P3HT-b-PDMAEMA60. ...............................85 Hình 4.32. Giản đồ GPC của P3HT-Macroinitiator, P3HT-b-PDCTMA40 và P3HT-bPDCTMA60. .................................................................................................86 Hình 4.33. Phổ 1H NMR của copolymer P3HT-b-PDCTMA60. ...................................86 Hình 4.34. Giản đồ GPC của P3HT-Macroinitiator, P3HT-b-P(MMA100-r-PMA20) và P3HT-b-P(MMA100-r-PMA50). ....................................................................87 Hình 4.35. Phổ 1H NMR của copolymer P3HT-b-P(MMA100-r-PMA50) .....................88 xiii DANH SÁCH BẢNG BIỂU Bảng 4.1. Sử dụng xúc tác hữu cơ pyrene trùng hợp các monomer họ methacrylate theo phương pháp metal-free ATRP. ........................................................... 59 Bảng 4.2. Tổng hợp diblock copolymer từ P3HT-macroinitiator theo ATRP với xúc tác pyrene ở nhiệt độ phòng, trong 24 giờ, dưới ánh sáng UVA 365 nm. ...62 Bảng 4.3. Quá trình trùng hợp copolymer P3HT-b-PMMA sử dụng xúc tác pyrene với chu kỳ “mở-tắt”ánh sáng theo thời gian phản ứng ......................................66 Bảng 4.4. Tổng hợp copolymer P3HT-b-P(MMA-r-PMA) từ P3HT macroinitiator và xúc tác pyrene, trong THF, 24 giờ, nhiệt độ phòng. ....................................76 Bảng 4.5. Ảnh hưởng hàm lượng xúc tác PPTh đến độ chuyển hóa, Mn và độ đa phân tán của PMMA, PDMAEMA theo phương pháp metal-free ATRP. ...........79 Bảng 4.6. Tổng hợp diblock copolymer P3HT-b-PMMA theo ATRP với xúc tác hữu cơ PPTh ở nhiệt độ phòng, trong 24 giờ, dưới ánh sáng UVA 365 nm. ......80 Bảng 4.7. Quá trình trùng hợp copolymer P3HT-b-PMMA sử dụng xúc tác PPTh với chu kỳ “mở-tắt”ánh sáng theo thời gian phản ứng. .....................................81 Bảng 4.8. Tổng hợp diblock copolymer từ P3HT-macroinitiator theo ATRP với xúc tác hữu cơ PPTh ở nhiệt độ phòng, trong 24 giờ, dưới ánh sáng UVA 365 nm. ................................................................................................................84 Bảng 4.9. Tổng hợp copolymer P3HT-b-P(MMA-r-PMA) từ P3HT macroinitiator và xúc tác PPTh, trong THF, 24 giờ, nhiệt độ phòng. ......................................87 Bảng 4.10. Tính chất đặc trưng của diblock copolymer P3HT-b-PDMAEMA theo ATRP trong THF, nhiệt độ phòng, 24 giờ khi sử dụng xúc tác quang hữu cơ pyrene và PPTh dưới nguồn sáng khác nhau. ..............................................89 DANH MỤC SƠ ĐỒ Sơ đồ 3.1. Quy trình thực nghiệm tổng hợp biến tính nhóm cuối mạch Br/H của P3HT thành Br/CHO. .............................................................................................35 Sơ đồ 3.2. Qui trình thực nghiệm tổng hợp biến tính nhóm cuối mạch Br/CHO của P3HT thành Br/CH2OH. ..............................................................................37 Sơ đồ 3.3. Qui trình thực nghiệm tổng hợp biến tính nhóm cuối mạch Br/CH2OH của P3HT thành P3HT-Macroinitiator. ..............................................................38 Sơ đồ 3.4. Quy trình sử dụng xúc tác quang hữu cơ để tổng hợp polymer. ..................44 Sơ đồ 3.5. Quy trình tổng hợp rod-coil diblock copolymer dựa trên P3HT. ................46 xiv DANH MỤC TỪ VIẾT TẮT ATRP Atom transfer radical polymerization CPs π-Conjugated Polymers DCTMA 2-(dichlorotriazinyl)oxyethyl methacrylate GRIM Grignard metathesis MALDI-TOF Atrix-assisted laser desorption/ionization time-of-flight mass spectrometer NMP Nitroxide-mediated free radical polymerization O-ATRP Organocatalyzed Atom Transfer Radical Polymerization OFETs Organic Field-Effect-Transistors P2VP Poly(2-vinylpiridine) P3HT-b-P(DCTMA) Poly(3-hexylthiophene)-block-Poly(2(dichlorotriazinyl)oxyethyl methacrylate) P3HT-b-P(DMAEMA) Poly(3-hexylthiophene)-block-Poly(N,N’-dimethylamino2-ethyl methacrylate) P3HT-b-P(MMA) Poly(3-hexylthiophene)-block-Poly(methyl methacrylate) PA Polyacetylene PDCTMA Poly(2-(dichlorotriazinyl)oxyethyl methacrylate) PDMAEMA Poly(2-(dimethylamino)ethyl methacrylate) PFO Polyfluorene PLEDs Polymer Light-Emiting-Diodes PMMA Poly(methyl methacrylate) PS Polystyrene PSCs Polymer solar cells PtBMA Poly(tert-butyl methacrylate) RAFT Reversible Addition-Fragmentation chain Transfer ROP Ring opening polymerization rt room temperature (nhiệt độ phòng) rr-P3HT Regioregular Poly(3-hexylthiophene) xv LỜI MỞ ĐẦU Hiện nay nghiên cứu tổng hợp và ứng dụng các vật liệu polymer cấu trúc liên hợp đang là một hướng đi mới thu hút sự quan tâm của cộng đồng khoa học trên thế giới. Trong đó rod-coil diblock copolymer dựa trên polymer cấu trúc liên hợp đang là một trong những vật liệu bán dẫn quan trọng nhất của thế kỷ 21 được ứng dụng vào các thiết bị điện tử hữu cơ. Với khả năng tự sắp xếp mạch phân tử (self-assembly), nhiều loại rod-coil diblock copolymer hứa hẹn sẽ giúp nâng cao hiệu suất chuyển hóa của các thiết bị điện tử hữu cơ nhờ vào sự kiểm soát cấu trúc và hình thái của vật liệu, tạo ra hiệu quả trong sự dịch chuyển và phân tách electron. Trong những năm gần đây, một số loại rod-coil diblock copolymer dựa trên polymer cấu trúc liên hợp đã được trình bày trong nhiều tạp chí khoa học quốc tế, ví dụ như polyfluorene (PFO), polycarbazole, polyphenylene, polythiophene,… như là những polymer dạng rod, và poly(methyl methacrylate) (PMMA), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), polystyrene (PS), poly(2-vinylpiridine) (P2VP),… như là những polymer dạng coil. Trong số những polymer cấu trúc liên hợp, regioregular poly(3-hexylthiophene) (rr-P3HT) đã thu hút sự quan tâm đặc biệt nhờ tính chất dịch chuyển điện tử cao (high hole mobility) (0.1 cm2/Vs), tính chất này có được nhờ vào sự sắp xếp đồng đều của những mạch chính thiophene và mạch nhánh hexyl. Đồng thời rr-P3HT dễ dàng gia công nhờ vào tính chất hòa tan tốt trong nhiều dung môi hữu cơ cũng như những tính chất đặc biệt như tính bán dẫn điện, tính điện hóa, và tính chất quang học. Hiện tại, mối quan tâm đặc biệt được hướng tới việc tổng hợp rod-coil diblock copolymer trên cơ sở rr-P3HT, diblock copolymer như vậy cho phép tạo ra những tính chất đặc biệt về cơ tính, về tính bán dẫn điện, tính chất quang học, và sự tự xắp xếp đồng đều những mạch phân tử. Những tính chất này được hình thành nhờ vào sự kết hợp của cả hai tính chất dạng rod của rr-P3HT và dạng coil của polymer có tính chất mềm dẻo như PMMA, poly(tert-butyl methacrylate), PDMAEMA, PS, …. Mặc dù việc nghiên cứu diblock copolymer dựa trên polymer rr-P3HT được thực hiện nhiều, nhưng thử thách lớn nhất là những phương pháp tổng hợp điều khiển trọng lượng phân tử với điều kiện thực hiện đơn giản, hiệu quả và sản phẩm diblock copolymer thu được không chứa 1 kim loại. Sự điều khiển hiệu quả này sẽ nâng cao tính chất quang điện cho các thiết bị điện tử hữu cơ. Trong các phương pháp tổng hợp rod-coil diblock copolymer, trùng hợp chuyển đổi gốc tự do nguyên tử (ATRP) là một trong những phương pháp được sử dụng rộng rãi nhất hiện nay để tạo ra các coil polymer từ macroinitiator rod polymer. ATRP có nhiều ưu điểm như độ chuyển hóa cao, thích hợp cho nhiều loại monomer, kiểm soát tốt trọng lượng phân tử và độ đa phân tán thấp, cùng điều kiện phản ứng tương đối dễ dàng. Các kim loại chuyển tiếp dạng như Cu(I), Ru(II), Fe(II) thường được sử dụng làm xúc tác cho các phản ứng trùng hợp chuyển đổi gốc tự do nguyên tử. Tuy nhiên, việc loại bỏ hoàn toàn các xúc tác kim loại ra khỏi sản phẩm sau cùng là một trong những vấn đề khó khăn, đặc biệt trong công nghiệp điện tử bán dẫn, sinh học. Gần đây, xúc tác quang hữu cơ được phát hiện có thể thay thế xúc tác kim loại chuyển tiếp trong các quá trình trùng hợp polymer hóa theo cơ chế ATRP với nhiều ưu điểm vượt trội, đặc biệt trong lĩnh vực tổng hợp nhiều loại polymer có kiểm soát tốt về trọng lượng phân tử và độ đa phân tán nhỏ, quy trình tinh chế đơn giản. Với mong muốn điều khiển được trọng lượng phân tử vật liệu diblock copolymer dựa trên polymer rrP3HT với phương pháp tổng hợp đơn giản, hiệu quả, thân thiện và an toàn với môi trường bằng cách sử dụng xúc tác quang hữu cơ, nên đó chính ý tưởng hình thành nên nội dung nghiên cứu trong luận văn này. Theo hiểu biết của chúng tôi, nghiên cứu tổng hợp rod-coil diblock copolymer dựa trên rr-P3HT theo phương pháp trùng hợp chuyển đổi gốc tự do nguyên tử sử dụng xúc tác quang hữu cơ (metal-free ATRP) đang là hướng nghiên cứu mới chưa được công bố trên thế giới cũng như trong nước. Chính vì vậy, mục tiêu chính của luận văn này là: “Nghiên cứu tổng hợp rodcoil diblock copolymer trên cơ sở poly(3-hexylthiophene) bằng phương pháp trùng hợp chuyển đổi gốc tự do nguyên tử sử dụng xúc tác quang hữu cơ”. 2 1. CHƯƠNG 1 TỔNG QUAN ROD-COIL DIBLOCK COPOLYMER 1.1. Giới thiệu chung về rod-coil diblock copolymer Vật liệu polymer tổng hợp phần lớn được phát minh vào giữa thế kỷ XX. Vật liệu polymer có những đặc tính ưu việt như bền, nhẹ, không bị gỉ sét, cách điện, cách nhiệt, chịu va đập mài mòn, dễ chế tạo và gia công. Kể từ đó nhiều loại polymer tổng hợp lần lượt xuất hiện thay thế kim loại, gốm sứ và vật liệu thiên nhiên cho các ứng dụng trong xây dựng, hàng hải, hàng không, không gian và nhiều lĩnh vực công nghiệp khác,…. Tuy nhiên trong công nghiệp điện và điện tử, polymer chỉ là một vật liệu dùng làm vật cách điện cho đến khi các nhà khoa học phát minh ra vật liệu polymer cấu trúc liên hợp đã làm thay đổi từ tiềm thức của ý nghĩ trước kia của con người. Với vật liệu polymer cấu trúc liên hợp, nó mang cả hai đặc tính ưu việt của vật liệu polymer và bán dẫn vô cơ. Đầu những năm 1970, một sự tình cờ đã tạo ra một bước đột phá trong việc tìm hiểu polymer liên hợp, một nghiên cứu sinh người Hàn Quốc khi làm việc với giáo sư Shirakawa về việc tổng hợp Polyacetylene (PA) đã sử dụng chất xúc tác Ziegler-Natta có nồng độ cao gấp 1000 lần so với độ quy định. Anh này đã tổng hợp ra được PA không phải ở dạng bột đen như thường lệ mà ở dạng phim màu bạc. Một năm sau đó, giáo sư Alan MacDiarmid đến thăm phòng thí nghiệm đã tỏ ra vô cùng thích thú với tấm PA mới, ông đã mời giáo sư Shirakawa và giáo sư Alan Heeger hợp tác, màng phim PA được oxy hóa với iodine (I2). Khi iodine được hấp thụ vào PA dưới dạng ion đã làm tăng độ dẫn điện của PA từ 4.4x10-5 đến khoảng 106 S/cm (độ dẫn gần bằng kim loại Đồng). Kể từ khi polymer liên hợp được phát hiện, những vật liệu này trở thành một đề tài nghiên cứu rất phong phú cho các nhà nghiên cứu vật lý, hoá học, vật liệu học, điện học và cả sinh học. Năm 2000, hội đồng giải Nobel Thụy Điển đã thừa nhận tầm quan trọng của polymer liên hợp trong Khoa học - Công nghệ và trao giải Nobel Hóa Học cho ba nhà khoa học A.J. Heeger, A.G. MacDiarmid và H. Shirakawa vì đã có công khám phá và phát triển polymer dẫn điện [1]. Như vậy, trên cơ sở nào polymer lại có thể dẫn điện? Polymer dẫn điện (π-Conjugated Polymers - CPs) là hợp 3 chất hữu cơ cao phân tử mà trong cấu trúc mạch chính (backbone chain) có các liên kết đôi và đơn xen kẽ nhau (alternating double-and single-bonds: –C=C–C= C–). Sự chồng chéo các quỹ đạo p của chúng tạo ra một hệ thống các điện tử π-bất định vị (πdelocalised), dẫn đến các tính chất quang học và tính chất điện rất hữu ích và thú vị. Polymer với các nối đôi liên hợp có những tính chất rất khác với các polymer thông thường là khả năng dẫn điện và độ dẫn điện của CPs này nằm trong vùng bán dẫn, được gọi là polymer dẫn điện hoặc polymer liên hợp [1, 2]. Kể từ khi polymer dẫn điện lần đầu tiên được phát hiện, vật liệu này đã trở thành đề tài thu hút nhiều nhà khoa học trên toàn thế giới, từ việc nghiên cứu tổng hợp các loại polymer dẫn có tính năng mới cũng như ứng dụng các vật liệu này vào đời sống. Hình 1.1. Độ dẫn điện của một số loại vật liệu tiêu biểu. Những polymer dẫn thuần ở trạng thái tự nhiên có độ dẫn rất thấp khoảng 10-8 đến 10-6 S/cm nằm vùng giữa bán dẫn và kim loại. Tuy nhiên, khi những polymer dẫn thuần này được pha tạp bằng những hợp chất dopant thì độ dẫn điện của polymer cao hơn rất nhiều và có thể đạt đến 106 S/cm [1]. Vậy hai đặc điểm chính để CPs có tính chất dẫn điện: - Mạch phân tử polymer dẫn điện có cấu trúc nối đôi liên hợp (–C=C–C=C–). - Có các tác nhân kích thích để tạo ra các phần tử linh động có thể mang điện tích. Với mục tiêu nghiên cứu và phát triển những vật liệu thông minh, polymer cấu trúc liên hợp là một trong những vật liệu được kỳ vọng thay đổi cuộc sống. Vì vậy, 4
- Xem thêm -

Tài liệu liên quan