Đăng ký Đăng nhập
Trang chủ Nghiên cứu tính chất linh kiện điện sắc trên cơ sở vật liệu kim loại chuyển tiếp...

Tài liệu Nghiên cứu tính chất linh kiện điện sắc trên cơ sở vật liệu kim loại chuyển tiếp (ti, w) cấu trúc nanô

.PDF
54
169
91

Mô tả:

Nghiên cứu tính chất linh kiện điện sắc trên cơ sở vật liệu kim loại chuyển tiếp (ti, w) cấu trúc nanô
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGUYỄN MINH QUYÊN NGHIÊN CỨU TÍNH CHẤT LINH KIỆN ĐIỆN SẮC TRÊN CƠ SỞ VẬT LIỆU KIM LOẠI CHUYỂN TIẾP (Ti, W) CẤU TRÚC NANÔ LUẬN VĂN THẠC SĨ Hà Nội – 2011 1 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGUYỄN MINH QUYÊN NGHIÊN CỨU TÍNH CHẤT LINH KIỆN ĐIỆN SẮC TRÊN CƠ SỞ VẬT LIỆU KIM LOẠI CHUYỂN TIẾP (Ti, W) CẤU TRÚC NANÔ Chuyên ngành: Vật liệu và Linh kiện Nanô Mã số: (Chuyên ngành đào tạo thí điểm) LUẬN VĂN THẠC SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: GS. TS. Nguyễn Năng Định Hà Nội – 2011 55 Mục lục MỞ ĐẦU ........................................................................................................... 8 Chương 1 - Tổng quan về vật liệu điện sắc trên cơ sở ôxit kim loại chuyển tiếp – vật liệu ôxit titan và ôxit vônfram ......................................................... 10 1.1. Vật liệu biến đổi nhiệt-điện-quang và các hiệu ứng điện sắc ..................... 10 1.1.1. Khái niệm chung ...................................................................................... 10 1.1.2. Phân loại vật liệu điện sắc ........................................................................ 10 1.1.3. Những nét cơ bản về linh kiện điện sắc ................................................... 12 1.1.4. Màng mỏng điện sắc ôxit kim loại chuyển tiếp ....................................... 14 1.1.5. Ứng dụng của linh kiện điện sắc .............................................................. 12 1.2. Vật liệu ôxit titan và ôxit vônfram .............................................................. 16 1.2.1. Đặc trưng cấu trúc tinh thể ....................................................................... 16 1.2.2. Tính chất quang và tính chất điện sắc ...................................................... 18 Chương 2 - Công nghệ chế tạo mẫu và các phương pháp nghiên cứu ........ 22 2.1. Mục đích ...................................................................................................... 22 2.2. Phương pháp chế tạo và các phép đo .......................................................... 22 2.2.1. Chế tạo màng mỏng TiO2 bằng phương pháp phủ trải- "Doctor blade" .. 22 2.2.2. Chế tạo màng mỏng WO3 bằng phương pháp lắng đọng điện hóa .......... 23 2.2.3. Các phép đo đạc sử dụng để khảo sát tính chất của màng TiO2 và WO3 . 24 2.3. Thực nghệm chế tạo mẫu ............................................................................ 32 2.3.1. Chuẩn bị hoá chất và dụng cụ thực nghiệm ............................................. 32 2.3.2. Chế tạo điện cực nanô TiO2/ITO .............................................................. 32 56 2.3.3. Chế tạo điện cực xốp nanô WO3/ITO và điện cực màng mỏng tổ hợp dị chất vô cơ TiO2:W ............................................................................................. 33 Chương 3 - Kết quả thực nghiệm và phân tích kết quả ............................... 36 3.1. Lắng đọng điện hóa ..................................................................................... 36 3.2. Cấu trúc tinh thể và hình thái học bề mặt ................................................... 37 3.3. Cấu trúc thành phần thông qua phân tích phổ tán xạ năng lượng ............... 41 3.4. Phổ tán xạ Raman ........................................................................................ 42 3.5. Tính chất điện sắc ........................................................................................ 44 KẾT LUẬN ....................................................................................................... 49 TÀI LIỆU THAM KHẢO ............................................................................... 52 Công trình đã công bố ....................................................................................... 54 5 DANH MỤC CÁC BẢNG Bảng 1.1. Phân loại một số ôxit điện sắc chính Bảng 3.1. Số liệu thành phần các nguyên tố có mặt trong mẫu WO3/TiO2 (900 giây) DANH MỤC CÁC HÌNH VẼ Hình 1.1. Các nguyên tố có ôxit của chúng là chất điện sắc Hình 1.2. Sơ đồ cấu tạo của linh kiện điện sắc Hình 1.3.Linh kiện điện săc được ứng dụng trong các cửa sổ “thông minh” Hình 1.4. Cấu trúc tinh thể WO2 và WO2 Hình 1.5. Cấu trúc tinh thể WO3 thể hiện sự sắp xếp các khối bát diện tâm W có chung đỉnh và cạnh Hình 1.6. Cấu trúc tinh thể TiO2 Hình 1.7. Giản đồ mức năng lượng của các ôxit có cấu trúc perovskit - tương ứng giản đồ năng lượng của WO3 Hình 1.8. Cấu hình điện tử biểu diễn theo vân đạo Hình 1.9. Cấu trúc vùng TiO2 Hình 2.1. Chế tạo màng ôxit cấu trúc nanô bằng phương pháp phủ trải -Doctor blade Hình 2.2. Sơ đồ thiết bị tạo màng mỏng bằng kỹ thuật điện hóa Hình 2.3. Sự phản xạ của tia X trên các mặt phẳng Bragg Hình 2.4. Giản đồ kính hiển vi điện tử quét chụp ảnh bề mặt mẫu Hình 2.5. Giản đồ mô tả các mức năng lượng của điện tử và các bức xạ tương ứng của điện tử khi bị kích thích Hình 2.6. Sơ đồ hệ đo phổ truyền qua và phổ phản xạ Hình 2.7. Hệ đo phổ truyền qua UV-VIS Jasco V570 6 Hình 2.8. Sơ đồ đo đặc trưng Von-Ampe Hình 2.9. Sơ đồ đo điện thế quét vòng (Cyclic voltametry) Hình 2.10. Sơ đồ một hệ tán sắc Raman điển hình Hình 2.11. Ảnh các dung dịch chuẩn bị tiến hành lắng đọng điện hóa và các điện cực chế tạo được Hình 2.12. Thí nghiệm lắng đọng điện hóa tạo màng WO3 và quét C-V trong dung dịch điện ly LiClO4+PC 0.1M Hình 2.13. Quá trình đo và lắng đọng WO3. Trên hình là hệ điện hóa trong chén platin kết nối với hệ đo Autolab PGS–12 POTENTIO–GALVANOSTAT, phép đo đặc tuyến dòng – thế được thực hiện bắng phần mềm trên máy tính. Hình 3.1. Mật độ dòng phụ thuộc thời gian trong khi phủ điện hoá với điện thế không đổi -3.5 V/SCE Hình 3.2. SEM bề mặt và mặt cắt của màng TiO2 Hình 3.3. Ảnh FE-SEM bề mặt của màng WO3/TiO2 được lắng đọng trong 300giây Hình 3.4. Ảnh FE-SEM bề mặt của màng WO3/TiO2 được lắng đọng trong 900 giây Hình 3.5. Giản đồ nhiễu xạ tia X của màng TiO2 dày 2.1 μm Hình 3.6. Giản đồ nhiễu xạ tia X của màng WO3/TiO2 chế tạo trong 300 giây (a) và chế tạo trong 900 giây -(b) Hình 3.7. Ảnh SEM của màng WO3/TiO2/ITO dày chế tạo bằng phương pháp lắng đọng điện hóa tại điện thế -3.5V/SCE trong thời gian 900 giây Hình 3.8. Phổ Raman của màng TiO2 phủ trên ITO và màng đa lớp WO3/ITO thời gian lắng đọng 300 giây Hình 3.9. Phổ Raman của màng TiO2/ITO và màng đa lớp WO3/TiO2/ITO thời gian lắng đọng 300 giây 7 + Hình 3.10. Đồ thị tiêm thoát ion Li trong quá trình ECD: 5 chu kì nhuộm và tẩy màu ứng với điện thế -3.5 V/SCE và +0.5 V/SCE; Thời gian nhuộm 5 giây và thời gian tẩy màu là 20 giây Hình 3.11. Phổ CV của điện cực WO3/TiO2/ITO quét trong LiClO4+PC (tốc độ quét ν = 100 mV/s) Hình 3.12. Phổ truyền qua in-situ của linh kiện ITO │dd W6+│ WO3/TiO2/ITO thực hiện trong dung dịch W3+ tại các giá trị điện thế -1V (đường cong thứ nhất), -2.5V (đường cong thứ hai), -3.5V (đường cong thứ ba), -4.0V (đường cong thứ tư) Hình 3.13. Phổ truyền qua in-situ của linh kiện ITO│LiClO4+PC│ WO3/TiO2/ITO thực hiện trong LiClO4 +PC tại -3.5V theo thời gian. Đường phổ thứ nhất (đường 1) là phổ truyền qua khi không có điện thế trên điện cực WE. Các đường 2, 3, 4 và 5 ứng với thời gian nhuộm là 5, 10 và 15 giây, đường số 6 là phổ sau khi đổi chiều phân cực (phai màu) Hình 3.14. Đồ thị biểu diễn phụ thuộc của hiệu suất ECD vào bước sóng đối với linh kiện đa lớp ITO│LiClO4+PC│WO3/TiO2/ITO dưới điện thế -3.5V Hình 3.15. Sơ đồ năng lượng trên biên tiếp xúc đa lớp WO3/TiO2/ITO 8 MỞ ĐẦU Việc nghiên cứu tìm kiếm các loại vật liệu cấu trúc nanô với các đặc tính mới đã đạt được nhiều thành công đáng kể, trong đó phải kể đến hướng nghiên cứu về các vật liệu có khả năng biến đổi tính chất quang dưới tác dụng của điện trường, ánh sáng và nhiệt độ. Loại vật liệu này được gọi là vật liệu biến đổi quang (chromogenic). Nghiên cứu vật liệu này có triển vọng trong việc tận dụng và khai thác sử dụng một cách hiệu quả năng lượng mặt trời, góp phần giải quyết tốt hơn việc sử dụng năng lượng không gây ô nhiễm môi trường. Hiện nay, nhiều tập thể khoa học trên thế giới, đặc biệt như ở Mỹ, Thuỵ Điển, Pháp, Nhật Bản, Đức, v.v... đã và đang tập trung nghiên cứu về các loại vậy liệu này và đã phát hiện ra nhiều hiệu ứng mới như hiệu ứng nhiệt sắc, điện sắc, quang sắc, v.v... Trên cơ sở đó các nhà khoa học đã tập trung nghiên cứu về công nghệ chế tạo các loại linh kiện hiển thị mới, các cửa sổ thông minh (Smartwindows), các chuyển mạch nhiệt - điện - quang, các loại sensor hoá học, sensor khí với độ nhạy và chọn lọc ion cao. Các kết quả nghiên cứu đã mở ra nhiều triển vọng ứng dụng các loại vật liệu này trong khoa học kỹ thuật và đời sống dân sinh. Với tính chất điện sắc của các vật liệu ôxit kim loại chuyển tiếp như ôxit titan và ôxit vônfram, vật liệu này đang được quan tâm nghiên cứu và triển khai nhằm khai thác và sử dụng năng lượng mặt trời một cách hiệu quả nhất. Một trong những lĩnh vực ứng dụng triển vọng của vật liệu nanô ôxit kim loại vônfram và titan là cửa sổ năng lượng hữu hiệu hay còn gọi là cửa sổ thông minh (Smart windows). 9 Mục đích của luận văn Trên cơ sơ như đã nêu ở trên, đề tài: “Nghiên cứu tính chất linh kiện điện sắc trên cơ sở vật liệu kim loại chuyển tiếp (W, Ti) cấu trúc nanô” nhằm tập trung giải quyết một số vấn đề sau: - Phát triển công nghệ chế tạo vật liệu màng mỏng có tính chất đổi màu, trao đổi và tích trữ ion trên cơ sở ôxit vônfram, ôxit titan. - Nghiên cứu cấu trúc tinh thể, cấu tạo phân tử liên quan đến các tính chất của màng mỏng ôxit kim loại chuyển tiếp. - Khảo sát tính chất điện, quang, quang điện-hóa, nghiên cứu cơ chế dẫn ion của màng mỏng cũng như các yếu tố công nghệ ảnh hưởng đến các tính chất đó. - Khảo sát các thông số điện sắc của linh kiện hiển thị điện sắc chế tạo từ màng đa lớp. Phương pháp nghiên cứu: - Chế tạo điện cực TiO2 xốp nanô bằng phương pháp phủ trải (tên tiếng Anh là “Doctor-blade”) kết hợp tái kết tinh (ôxi hóa nhiệt). - Chế tạo điện cực xốp nanô WO3 bằng phương pháp lắng đọng điện hóa bằng hệ điện hóa Auto-Lab.Potenstiostat. - Chế tạo linh kiện đa lớp cấu trúc ITO/TiO2 và ITO/WO3 và ITO/TiO2/WO3 bằng hệ điện hóa Auto-Lab.Potenstiostat. - Phân tích hình thái học bề mặt và cấu trúc tinh thể, phân tích thành phần cấu tạo thông qua sử dụng các hệ thiết bị FE-SEM, XRD, EDS, Raman. - Nghiên cứu cơ chế, tính chất điện sắc của vật liệu đa lớp và các thông số điện sắc của linh kiện ECD thông qua các phương pháp đặc trưng I-V, phổ truyền qua tức thì in-situ. 10 Chương 1 - Tổng quan về vật liệu điện sắc trên cơ sở ôxit kim loại chuyển tiếp – vật liệu ôxit titan và ôxit vônfram 1.1. Vật liệu biến đổi nhiệt-điện-quang và các hiệu ứng điện sắc 1.1.1. Khái niệm chung Vật liệu biến đổi nhiệt-điện-quang (chromogenic materials) là họ vật liệu có đặc trưng cơ bản là sự biến đổi thuận nghịch tính chất quang (độ truyền qua, phản xạ, hấp thụ và chiết suất) dưới tác động của điện trường, ánh sáng, hay nhiệt độ. Vật liệu biến đổi nhiệt-điện-quang tùy theo trường tác động được chia làm các nhóm chính như nhóm vật liệu nhiệt sắc, nhóm vật liệu quang sắc, nhóm vật liệu điện sắc, v.v... Trong khuôn khổ của luận văn này, các tính chất của các chất thuộc nhóm vật liệu điện sắc sẽ được trình bày cụ thể hơn, đặc biệt là hai vật liệu điện sắc điển hình là ôxit titan và ôxit vônfram. Trước hết, vật liệu điện sắc (electrochromic materials)là loại vật liệu thay đổi tính chất quang dưới tác động của điện trường. Hiệu ứng điện sắc là hiện tượng vật lý xảy ra ở nhóm vật liệu có khả năng thay đổi tính chất quang một cách thuận nghịch tương ứng với sự thay đổi chiều phân cực của điện trường đặt vào [10]. Biểu hiện cơ bản của hiệu ứng điện sắc là sự thay đổi độ truyền qua hay phản xạ khi đặt điện trường phân cực thích hợp. 1.1.2. Phân loại vật liệu điện sắc Trên hình 1.1 là bảng các nguyên tố hóa học trong đó các nguyên tố mà ôxit của chúng là chất điện sắc đã được đánh dấu. Các nguyên tố như Ti, V, Cr, Mn, Fe… đều là những nguyên tố có ôxit là chất điện sắc. Có hai loại vật liệu điện sắc chính: vật liệu điện sắc catôt và vật liệu điện sắc anôt Vật liệu điện sắc catôt là loại vật liệu điện sắc có khả năng nhuộm màu xảy ra khi điện trường làm việc phân cực âm và khả năng tẩy màu ở điện trường làm việc phân cực dương. Ví dụ như: TiO2, Nb2O5, MoO3, Ta2O5, v.v… 11 Vật liệu điện sắc anôt: là loại vật liệu điện sắc có khả năng nhuộm màu xảy ra khi điện trường làm việc phân cực dương và khả năng tẩy màu ở điện trường làm việc phân cực âm. Ví dụ như: MnO2, CoO2, NiO2, Cr2O3, v.v… Hình 1.1. Các nguyên tố có ôxit của chúng là chất điện sắc Bảng 1.1 trình bày cụ thể hơn về các vật liệu điện sắc chính và phân loại nhuộm màu của các ôxit này là nhuộm màu catôt hay nhuộm màu anôt. Ngoài ra, trong bảng còn nêu trạng thái trong suốt (tương ứng với trạng thái tẩy màu) của các ôxit này. Thí dụ vật liệu TiO2 khi ở trạng thái ban đầu thì vật liệu có màu trong suốt, ở trạng thái nhuộm màu thì vật liệu chuyển màu xanh thẫm đặc trưng và chuyển về màu trong suốt khi tẩy màu. Trong khi đó, vật liệu V2O5 khi ở trạng thái tẩy màu thì không giữ được độ trong suốt như ban đầu, vật liệu có màu hơi xanh. Bảng 1.1. Phân loại một số ôxit điện sắc chính Loại ôxit Loại nhuộm màu Trạng thái trong suốt có thể đạt được TiO2 Catôt Có V2O5 Catôt/Anôt Không Cr2O3 Anôt Không MnO2 Anôt Không FeO2 Anôt Không 12 CoO2 Anôt Không NiO2 Anôt Có Nb2O5 Catôt Có MoO3 Catôt Có Ta2O5 Catôt Có WO3 Catôt Có IrO2 Anôt Có 1.1.3. Những nét cơ bản về linh kiện điện sắc a) Cấu tạo: Linh kiện điện sắc bao gồm nhiều lớp màng mỏng sao cho tính chất quang của lớp vật liệu điện sắc có thể thay đổi một cách thuận nghịch và điều khiển được bởi độ lớn và chiều phân cực của điện trường (hình 1.2). Hình 1.2. Sơ đồ cấu tạo của linh kiện điện sắc • Màng dẫn điện trong suốt: điện cực ITO có độ truyền qua cao và dẫn điện tốt, độ dẫn điện được biết thông qua điện trở của lớp điện cực được phủ trên đế thủy tinh trên 1 đơn vị vuông. Màng dẫn điện này trong nhiều trường hợp, có thể thay thế bằng màng ôxit thiếc có pha tạp flo (SnO2:F) có độ bền và khả năng dẫn điện tương đương với màng dẫn điện ITO. 13 • Lớp vật liệu điện sắc: lớp vật liệu chính để hình thành linh kiện điện sắc. Cụ thể trong luận văn này là lớp nanô xốp TiO2 được chế tạo bằng phương pháp phủ trải – “Doctor blade” và lớp nanô xốp WO3 được chế tạo bằng phương pháp lắng đọng điện hóa. • Lớp dẫn ion (chất điện ly): có thể là chất rắn, lỏng hay đông đặc. Sử dụng các dung dịch chất điện ly như axit, kiềm và các dung dịch chất điện ly muối có độ dẫn điện tử cao. Ở đây, chất điện ly được chọn là dung dịch muối trung tính lithiclorat (LiClO4) được hòa tan trong dung môi propyplene carbonat (PC) với tỷ lệ 0.1M để đảm bảo độ phân ly tốt và không gây tổn hại cho các màng điện sắc được nghiên cứu trong công trình này. • Lớp tích trữ ion: lớp này được coi như một lớp bổ trợ, có tác dụng tích trữ ion làm cho mật độ ion trong linh kiện được cải thiện khi có điện trường tác dụng. Trong một số trường hợp, lớp tích trữ ion thường mang tính chất đối ngược với chất điện sắc để nhằm nâng cao hiệu suất của linh kiện. Nói rõ hơn là khi chất điện sắc là vật liệu nhuộm màu catôt thì lớp tích trữ được chọn trong trường hợp này thường là chất có khả năng nhuộm màu anôt. (Do điều kiện có hạn của luận văn nên trong linh kiện điện sắc được chế tạo thử ở đây không có mặt lớp tích trữ ion này. Vấn đề này sẽ được mở rộng nghiên cứu trong những công trình tiếp theo). b) Hoạt động Tính chất điện sắc của vật liệu điện sắc trong linh kiện điện sắc được thay đổi thông qua độ lớn về độ truyền qua. Khi đặt điện trường lên các điện cực trong suốt của linh kiện thì các ion sẽ được tiêm vào hoặc thoát ra khỏi lớp điện sắc gây ra sự thay đổi các đặc tính quang của chúng, qua đó phản ánh đặc trưng của linh kiện. Quá trình điện sắc thể hiện sự hình thành và biến đổi màu thuận nghịch được biểu diễn dưới dạng phương trình hai chiều mô tả phản ứng oxy hóa khử trên bề mặt điện cực làm việc như sau: WO3 (trong suốt) + xM+ + xe- ⇔ MxWO3 (xanh sẫm) (1.1) TiO2 (trong suốt) + xM+ +xe- ⇔ MxTiO2 (xanh sẫm) (1.2) 14 Bình thường màng tinh thể WO3 và TiO2 gần như trong suốt, độ trong suốt có thể đạt tới 90%, còn hợp chất MxTiO2 và MxWO3 là vật liệu hấp thụ mạnh ánh sáng trong vùng nhìn thấy, ta sẽ thấy màng có màu xanh sẫm (theo những nghiên cứu trước đây về màng WO3). Màu sắc của màng phụ thuộc vào mật độ proton hay cation xâm nhập vào màng. Ở trạng thái nhuộm màu màng trở nên hấp thụ mạnh ánh sáng, khiến cho độ truyền qua giảm, do đó ta thấy màng có màu xanh sẫm. Khi đổi chiều phân cực của điện trường ngoài (quá trình tẩy màu), các liên kết giữa ion M+ và oxy được giải phóng bởi tác dụng của điện trường, hiện tượng tẩm màu mất đi và màng lại trở nên trong suốt. Đây chính là quá trình nhuộm màu và tẩy màu của màng WO3 và TiO2 trong dung dịch chất điện ly thể hiện tính chất điện sắc của các vật liệu và linh kiện điện sắc. 1.1.4. Màng mỏng điện sắc ôxit kim loại chuyển tiếp Như đã nêu ở trên, hiệu ứng điện sắc được tìm thấy hầu hết trong các ôxit kim loại chuyển tiếp như ôxit của Ti, V, Cr, Mn, Fe, Co, Ni (chu kỳ 4 trong bảng tuần hoàn); ôxit của Nb, Mo, Rh (chu kỳ 5); ôxit của Ta, W, Ir (chu kỳ 6) và một số hỗn hợp ôxit khác của chúng. Các tính chất vật lý và hóa học của vật liệu này mang tính đặc trưng cho họ vật liệu. Bên cạnh đó, ôxit titan là loại vật liệu được nghiên cứu và phát triển mới đây và có khả năng ứng dụng trong rất nhiều lĩnh vực khác nhau, phải kể đến là khả năng chuyển hóa năng lượng điện thành năng lượng quang hay như trong hiệu ứng điện sắc của các linh kiện điện sắc. Do đó, ôxit kim loại chuyển tiếp được nghiên cứu trong luận văn này là ôxit titan và ôxit vônfram, hai ôxit này đặc trưng cho loại vật liệu điện sắc catôt. Chúng được chế tạo bằng các phương pháp phủ trải (đối với ôxit titan) và phương pháp lắng đọng điện hóa (đối với ôxit vônfram). 1.1.5. Ứng dụng của linh kiện điện sắc Cửa sổ “thông minh” (Smart windows) Linh kiện điện sắc đang được các nhà khoa học trên thế giới đặc biệt quan tâm và nghiên cứu phát triển vì khả năng ứng dụng thiết thực của linh kiện này trong đời sống. Điển hình là trong các công trình xây dựng có tính tiện nghi cao như những tòa cao ốc cao cấp, mà chủ yếu là những ứng dụng của linh kiện điện sắc trong việc chế tạo các cử sổ “thông minh” (hình 1.3). Bằng cách thay đổi điện thế đặt vào linh kiện người ta 15 có thể điều chỉnh được lượng ánh sáng truyền qua một cách dễ dàng linh động và liên tục sao cho phù hợp với nhu cầu. Hình 1.3.Linh kiện điện săc được ứng dụng trong các cửa sổ “thông minh” Khi áp điện thế thích hợp (bật công tắc), những ion sẽ di chuyển nhanh trong lớp ion và lớp điện sắc kèm theo điện tử được tiêm vào từ màng dẫn điện làm thay đổi tính chất quang của cửa sổ, cụ thể là màu sắc của chúng được thay đổi (trạng thái nhuộm màu). Do đó chỉ có một phần ánh sáng được truyền qua cửa sổ. Kính chống lóa, chống phản xạ Ngoài cửa sổ “thông minh”, vật liệu điện sắc còn được nghiên cứu và phát triển trong việc chế tạo kính chống lóa và chống phản xa. Người ta có thể thay đổi độ phản xạ của linh kiện điện sắc với một trong hai điện cực trong suốt được thay thế bằng một mặt phản xạ - mặt kim loại. Loại linh kiện này được ứng dụng trong việc chế tạo kính chống lóa và chống phản xạ cho các loại ô tô, xe tải, v.v... trong việc giảm cường độ sáng của các xe ngược chiều hay mặt trời. Khi đèn pha của các xe sau hoặc xe đi ngược chiều hay ánh sáng mặt trời chiếu vào kính, với điện áp phù hợp, kính chuyển màu sẫm giảm thiểu ánh sáng làm chói mắt, giúp lái xe có thể điều khiển phương tiện dễ dàng hơn và an toàn hơn. Cửa sổ “thông minh”, kính chống lóa và chống phản xạ là một trong những ví dụ điển hình cho những ứng dụng được sử dụng rất nhiều trong đời sống hiện nay, là một trong những ứng dụng tiên tiến góp phần cải thiện môi trường sống bằng việc sử dụng các năng lượng sạch, không gây ô nhiễm. 16 1.2. Vật liệu ôxit titan và ôxit vônfram 1.2.1. Đặc trưng cấu trúc tinh thể a) Vật liệu ôxit vônfram Vônfram là kim loại chuyển tiếp thuộc phân nhóm B, nhóm VI trong bảng hệ thống tuần hoàn hóa học Mendeleev. Dạng ôxi hóa của vônfram là +4 (hình 1.4), +5 và cao nhất có thể đạt được khi vônfram có hóa trị +6 (hình 1.4), với công thức hóa học là WO3. WO3 là chất bán dẫn có vùng cấm rộng 3.25 eV. Ở dạng bột, WO3 có màu vàng nhạt, còn ở dạng tinh thể thì W trong suốt trong vùng bước sóng khả kiến. Hình 1.4. Cấu trúc tinh thể WO2 và WO2 Về mặt cấu trúc mạng tinh thể, tinh thể W có cấu trúc mạng lập phương, trong đó kim loại W nằm ở đỉnh, ion oxy nằm ở giữa các cạnh. Cấu trúc mạng này tương đương với cấu trúc mạng tinh thể perovskit. Tại nhiệt độ giảm dần từ 900oC → -189 oC đơn tinh thể WO3 sạch có thể tồn tại ở các hệ mạng với bậc đối xứng giảm dần, khi nhiệt độ xuống rất thấp hệ mạng lại được thiết lập ở bậc đối xứng cao hơn: hệ tứ giác → hệ trực giao → hệ đơn tà → hệ tam tà → hệ đơn tà tại nhiệt độ thấp [3,11]. Ô mạng tinh thể được hình thành bởi sự sắp xếp các khối bát diện tâm W có chung đỉnh và chung cạnh như trong hình 1.5. Sự sắp xếp này thường dẫn đến những sai hỏng trong mạng tinh thể WO3. 17 Hình 1.5. Cấu trúc tinh thể WO3 thể hiện sự sắp xếp các khối bát diện tâm W có chung đỉnh và cạnh b) Vật liệu ôxit titan Tinh thể TiO2 (hình 1.6) bao gồm ba pha cấu trúc riêng anatase, rutile và brookite. Mạng TiO2 tuân theo kiểu mạng tinh thể của hợp chất hóa học ion AB2. Các nguyên tử titan trong cấu trúc pha anatase tạo thành mạng tứ phương tâm thể (hình 1.6) với các thông số mạng a = b = o o 3,784 A và c = 9,515 A . Mật độ hạt ρ ≈ 3,895g / cm3 . Số nguyên tử titanium là bốn. Số nguyên tử oxy là tám. Các nguyên tử titan trong cấu trúc pha rutile tạo thành mạng tứ phương thể tâm với các thông số mạng a = b = o o 4,593 A và c = 2,959 A . Mật độ hạt ρ ≈ 4, 274g / cm3 . Số nguyên tử titan là hai. Số nguyên tử oxy là bốn. Hình 1.6. Cấu trúc tinh thể TiO2 18 Bề rộng vùng cấm cấu trúc TiO2 pha rutile (3,1 eV) nhỏ hơn so với pha anatase (3,2 eV) là do cấu trúc rutile có mật độ nguyên tử lớn hơn. Năng lượng hình thành mạng rutile (ΔG 0f ≈ −212, 6kcal / mol) cao hơn pha anatase (ΔG 0f ≈ −211, 4kcal / mol) . Do đó, độ phủ hàm sóng điện tử lớn hơn, dẫn đến độ rộng vùng cấm nhỏ đi. Cả hai mạng tinh thể TiO2 rutile và anatase đều có cùng nhóm đối xứng điểm của hệ tứ giác. Nhiệt độ để hình thành mạng anatase là 500 – 600 0C và từ anatase chuyển sang rutile là 800 – 900 0C. Các nguyên tử titan trong cấu trúc brookite tạo thành mạng trực thoi o o o (hình 1.6) với các thông số mạng a = 9,184 A ; b = 5,447 A và c = 5,145 A . Mật độ hạt ρ ≈ 4,123g / cm3 . Số nguyên tử titan là tám. Số nguyên tử oxy là mười sáu. Mạng tinh thể TiO2 brookite thuộc nhóm đối xứng điểm.Thể tích o3 ô cơ sở brookite bằng 257,28 A . Trong cả ba cấu trúc rutile, anatase và brookite mỗi cation Ti4+ có sáu anion O2- bao quanh gần nhất trong khi mỗi anion O2- có ba cation Ti4+ bao quanh gần nhất. Ngoài ra, ta còn có màng TiO2 cấu trúc vô định hình. Màng TiO2 vô định hình có chiết suất, n, nhỏ nhất so với các cấu trúc TiO2 đa tinh thể vì mật độ khối lượng ρm (g/cm3) thấp nhất [15]. 1.2.2. Tính chất quang và tính chất điện sắc Độ rộng khe năng lượng của vật liệu titan ôxit và vônfram ôxit đủ lớn khiến cho vật liệu trong suốt trong vùng khả kiến. Khi có các ion và điện tử được tiêm vào, mức Fermi sẽ dịch chuyển lên trên. Trong trường hợp của WO3 và TiO2 thì vật liệu chuyển từ trạng thái trong suốt sang trạng thái hấp thụ hoặc phản xạ tùy thuộc các điện tử chiếm trạng thái định xứ hay tự do. Khi các cặp ion hay điện tử được thoát ra vật liệu trở lại trạng thái ban đầu. a) Đối với vật liệu ôxit vônfram: Các mức s, p và d của nguyên tử W và các mức 2s, 2p của nguyên tử O được vạch rõ. Đối với WO3 các mức tương ứng 6s, 6p và 5d. Sự sắp xếp của các nguyên tử trong cấu trúc này dẫn đến mức d bị tách ra thành hai mức eg và t2g như ở phần bên trái hình 1.7. 19 Hình 1.7. Giản đồ mức năng lượng của các ôxit có cấu trúc perovskit tương ứng giản đồ năng lượng của WO3 Trong mạng perovskit các mức năng lượng của phân tử mới hình thành sẽ mở rộng ra thành các dải năng lượng. Số trạng thái chứa các điện tử ở mỗi dải là cố định. Số các trạng thái của điện tử trên mỗi dải được chỉ ra trên hình vẽ. Đối với WO3 số điện tử này là 24, vì vậy mức Fermi nằm ở giữa khe tạo bởi các dải t2g và pπ. Độ rộng của khe năng lượng là đủ lớn khiến cho vật liệu này trong suốt trong vùng khả kiến [1]. Khi có các ion và điện tử được tiêm vào, mức Fermi sẽ dịch chuyển lên trên. Trong trường hợp của WO3 các điện tử thêm vào sẽ phải điền vào mức t2g và khi đó, về nguyên tắc, vật liệu chuyển từ trạng thái trong suốt sang trạng thái hấp thụ hoặc phản xạ tùy thuộc các điện tử chiếm các trạng thái định xứ hay tự do. Khi các cặp ion và điện tử được thoát ra vật liệu trở lại trạng thái trong suốt như ban đầu. b) Đối với vật liệu ôxit titan: Liên kết TiO2 là liên kết ion. Các nguyên tử titan và oxy trao đổi điện tử hóa trị cho nhau để trở thành các cation và anion. Liên kết hình thành giữa các ion trái dấu thông qua lực hút tĩnh điện. Khi tạo thành tinh thể, mỗi nguyên tử titan cho hai nguyên tử oxy bốn điện tử để trở thành Ti+4 , mỗi nguyên tử oxy nhận hai điện tử để trở thành O-2, để điện tử phân bố thỏa mãn điều kiện bảo toàn điện tích trong toàn hệ và có xu hướng sao cho các nguyên tử có lớp vỏ ngoài cùng lấp đầy điện tử. 20 Hình 1.8. Cấu hình điện tử biểu diễn theo vân đạo Anion O2- (hình 1.8-4) có phân lớp 2p đầy sáu điện tử. Trong tinh thể vùng 2p thành vùng đầy điện tử. Cation Ti4+ (hình 1.8-2) không có điện tử nào ở phân lớp 4s nên khi tạo thành vùng 4s trong tinh thể thì vùng này không chứa điện tử. Hình 1.9. Cấu trúc vùng TiO2 Do đó hình thành hai vùng: vùng dẫn (vùng 4s) và vùng hóa trị (vùng 2p) mà khoảng cách giữa hai vùng này lớn hơn 3 eV (hình 1.9). Các chất có các vùng cho phép đầy điện tử hoàn toàn hoặc trống hoàn toàn ở nhiệt độ thấp hầu như không dẫn điện, đó là các chất điện môi hoặc các chất bán dẫn. Khi T = 0 (K), vùng năng lượng hóa trị trong bán dẫn cũng như trong điện môi đều bị điện tử chiếm hoàn toàn. Theo nguyên lý loại trừ Pauli, mỗi mức ở vùng này có hai điện tử chiếm. Vùng nằm trên vùng hóa trị hoàn toàn tự do, không chứa một điện tử nào, gọi là vùng dẫn. Vùng hóa trị và vùng dẫn cách nhau bởi vùng cấm.
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất